Applied Mathematics E-Notes, 25(2025), 381-391 © ISSN 1607-2510
Available free at mirror sites of http://www.math.nthu.edu.tw/~amen/

Common Fixed Points Of Multivalued Interpolative Contractions
In Super Metric Space With An Application To Dynamical
Process®

Swati Saxena’, Umesh Chandra Gairolat

Received 30 March 2024

Abstract

In this paper, we introduce a multivalued interpolative contraction mapping and establish common
fixed point theorems in the framework of super metric space. Relevant examples are given to support
this new result. As an application, we obtain the solution of a functional equation arising in dynamic
programming.

1 Introduction

The extension of the Banach contraction principle [4] to various spaces, such as b-metric space [10], fuzzy
metric space [31], partial metric space [26], modular metric space [9], cone metric space [12], and others has
been explored by numerous researchers. In 2007, Huang and Jhang [12] proposed the concept of a cone metric
space, serving as a generalization of the metric space. Various authors have subsequently derived fixed-point
results for different types of contractions within these spaces ([1], [3], [14], [18], [25]). In 2015, Jleli and Samet
[13] introduced a novel generalization of metric spaces, encompassing a broad class of topological spaces,
including standard metric spaces, b-metric spaces, dislocated metric spaces, and modular spaces. More
recently, a new extension of the metric space termed as super metric space, was introduced by Karapinar
and Khojasteh [23].

In 1969, Nadler [27] made a significant contribution to the field of topology by introducing the concept of
multivalued mappings. This novel approach expanded the traditional understanding of mappings, which typ-
ically associated a single output with each input. Nadler’s exploration of multivalued mappings allowed for
a more nuanced and versatile representation of relationships between sets. The motivation behind Nadler’s
work stemmed from the recognition that many real-world processes and systems exhibit inherently multival-
ued behaviors. For instance, in dynamical systems, where a system’s state evolves over time, a single initial
condition might lead to multiple possible future states. Multivalued mappings provide a powerful tool for
modeling such complex and diverse relationships. Multivalued mapping has applications in various branches
of mathematics including functional analysis, topology and optimization.

As it is well-established, a mapping that satisfies the Banach contraction condition is necessarily contin-
uous. This prompts a relevant question: Can a mapping that is discontinuous and has a similar contractive
condition to the Banach contraction, still exhibit a fixed point? In 1968, Kannan [15] addressed this ques-
tion affirmatively. According to Kannan, a mapping U is termed as Kannan contraction if there exists a
a € [0,1/2) such that for any z, y € X,

d(Uz,Uy) < o{d(z,Uz) + d(y,Uy)}

where U is not a continuous map. He established that if X is a complete metric space and U is a Kan-
nan contraction mapping on X. Then it possesses a unique fixed point. A Kannan mapping may have
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382 Common Fixed Points of Multivalued Interpolative Contractions

discontinuity in the given space but it always continuous at it’s fixed points. In 1999, Pant [28] achieved
the initial breakthrough in understanding discontinuity at fixed points. Recently, Pant et al. ([8], [29]) have
contributed new insights to this problem.

In 2018, Karapinar [16] revisited Kannan-type contractions, incorporating the interpolation technique.
An interpolative contraction mapping is characterized by a contraction factor k that allows the adjustment
or “squeezing”of the distance between points at any desired rate within the range of 0 to 1. For a standard
metric space (M,b), Karapinar extended the Kannan-type contraction using the interpolative approach,
presenting the following generalization:

b(Uz,Uy) < M[b(x, U))[b(y, Uy))' ™),

for all z,y € M\ Fiz(U) and X € [0,1).

Recently, numerous studies have been done in this direction (see [2], [11], ([17], [19], [22], [24] and [30]).
In 2020, Karapinar et al. [20] introduced the concept of interpolative Boyd-Wong type contractions and
Matkowski-type contractions for both standard metric spaces and partial metric spaces and established
some fixed point theorems for these mappings.

Inspired by these findings, we introduce the concept of a multivalued interpolative contraction mapping
in setting of a super metric space. Our result is an extension and a generalization of many results existing in
the literature. We present illustrative examples to underscore the relevance of our results in comparison to
existing literature. The conclusion of our paper is highlighted through the application in solving functional
equations in dynamic programming.

2 Preliminary

In this section we revisit some definitions and results that will contribute to the development of our main
findings. We begin with recalling the definition of super metric space.

Definition 1 ([23]) Let X be a nonempty set and m : X x X — [0,00). Then m is said to be super metric
if the following conditions hold:

(my) forallz,y € X, if m(x,y) =0. Then x = y;
(m2) m(z,y) =m(y,z) for all z,y € X;
(m3) there exists s > 1 such that for every y € X, there exist two distinct sequences {x,},{yn} C X, with

m(zy, yn) — 0 when n — oo and

limsup m(yn,y) < slimsup m(z,,y).

Here, (X, m, s) is called a super metric space.
Example 1 Let X = [0,400), s=2 and m : X x X — [0,00) defined as
m(z,y) = |z —y|, Va € 0,00)\{2},

m(2,y) = m(y,2) = (2 —y)?, otherwise.

1t is easy to verify that the conditions (m1) and (m2) are fulfilled. Let {x,} and {y,} be two sequences in
[0,00)\{2} such that m(xyn,yn) — 0 as n — oo. Then, lim xz, = lim y, = ¢ and for x € [0,00)\{2}, we
have
lim sup m(yn, y) = limsup |z, — y| = |c — y| < slc — y| = limsup m(z,, y).
n—oo n—oo n—oo
If y = 2, by opting for identical sequences {x,}, {yn} € X it follows that (ms) holds. Hence, (X, m,s) forms
a super metric space.
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Definition 2 ([23]) On a super metric space (X, m,s), a sequence {x,} is said to be
(i) convergent and converges to x in X iff, lim m(z,,z) = 0; and
n—oo
(i) a Cauchy sequence in X iff,

limsup{m(x,,x,) : p > n and p,n € N} = 0.

n—oo
Proposition 1 ([21]) The limit of a convergent sequence is unique in a super metric space.

Definition 3 ([23]) A super metric space is complete iff, every Cauchy sequence converges to a point in the
super metric space.

Definition 4 ([27]) Let T : X — CB™(X) is a multivalued mapping. Then, x € X is said to be a fized
point of T if x € Tx. Also a point x € X is called a common fixed point of two multivalued mappings T,
S: X —-CB™X) ifxeTx()Sx.
Let CB™(X) be a collection of all non empty closed bounded subsets of X. For A € CB™(X), we define
m(a, A) = inf{m(a,z) : x € A}

For B, C € CB™(X),
Im (B, C) = sup{m(b,C) : b € B}

and

H,,(B,C) = max{d,,(B,C),0,(C, B)}.
Lemma 1 ([24]) Let (X,m,s) be a super metric space and A, B € CB™(X). Then
(i) Om(z, B) < m(zx,y) for anyy € B and x € X;
(ii) 6m(x, B) < H,,(A, B) for any x € A.
Lemma 2 ([24]) Consider A, B € CB™(X) and x € A. Then for any € > 0, there exists y € B such that
m(z,y) < Hy(A,B) +e.

Lemma 3 Let {K,} be a sequence in CB™(X) and for some K € CB™(X), lim H,,(K,,K) = 0. If
{un} € {K,} and for some uw € X, lim m(u,,u) =0, then u € K.

3 Main Result

Definition 5 Let (X, m,s) is a super metric space. A mapping T : X — CB™(X) is called a multivalued
interpolative contraction if there exists a € [0,1) and A1, Ao, Az € (0,1) such that A\; + A2 + A3 < 1 and

Hp (T, Ty) < affm(z,y)] [m(z, Tz)*? [m(y,Ty)]Af‘[%(m(%Ty) +m(y, Tx))] 2272 (1)

forall x, y € X with z, y ¢ Fix(T).

Theorem 1 Let (X,m,s) is a complete super metric space and T is a multivalued interpolative contraction
mapping. Then T has a fized point.
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Proof. Let xg € X, choose 1 € Txg. From Lemma 2 we can select x5 € Ty, such that m(zs,z1) <
H,,(Txz1,Txg) + €. Similarly, we may consider x3 € Tz such that m(zs,z2) < H,,(Tzy,Tx1) + € and so
on. Proceeding in the same manner, we generate a sequence {z, } satisfying x,,41 € T'z,, such that

m(xn-‘rla xn) < Hm(Txna Txn—l) +e

Suppose that z,, ¢ Tz,, Vn € N. Otherwise, T' has a fixed point in X. Thus, m(z,,Tz,) >0V n € N.
Taking @ = 2,1 and y = z,, in (1), we have

m(:rnaTxn) S Hm(Twn—laTxn)

< a[[m(x”_l’ m”)y\l [m(mn—ly T’a:‘n—l)])\2 [m(ﬂf’r“ Tﬂjn)])\s
[é(m(zn—h Txz,) + m(x,, Tl:n_l))]lfx\lf)\z*)\s]
= allm(@n-1,@0) (@01, 20)] (@0, 041)
[%(m(mn_l,xnﬂ) (i, )|t A2 )
= allm(zn, )l m(an, ‘T"+1)]A3[l(m(xn—17$n+1) ERUICITED))

3
If m(zn, Tni1) > m(Tp_1,T,),
M(Try Trg1) = M(xp, Ty) < afm(@n, 1) M2 < am(@n, Tpir)-
This is a contradiction as a € [0,1). If
m(Tn, Tpi1) < m(Tp—1,Zn),

then
MUy Tp1) < MU(T, T) < @fm(Tn—1,2,)) 7272 < afm(zn—1,2,)]

for all n € N. Hence, {m(z,,Tz,)} is non-increasing and non negative sequence and
M(Tyy Trg1) < afm(@n_1,2,)] < (T2, Tp_1)]... < a"[m(zo,x1)]. (2)
Since « € [0, 1), and taking limit in (2) as n — oo, we have

lim m(zy, Zne1) = 0.

n—oo

Now, for any positive integer k,

Ty Tpgls) < MU(Ty Trg1) + MUTrt1, Tng2) + oo+ MUTngk—1, Tntk)
< a"m(zo, z1) + "M m(zo, x1) + ... + " T Im(zg, z1)

= (" 4+ "+ L+ a"F Ym(zg, 1)

an

<
T 1l-—«

m(xo, x1). (3)

Letting n — oo in (3), we obtain m(x,, T,4r) — 0. Therefore, {z,} is a Cauchy sequence. Since (X, m, s)
is complete, we see that lim =z, = z for some x € X.

n—oo

Next, we show that x is a fixed point of T. Now,

m(zni1,T2) < Hyp (T, Tx)
< alfm(an, )M [m(zn, Tr, )] [m(%Tx)]AS[é(m(fEme) +m(e, Tay))) M2
= (s 2 i, 2o )P, TP [0, Ta) + e, o)),

Letting n — oo, we obtain lim m(z,41,T2z) = lim m(z,Tx) = 0. Therefore € Tx or T has a fixed point

n—oo n—oo
inX. m
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Example 2 Consider X = [0,00) and m(z,y) = |z — y|* for all z,y € X. Construct T : X — CB™(X)
such that 0 0.1)
0}, z € |0,1),
T(z) = { {z, 2 +1}, z>1.

For s = 1, clearly (X, m,s) is a complete super metric space. Let x = 0. Then T(0) = {0}, therefore 0
is a fized point of T. Let x > 1. Then x € T(x), therefore every x > 1 is a fized point of T. Now let
z,y ¢ Fiz(X). Then z,y € (0,1). Now, H,(Tx,Ty) = H,({0},{0}) = 0. Thus, T is a multivalued
interpolative contraction mapping for any « € [0,1) and A1, A2, Az € (0,1) with Ay + Ao+ A3 < 1. Hence, all
the conditions of Theorem 1 satisfied. Thus T has infinitely many fized points.

If we take T as a single valued mapping in Theorem 1. Then we get the following corollary as general-
ization of interpolative Hardy-Rogers type contraction obtained in [19] on super metric space.

Corollary 1 Let (X, m,s) be a complete super metric space and T : X — X satisfying for all z, y € X.
Then

H,,(Tz,Ty) < amax {m(:c, y),m(z, Tz), m(y, Ty) L (m(z, Ty) + m(y, Tx))}

'3
forall z, y € X and some o € [0,1). Then T has a fized point in X.

Theorem 2 Let (X, m,s) be a complete super metric space and T, S : X — CB™(X) be two multivalued
mappings satisfying the following condition

Hp (T, Sy) < affm(z, )] [m(z, Tz)]* [m(y, Sy)]*® [%(m(% Sy) + m(y, Ta)]' 272

for all x, y € X and some a € [0,1), A1, A2, A3 € (0,1) such that \y + Ao + A3 < 1. Then T and S have a
common fized point. Additionally, if either T or S is single-valued. Then the common fized point is unique.

Proof. Let z¢p € X with z¢ ¢ Txo and m(xo,Txg) > 0. Choose z1 € Tzy. By Lemma 2, there exists
To € Szq such that
m(zg,zl) S Hm(Sml,TiCo).

Similarly, we may choose x3 € T'zy such that
m(xs, x2) < Hp(Txe, Sx1).

Proceeding in similar manner, we construct a sequence {x,} such that xs, 1 € Tza, and zo, 2 € STop i1
for all n € N satisfying

m(Ton+2, Tont1) < Hp(STant1, Txay)

and
m($2n+1, xQn) S Hm(TxQn; San—l)-

Now,

Hm (Tx2na Sx2n+1)
af[m(@2n, T2n41)] (220, T2 )2 [M(T 2011, ST2041)]
[
S O‘Hm(xQny x2n+1)])\1 [m(xQTLy x2n+1)])\2 [m(x27L+17 x2n+2)]

[

(07

m($2n+17 5$2n+1)

IN A

(m(22n, STan1) + m(Tan i1, Tra, )]t~ A2723)

Wl =

A3

(m(T2n, Tony2) + sm(Tani1, Tan 1)) A2

Wl =

M2 1 (29,11, Dans2)| M TN

1-A1—X2

[m(z2n, T2nt1)]

m(Zant1, Tony2)]

IN

o
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which is a contradiction. Therefore,

M(Zont1, Tant2) < M(Ton, Tant1)

< a[m(zan, Tant1)] P (2011, Tant2)]
< a[m(zamn, Tont1)]- (4)
Similarly,
M(Tan, Tont1) < a[m(Ton—1,T2n)]- (5)

From (4) and (5), we have, m(zp, Zn11) < a[m(2,_1,x,)] we conclude that
M(Toni1, Tons2) < a[m(Ton, Toni1)] < &2[m(zon_1, 2on)]... < a"[m(zo,z1)].
Since a < 1, and taking n — oo, we have
m(Tont1, Tant2) — 0. (6)
For any positive integer k,

m(xny xn-‘rk) S m(xna xn-‘rl) + m(wn-‘rla Jj'rH—Q) + ...+ m(x‘n-‘rk‘—ly xn-‘rk)
< a"m(zo, z1) + " Mm(zo, x1) + ... + T Im(zg, 21)

= (" 4+ " 4+ L+ a"F Ym(zg, 1)

< e, ). (1)

T 1l-«

Letting n — oo in (7), we get m(zpn, Tntr) — 0. Therefore, {z,} is a Cauchy sequence. Since (X,m,s) is
complete so lim z,, = z for some x € X. Next, we claim that x is a common fixed point of T" and S. Now,

n—oo

m(Zont2, Tr) < Hp(Stopi1,Tx)
= Hm(T{L',S(L'QnJrl)
< affm(z, zoni1))M Im(a, To)2 [m(zoni1, Stans)] ™

)]17)\17/\27)\3]

[
af[m(z, woni1))M Im(z, Tx)]*2 [m(zoni1, Tant2)]

[

(m(x, Szant1) + m(zany1, Tx

Wl =

(m(2, Tont2) + m(Tansr, Ta)] ~1 72272, (8)

Wl =

—

Taking limit n — oo in (8) and using (6), we obtain m(z, Sz) = 0, that is € Sz. Hence z is a common
fixed point.
Additionally, if T" or S is single valued, we show that the common fixed point is unique. Suppose that

u € X is another common fixed point of 7" and S. Then by (5), we have
m(u,z) < Hy({u}, Sz) = Hy (Tu, Sz)

< affm(u, )™ [m(u, Tu))** [m(z, Sz)]** %(m(uv Sz) +m(z, Tu)]' =272

IN

alfm(u, )] [m(u, u)]2 [m(z, 2)]* [%(m(u, @) +m(z,u)] TN

1—)\2—)\3]

IA

alfm(u, )]

which follows m(u,x) = 0. Therefore u=x. =
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Example 3 Assume X = [0,1] with super metric m(z,y) = |z — y|?> for all z, y € X. Construct T,
S:X — CB™(X), such that

T:c:{g::ce[(),l]}

and -
Sz = {Z cx € [0,1]}.

Assume that x # 0, y # 0 and x < y. Then,

|2 Y2 Y2
m(m,Tx):’x—f , m(y,Sy):‘y_,’ , m(x,Sy):‘x—f 7
2 4 4
I’2 €T y2
m(%T:c):‘l/—ﬂ and Hp,(Tz,Sy) = 571

Now, we can check that

2
=4 Salm—mul

1'2>‘2
5 |

T3

y22s [1 Y2 22\ A A A
=1 @(P‘4\+@‘z ﬂ

is satisfied for a € (0,1), A1, A2, Az € (0,1) such that A\1 + Ao+ A3 < 1 and for all z, y € X such that x ¢ Tx
and y ¢ Sy. Therefore all the conditions given in Theorem 2 are met and 0 € X is a common fized point of
T and S.

Example 4 Let X = {0,1,2} be a super metric space endowed with super metricm : X x X — RT defined
by
1 2 1
m(0,0) = §a m(lal) = m(2a2) = ga m(oal) = m(l,O) = ga

m(0,2) =m(2,0) = %, m(1,2) =m(2,1) = i

Also define T, S : X — CB™(X) by

_ {0’2}’ T = {172}7
Tx_{{ﬂ, z=0.

and

_ {072}7 T = {172},
Sm_{{u, z=0.

Observe that Tx and Sz is closed and bounded for every x € X under the given super metric m also (X, m, s)

is complete super metric space. Clearly, Tx and Sz satisfies (5) and x = 2 is a common fized point of T
and S.

If we take Ay = A and A3 = 1 — A9 in Theorem 2, we get the following corollary as generalization of
multivalued interpolative Kannan-type contraction obtained in Theorem 1 of [24] on super metric space.

Corollary 2 Let (X, m,s) be a complete super metric space. T, S : X — CB™(X) be two multivalued
mappings satisfying for all x, y € X

Hpn (T, Sy) < al[m(z, T) m(y, Sy))' )

where X\ € (0,1) and a € [0,1). Then T and S have a common fized point. Additionally, if T or S is single
valued mapping. Then the common fized point is unique.
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4 Application

Dynamic programming is commonly used in various domains such as optimization problems, sequence align-
ment, shortest path problems, computer programming and many others. Specifically, resolving the dynamic
programming problem associated with a multistage process is equivalent to solving the functional equation

q(r) = Sgg{f(x,y) + L(2,y,q(t(2,9))} —a, zeW

which can be reframed as

q(r) = Sgg{l(wvy) + Lz, y,qt(z,9)} —a, xeW (9)

where W C U is a state space, D C V is a decision space, and U and V are Banach spacest: W x D — W
also f, g : WxD —R, L:WxDxR — R, a>0. In this section, we investigate the existence and
uniqueness of a bounded solution to the functional equation (9). For additional insights into the problem’s
context, readers can consult references ([5], [6], [7]) for a more comprehensive explanation. Let B(W') denote
the set of all bounded real-valued functions on W. And for an arbitrary h € B(W), define ||h|| = sup |h(x)].
Clearly, (B(W),||.||) endowed with the metric d defined by

d(h, k) = sup () = k(2)]

for all h,k € B(W) is a Banach space. Certainly, the convergence in the space B(W) with respect to ||.|
is uniform. Consequently, if we examine a Cauchy sequence {h,} in B(W), the sequence {h,} uniformly
converges to a bounded function, denoted as h*. Thus h* € B(W). Now, for every h,k € B(W), x € W and
a > 0, we consider the super metric m given by

m(h,k) = d(h,k) + a
and T : B(W) — B(W) given by

T(h)(z) = Slellp){l(ff, y) + Lz,y, h(t(z,y)))} —a. (10)

The mapping T is well defined if the function [ and L are bounded.

Theorem 3 Assume that
|L(.73, Y, h(l‘)) - L(:Ea Y, k(x)” S OéM(h, k)

where

M (h, k) = [m(h, k) [m(h, T (h))]** [m(hT(k))]A“"[%(m(h, T(k)) + m(k, T(h)))! A2

and x € W,y € D, a € [0,1), A1, A2, Ag € (0,1) such that A\ + Ao+ A3 < 1. Let T : B(IW) — B(W) defined
in (10), and functions L: W x D xR — R and | : W x D — R are bounded. Then the functional equation
(9) has a unique bounded solution.

Proof. (B(W),m,s) is complete super metric space. Let § be an arbitrary positive number, x € W and
hi,hs € B(W). Then there exists y1,y2 € D such that

T(hi(z)) < l(z,y1) + Lz, y1, b1, (t(z,91))) —a+ B, (11)

T(h2($)) < l(xva) + L(x’y% h27 (t(xva))) —a+ 67 (12)
T(hl(x)) > l(xvyZ) + L(xvy% h17 (t(x7y2)))7 (13)
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T(ho(z)) = Uz, y1) + L(2, 1, b, (K2, 91)))- (14)
Now, from (11) and (14), it follows

T(hl(x)) - T(hg(.’[:)) < L(x7y17 h, (t(wvyl))) - L(x7y1, ha, (t(xvyl))) —a+f
< |L(z,y1, b, (H(z,91))) — L@, y1, he, (K@, y1)))| —a+ B
S OéM(hl, hg) —a +ﬂ

Then we get
T(hi(z)) — T(ha(x)) < aM(hy, hy) —a+ B. (15)

Similarly, from (12) and (13), we get

T(hy(z)) — T(hy(2)) < aM(hy, hy) — a + B. (16)
Therefore from (15) and (16), we have

T(h1(@)) — T(ha(2))| < aM(hi, ha) —a+ B,

i.e. S(T(hl), T(hg)) < OlM(hl, hg) + 5 ]
Since the above inequality does not depend on z € W and 8 > 0 is taken arbitrary. Then we conclude
that
S(T(hl), T(hg)) S OéM(hl, hz)

And from Theorem 1 the mapping T has a unique fixed point, i.e., the functional equation (9) has a unique
bounded solution.

5 Conclusion

In this paper, we have introduced the notion of multivalued interpolative contractions in a super metric space.
Our results extend and generalize certain results in [19], [24] and some other results from existing literature.
To validate our contributions, we have provided relevant examples. Furthermore, we have presented an
application utilizing our primary result to address functional equations in dynamic programming. The
outcomes presented in this paper offer valuable insights for future research, paving the way for exploring the
existence of common fixed points for these contractions in various metric space settings and their applications
across diverse fields.

Acknowledgement. We would like to express our sincere gratitude to the referee for their insightful
comments and valuable suggestions, which have significantly improved the quality of this manuscript.
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