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Abstract

In this work, we study a class of quantum fractional nonlinear difference equations with neutral terms.
The results are developed in the sense of the q-analogue of the R-L fractional difference operator. New
suffi cient criteria for oscillation of the considered q-fractional equations with R-L type fractional deriva-
tives are established using the integral average and generalized Riccati technique. Essential preliminaries
for q-fractional calculus are stated prior to giving the main results. To the best of the authors’knowledge,
nothing is known about the oscillatory behaviour of the considered equation, and so this article begins
the study. An example is provided to illustrate the importance of the main results.

1 Introduction

Fractional differential equations (FDEs) have recently received great attention. Several researchers have
studied FDEs due to their effectiveness in various fields of engineering and science (see references [1, 4, 5,
13, 16, 18, 22, 27, 30, 31, 32, 35] and many references therein). In the last years, the theory of oscillation
of FDEs was also investigated [14]. Nonlinear neutral differential/difference equations arise in modeling
various phenomena, such as biology, population growth, chemical reactions, economics, and neural networks
[6, 15, 24, 25, 36].
The concept of q-difference equations has acquired great interest in the past few years. For details on

q-calculus, the interested reader is referred to the seminal texts [20, 26, 33]. The q-analog concept has
been initiated in [23], the q-analog of the beta and gamma functions was discussed in [11], and their integral
representations was investigated in [17]. For models from Mathematical biology where oscillation actions may
be formulated by means of cross-diffusion terms. In dynamical models, oscillation effects are often formulated
by means of external sources and/or nonlinear diffusion, perturbing the natural evolution of related systems;
see, e.g [28]. Oscillation theory is essential in biology for explaining how predating and competition cause
synchrony in animal and plant populations. Numerous researchers have conducted systematic studies on the
oscillation and non-oscillation of solutions to integer-order differential and difference equations in response
to such applications; we direct the reader to the excellent monograph [6] and the papers [7, 8, 19, 29]. Al-
Salam and Waleed [9] introduced the concept of q-analog of the Riemann-Liouville (R-L) fractional integral
operator, as well as the q-analogue of the Cauchy’s formula. Agarwal [3] addressed the q-analog of both the
fractional derivative and integral for R-L operators. Rajkovíc et al. [34] discussed fractional derivatives and
integrals in q-calculus. Atici and Eloe [12] studied the fractional q-calculus on time scales. Some suffi cient
criteria for the oscillation of solutions of R-L and Caputo q-fractional difference equations were studied in
[2] based on applying Young’s inequality.
Despite the research mentioned in the above discussion, there are no works available in the literature

addressing oscillation criteria for fractional q-difference equations based on the integral averaging and Ric-
cati techniques. Therefore, we construct the new problem of the oscillation of quantum nonlinear neutral
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difference equations of the form:

Dq

(
a1(r)ϕ2

(
Dα
q z(r)

))
+ a2(r)ϕ2

(
Dα
q z(r)

)
+ a3(r)ϕ1

(∫ r

0

r−α−1
(qs
r

; q
)
−α−1

y(s)dqs

)
= 0, (1)

for r > 0. Where z(r) = y(r) + Λ(r)y(r − σ), the constant σ > 0, α ∈ (0, 1) is a constant, q ∈ (0, 1)
and q ∈ R. The operator Dq denotes the quantum difference operator and Dα

q denotes the R-L quantum
fractional derivative of order α of y with respect to r.
First, we will assume that the following basic assumptions hold:

(A1) a1(r) ∈ C1q ( [r0,∞),R+) and a2(r), a3(r) > 0 are continuous functions on [r0,∞) for r0 > 0;

(A2) Λ ∈ C1+αq ([r0,∞),R+), 0 ≤ Λ < 1;

(A3) ϕ1, ϕ2 : R→ R are continuous function with xϕ1(u) > 0, xϕ2(u) > 0, and there exist constants l1 > 0,
l2 > 0 such that ϕ1(u)u ≥ l1, (u)

ϕ2(u)
≥ l2 for all u 6= 0;

(A4) ϕ−12 ∈ C(R,R) is a continuous functions with uϕ−12 (u) > 0 for u 6= 0, and there exists some nonnegative
constant ν such that ϕ−12 (uv) ≥ νϕ−12 (u)ϕ−12 (v) for uv 6= 0.

By a solution of problem (1), we mean a nontrivial function y(r) ∈ C1+αq [ ry,∞), ry ≥ r0 such that

Kq(r) =

∫ r

0

r−α−1
(qs
r

; q
)
−α−1

y(s)dqs ∈ C1q ([ ry,∞),R) ,

which has the property a1(r)ϕ2D
α
q z(r) ∈ C1q [ ry,∞) and satisfies the equation (1) for r ≥ ry, where C1+αq is

the space of quantum difference functions of fractional order (1 + α).
A solution y(r) of (1) is considered oscillatory if it is neither eventually negative nor eventually positive. If

one of the previous cases happened, we call it non-oscillatory. Moreover, equation (1) is said to be oscillatory
if each of its solutions is oscillatory.
This rest of the current paper has the following construction. The preliminaries and definitions are given

in the Section 2 along with the notations that are needed in the sequel. In the third section, we provide an
intensive discussion about the oscillation of the problem mentioned in (1). Last but not least, an example
to illustrate the main results is presented in the fourth section.

2 Preliminaries

One can start by recalling some existing fundamental ideas for fractional quantum calculus, which are
essential to what follows.

Definition 1 ([10]) The q-analogue of the R-L fractional integral of a positive order α, and 0 < q < 1 of a
mapping x : R+ → R on the positive real line can be represented as:

Iαq x(r) =
rα−1

Γq(α)

∫ r

0

(qs
r

; q
)
α−1

x(s)dqs, for r > 0,

given that the right-hand side is point wise stated on the positive real line, such that Γq is the q-gamma
mapping.

Definition 2 ([10]) The q-analogue of the R-L fractional derivative of a positive order α, and 0 < q < 1 of
a mapping x : R+ → R on the positive real line that can be represented as the following

Dα
q x(r) := (Ddαeq Idαe−αq x)(r), α > 0,

where dαe is the ceiling function of α.
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Definition 3 ([10]) The q-analogue of the R-L fractional derivative of a positive order α of a mapping
x : R+ → R+ on the positive real line can be represented as

(Dα
q x)(r) :=

d
dαe
q

dt
dαe
q

(
Idαe−αq x

)
(r),

(Dα
q x)(r) =

rdαe−α−1

Γqdαe − α
d
dαe
q

dt
dαe
q

∫ r

0

(qs
r

; q
)
dαe−α−1

x(s)dqs, (2)

for r > 0, given that the right side is a pointwise mapping stated on the positive real line.

Lemma 1 Suppose that y is a solution of (1) as well as

Kq(r) := r−α−1
∫ r

0

(qs
r

; q
)
−α−1

y(s)dqs, for α ∈ (0, 1) and r > 0. (3)

Then
Dq((Kq(r))) = Γq(1− α)(Dα

q y)(r). (4)

Proof. Using the previously mentioned definition of q-fractional integral as well as (2), we obtain:

Dq(Kq(r)) = Dq

[
rα−1

∫ ∞
r

(qs
r

; q
)
α−1

y(s)dqs

]
= Γq(1− α)

dq
dtq

[
rα−1

Γq(1− α)

∫ r

0

(qs
r

; q
)
−α−1

y(s)dqs

]
= Γq(1− α)

d
dαe
q

dt
dαe
q

[
rdαe−α−1

Γq(dαe − α)

∫ r

0

(qs
r

; q
)
dαe−α−1

y(s)dqs

]

= Γq(1− α)

[
d
dαe
q

dt
dαe
q

rdαe−α−1

Γq(dαe − α)

∫ r

0

(qs
r

; q
)
dαe−α−1

y(s)dqs

]
,

DqKq(r) = Γq(1− α)Dα
q y(r).

Lemma 2 ([7]) Let y(r) > 0 be a solution of (1) on T ≥ 0. Then the function z(r) = y(r) + Λ(r)y(r − σ)
satisfies one of the following cases:
Case I: z(r) > 0, Dα

q z(r) > 0, Dα
q

(
a1(r)ϕ2

(
Dα
q z(r)

))
≤ 0;

Case II: z(r) > 0, Dα
q z(r) < 0, Dα

q

(
a1(r)ϕ2

(
Dα
q z(r)

))
≤ 0; for all r ≥ T .

Lemma 3 ([21]) If X > 0, Y > 0. Then

mXY m−1 −Xm ≤ (m− 1)Y m.

3 Main Results

We provide in this section several suffi cient conditions for the oscillation of (1) under the hypothesis∫ ∞
r0

1

a1(r)
dqr =∞.
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Theorem 1 Assume that (A1)—(A4) hold and that Dq(ϕ1(kq(r))) ≥ µ for some µ > 0 and for all kq(r) > 0.
Furthermore, assume that there is a non negative and nonzero mapping δ ∈ Cαq ((0,∞),R+) such that∫ ∞

r0

ϕ−12

(
1

a1(s)e
Rq(s)
q

)
dqs =∞, (5)

lim sup
r→∞

∫ r

r0

[
δ(qs)eRq(s)

q a3(s)−
(Dq(δ(s))

2e
Rq(s)
q a1(s)

4µl2δ(qs)Γq(1− α)

]
dqs =∞ (6)

where

Rq(s) =

∫ r

r0

a2(s)

a1(s)
dqs. (7)

Then every solution of (1) is oscillatory.
Proof. Suppose that the solution y(r) is a non oscillatory solution of the problem (1). We may also suppose
that y(r) > 0 is a solution of (1), and also assume that y(qr) > 0, y(r − σ) > 0. Then, there exists r1 ≥ r0
such that y(r) > 0 and Kq(r) > 0 for r ≥ r1. Using (1) and (7), we have

Dq

[
eRq(r)
q a1(r)

(
ϕ2(D

α
q z(r))

)]
= eRq(r)

q Dq

[
a1(r)

(
ϕ2(D

α
q z(r))

)]
+ eRq(r)

q a2(r)ϕ2(D
α
q z(r))

= eRq(r)
q

[
Dq

(
a1(r)ϕ2

(
Dα
q (z(r))

))
+ a2(r)ϕ2

(
Dα
q (z(r))

)]
≤ eRq(r)

q [−a3(r)ϕ1(Kq(r))] < 0. (8)

Thus Dα
q z(r) ≥ 0 or Dα

q z(r) < 0, for some r1 ≥ r0. We now claim that Dα
q z(r) ≥ 0. Suppose now

Dα
q z(r) < 0 and there exists r2 ∈ [r1,∞) such that Dα

q z(r2) < 0. Since eRq(r)
q a1(r)

(
ϕ2(D

α
q z(r))

)
is strictly

decreasing on the interval [r1,∞). Clearly,

eRq(r)
q a1(r)

(
ϕ2(D

α
q z(r))

)
< eRq(r2)

q a1(r2)
(
ϕ2(D

α
q z(r2))

)
:= −c1,

where c1 is a positive constant for r ∈ [r2,∞). Therefore, from Lemma 1, we obtain

Dq(Kq(r))

Γq(1− α)
= (Dα

q z)(r) < ϕ−12

(
−c1

a1(r)e
Rq(r)
q

)
≤ −ν1ϕ−12

(
1

a1(r)e
Rq(r)
q

)
, for r ∈ [r2,∞),

where ν1 = νϕ−12 (c1). Therefore,

ϕ−12

(
1

a1(r)e
Rq(r)
q

)
≤ −Dq (Kq(r))

ν1Γq(1− α)
, for r ∈ [r2,∞).

q-integrating from r2 to r,∫ r

r2

ϕ−12

(
1

a1(s)e
Rq(s)
q

)
dqs ≤ −

Kq(r)−Kq(r2)

ν1Γq(1− α)
<

Kq(r2)

ν1Γq(1− α)
, for r ∈ [r2,∞) .

Letting r →∞, ∫ ∞
r2

ϕ−12

(
1

a1(s)e
Rq(s)
q

)
dqs ≤

Kq(r2)

ν1Γq(1− α)
<∞,

which contradicts (5). Define the function wq(r) by

wq(r) = δ(r)
a1(r)e

Rq(r)
q

(
ϕ2(D

α
q z(r))

)
ϕ1(Kq(r))

, for r ∈ [r1,∞) . (9)
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Since wq(r) > 0 for r ∈ [r1,∞), using (8), (A3), and Lemma 1,

wq(r) = δ(r)

(
e
Rq(r)
q a1(r)ϕ2(D

α
q z(r))

φ1(Kq(r))

)
.

Then wq(r) > 0, we get

Dqwq(r) = δ(qr)Dq

[
e
Rq(r)
q a1(r)ϕ2(D

α
q z(r))

φ1(Kq(r))

]
+

[
e
Rq(r)
q a1(r)ϕ2(D

α
q z(r))

φ1(Kq(r))

]
Dqδ(r)

≤ −δ(qr)eRq(r)
q a3(r) +

Dqδ(r)

δ(r)
wq(r)−

δ(qr)µΓq(1− α)l2w
2
q(r)

δ2(r)e
Rq(r)
q a1(r)

,

Dqwq(r) ≤ −δ(qr)eRq(r)
q a3(r) +

(Dqδ(r))
2
e
Rq(r)
q a1(r)

4µl2δ(qr)Γq(1− α)
.

and, q-integrating, we have∫ r

r1

Dqwq(s)dqs ≤ −
∫ r

r1

[
δ(qs)eRq(s)

q a3(s)−
(Dqδ(s))

2
e
Rq(s)
q a1(s)

4µl2δ(qs)Γq(1− α)

]
dqs,

wq(r) ≤ wq(r1)−
∫ r

r1

[
δ(qs)eRq(s)

q a3(s)−
(Dqδ(s))

2
e
Rq(s)
q a1(s)

4µl2δ(qs)Γq(1− α)

]
dqs.

This implies that ∫ r

r1

[
l1δ(qs)e

Rq(s)
q a3(s)−

(Dqδ(s))
2
e
Rq(s)
q a1(s)

4l2δ(qs)Γq(1− α)

]
dqs ≤ wq(r1),

which contradicts (6).

Theorem 2 Suppose that (A1)− (A4) and (5) are satisfied. Suppose

lim sup
r→∞

∫ r

r1

[
l1δ(qs)e

Rq(s)
q a3(s)−

(Dqδ(s))
2
e
Rq(s)
q a1(s)

4l2δ(qs)Γq(1− α)

]
dqs =∞. (10)

Then all the solutions of (1) are oscillatory.
Proof. Let y(r) be a non-oscillatory solution in (1). We may also suppose that y(r) > 0, y(qr) > 0 and
y(r − σ) > 0 in [r0,∞). Using a similar way of that in Theorem 1, one could get that (8) and Dα

q z > 0 for
r ≥ r1. Define the function ωq(r):

ωq(r) = δ(r)

(
e
Rq(r)
q a1(r)ϕ2(D

α
q z(r))

Kq(r)

)
.

Then ωq(r) > 0, we get

Dqωq(r) = δ(qr)Dq

[
e
Rq(r)
q a1(r)ϕ2(D

α
q z(r))

Kq(r)

]
+

[
e
Rq(r)
q a1(r)ϕ2(D

α
q z(r))

Kq(r)

]
Dqδ(r)

≤ −l1δ(qr)eRq(r)
q a3(r) +

Dqδ(r)

δ(r)
ωq(r)−

δ(qr)Γq(1− α)l2ω
2
q(r)

δ2(r)e
Rq(r)
q a1(r)

,

Dqωq(r) ≤ −l1δ(qr)eRq(r)
q a3(r) +

(Dqδ(r))
2
e
Rq(r)
q a1(r)

4l2δ(qr)Γq(1− α)
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and, q-integrating, we have∫ r

r1

Dqωq(s)dqs ≤ −
∫ r

r1

[
l1δ(qs)e

Rq(s)
q a3(s)−

(Dqδ(s))
2
e
Rq(s)
q a1(s)

4l2δ(qs)Γq(1− α)

]
dqs,

ωq(r) ≤ ωq(r1)−
∫ r

r1

[
l1δ(qs)e

Rq(s)
q a3(s)−

(Dqδ(s))
2
e
Rq(s)
q a1(s)

4l2δ(qs)Γq(1− α)

]
dqs.

This implies that ∫ r

r1

[
l1δ(qs)e

Rq(s)
q a3(s)−

(Dqδ(s))
2
e
Rq(s)
q a1(s)

4l2δ(qs)Γq(1− α)

]
dqs < ωq(r1),

which contradicts (10).

In the follow-up, we address several novel oscillation criteria of (1) taking advantage of the conditions of
Philo’s type.
The mapping B ∈ C(D;R) is classified as the class P if there is a mapping b ∈ C(D0, R) such that

−∂B(r, s)

∂s
= b(r, s)

√
B(r, s),

for all (r, s) ∈ D0.

Theorem 3 Assume that (A1)− (A4) are satisfied and that there is a mapping B ∈ C(D;R) which belongs
to the class P, where D0 = {(r, s) : r > s ≥ r0} and D = {(r, s) : r ≥ s ≥ r0}, such that

(T1) B(r, r) = 0 for r ≥ r0, B(r, s) > 0 on D0;

(T2) B contains a continuous as well as either zero or negative partial derivative on D0 and meets the
following

lim sup
r→∞

1

B(r, r1)

∫ r

r1

B(r, s)

[
l1δ(qs)e

Rq(s)
q a3(s)−

(Dqδ(s))
2
e
Rq(s)
q a1(s)

4l2δ(qs)Γq(1− α)

]
dqs =∞. (11)

Then each solution in (1) is oscillating.
Proof. Assume that the solution y(r) is a non oscillatory solution of the problem (1). We may also suppose
that y(r) > 0, y(qr) > 0 and y(r − σ) > 0 in [r0,∞). Proceeding as in the proof of Theorem 2, we obtain

Dqωq(r) ≤ −l1δ(qr)eRq(r)
q a3(r) +

(Dqδ(r))
2
e
Rq(r)
q a1(r)

4l2δ(qr)Γq(1− α)
.

Multiplying on both sides by B(r, s), and q-integrating from r1 to r for r ∈ [r0,∞), we get∫ r

r1

B(r, s)

[
l1δ(qs)e

Rq(s)
q a3(s)−

(Dqδ(s))
2
e
Rq(s)
q a1(s)

4l2δ(qs)Γq(1− α)

]
dqs

≤ − [B(r, s)ωq(s)]
r
r1

+

∫ r

r1

DqB(r, s)ωq(s)dqs

< B(r, r1)ωq(r1).

Therefore,

1

B(r, r1)

∫ r

r1

B(r, s)

[
l1δ(qs)e

Rq(s)
q a3(s)−

(Dqδ(s))
2
e
Rq(s)
q a1(s)

4l2δ(qs)Γq(1− α)

]
dqs < ωq(r1) <∞,

which contradicts to (11).
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At this stage several suffi cient conditions are presented for the oscillation of (1) under the assumption∫∞
r0

1
a1(r)

dqr <∞.

Theorem 4 Assume that (A1)—(A4) and (6) are satisfied. In addition, suppose that∫ r

T

g−1

[
1

e
Rq(s)
q a1(s)

∫ s

T

eRq(ς)
q a3(ς)dqς

]
dqs =∞.

Then each solution in (1) is oscillating or approaching zero.
Proof. Assume that the solution y(r) is a non oscillatory solution of the problem (1). We may also suppose
that y(r) > 0, y(qr) > 0 and y(r − σ) > 0 in [r0,∞). Using a similar way of the previously mentioned
Theorem 1, one could observe that there are a couple of possibilities regarding the value Dqy(r). First, if
Dqy(r) > 0 we can proceed using the same approach that we applied in Theorem 1. Therefore, we may
suppose that the value of Dqy(r) is negative for r ≥ r1. Consequently, y(r) is going to be decreasing as well
as we will have that limr→∞ z(r) = b ≥ 0. One must have that b = 0, otherwise, ϕ1(Kq(r)) > b > 0 for
r ≥ T . Now, let us state the following mapping

uq(r) = eRq(r)
q a1(r)ϕ2(D

α
q z(r)).

Then, from (1) for r ≥ T , we obtain

Dquq(r) ≤ −eRq(r)
q a3(r)ϕ1(Kq(r)) ≤ −eRq(r)

q a3(r)ϕ1(b).

Hence, for r ≥ T , we have

uq(r) ≤ uq(T )− ϕ1(b)
∫ r

T

eRq(s)
q a3(s)dqs.

Since uq(r) = e
Rq(T )
q a1(T )ϕ2(D

α
q z(T )) < 0, q-integrating the last inequality from T to r, we have

uq(r) ≤ eRq(T )
q a1(T )ϕ2(D

α
q z(T ))− ϕ1(b)

∫ r

T

eRq(s)
q a3(s)dqs,

ϕ2(D
α
q z(T )) ≥ −ϕ1(b)

e
Rq(T )
q a1(T )

∫ r

T

eRq(s)
q a3(s)dqs,

Dqz(r) ≥
−ϕ1(b)

Γq(1− α)
ϕ−12

(
1

e
Rq(T )
q a1(T )

∫ r

T

eRq(s)
q a3(s)dqs

)
.

Again, q-integrating, we obtain

z(r) ≥ −ϕ1(b)
Γq(1− α)

ϕ−12

(
1

e
Rq(s)
q a1(s)

∫ s

T

eRq(ς)
q a3(ς)dqς

)
dqs. (12)

Using the previously mentioned condition in (12), one could have that z(r) → −∞, as r → ∞, which
contradicts the assumption z(r) > 0 for r ≥ r0. Therefore, the value b = 0 and, then, z(r) → 0 as r → ∞.

4 An Example

Here in the last section of this paper, an application for the above established results is presented.
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Example 1 Consider

Dq

(
r

(
Dα
q

(
y(r) +

1

2
y(r − 2π)

)))
+ r−2

(
Dα
q

(
y(r) +

1

2
y(r − 2π)

))
+

e
1
8
q

rδ(qr)

(∫ r

0

r−α−1
(qs
r

; q
)
−α−1

y(s)dqs

)
= 0, (13)

for r ∈ [2,∞]. We have in (1) α ∈ (0, 1), 0 < q < 1, a1(r) = r, a2(r) = r−2, a3(r) =
e
1
8
q

rδ(qr) , σ = 2π, Λ = 1
2 ,

r0 = 2, δ(s) = 1, µ = l2 = 2, and Γq(1− α) > 0. Then, Rq(r) = −1
2 [r−2 − 2−2]. Therefore,∫ ∞

r0

ϕ−12

(
1

a1(s)e
Rq(s)
q

)
dq(s) =

∫ ∞
2

(
1

a1(s)e
Rq(s)
q

)
dqs ≥ e

1
8
q

∫ ∞
2

1

s
dq(s) =∞.

Furthermore,

lim sup
r→∞

∫ r

r0

[
δ(qs)eRq(s)

q a3(s)−
(Dq(δ(s))

2e
Rq(s)
q a1(s)

4µl2δ(qs)Γq(1− α)

]
dqs = lim sup

r→∞

∫ r

2

1

s
dq(s) =∞.

Since all assumptions of Theorem 1 are satisfied, we verify that all solutions of (13) are oscillatory.

5 Conclusion

In this paper we established some suffi cient conditions for the oscillation of solutions of nonlinear neutral
fractional quantum difference equations of the form (1). The results are new, they are derived based on the
integral averaging and Riccati techniques, and the effectiveness was illustrated when applied to an example.
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