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Abstract

The fundamental feature of any ecosystem is that no species can survive without interacting with

other species. The interaction between the species is either cooperative or retaliatory and the cooperation

or retaliation may be intra-species as well as inter-species. In the present article, we consider inter-species

retaliation behaviour in the perspective of prey-predator model where the preys move in groups, i.e., the

preys show herd behaviour and show retaliation behaviour to the attacker without running away with

fear. In such models the preys are attacked by the predator along the outer corridor of the herd. So

attacking rate depends not on the total number of preys but on the number of preys along the herd

boundary. In the present article, we establish a model combining the retaliation phenomenon with the

herd behaviour. We critically analyze the stability and bifurcation of the model. Moreover, graphical

illustrations are provided to exhibit different situations.

1 Introduction

The fundamental characteristic of any ecosystem is that no species can survive alone. Numerous features
on interactions between several species are seen in the realm of living plants and animals of the earth. The
behaviours of the constituents of the animal kingdom are till now a fascinating topic to ecologists. During the
beginning of the last century population scientists are actively engaged to uncover the behavioural mystery
of the animal kingdom. In addition, mathematical formulation of the coexistence of several species of a
system took a major role in population study. In this regard, it must be mentioned the masterpiece works
of Lotka [9] and Volterra [12]. The characteristics of prey-predator models have been established in several
perspectives by several authors. For instance, we may refer [1, 2, 3, 4, 5, 6, 7, 8, 10, 11]. Ajraldi et al. [1],
developed predator-prey models that have the interaction term as the square root of the prey population.
Braza [3] also has enlighten some minute aspects of such models.The importance of square root models
is that they are used to study the prey-predator models equipped with herd behavior. The point behind
considering such models is that when the preys show herd behaviour, the predators get chance of interacting
with the preys along the outer corridor of the herd of preys. So the outer boundary is expressed as a square
root function of the total population. Forest dwelling animals sometimes exhibit peculiar behaviours. In
forests some predators attack from front side and sometimes they attack from behind. Again, the retaliation
or revenge between two rival species are frequently seen. For example, if a herd of wild buffaloes is attacked
by tiger, the herd of buffaloes take revenge by counter attacking the tiger. In the present article, we consider
such retaliation behaviours of the preys in addition to their herd behaviours. It is to be mentioned that
retaliation behaviour is only exhibited by preys for self defense and not shown by predators as they are the
attacker.

The article is organized as follows: After the introduction in Section 1, we present the model in Section
2. Section 3 contains the stability analysis. The aspects of bifurcation is considered in Section 4. Finally in
the last section, numerical simulations are done using graphs drawn by MATLAB.
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2 Derivation of Predator-Prey Model with Herd Boundary and

Retaliation Behaviour in Preys

It is known that the predator-prey model with logistic growth in the prey and Holling type II functional
response is given by [3]

dU

dt
= rU(1 − U

N
) − αUV

1 + thαU
, (1)

dV

dt
= −sV +

cαUV

1 + thαU
. (2)

Here U(t) and V (t) denote the prey population and predator population respectively. r is the growth rate
of the prey population and N is its carrying capacity. In absence of prey population the death rate of the
predator is s. The search coefficient of V for U is α. c being biomass conversion or consumption rate. The
average handling time of V for U is th. Suppose T indicate the total time that each V takes to collect food
from U, Ts is the time taken by each V looking for U and the time th that each V takes handling U. Modifying
the above model, Ajraldi et al [1], developed prey-predator models as follows that have the interaction term
as the square root of the prey population.

dU

dt
= rU(1− U

N
) − α

√
UV

1 + thα
√

U
, (3)

dV

dt
= −sV +

cα
√

UV

1 + thα
√

U
. (4)

Now, we consider a situation where in addition to herd behaviour, retaliation or revenge behaviour are shown
by the preys. Suppose a member of the herd of preys is attacked by a predator along a boundary of the
prey when the preys were not alert for possible attack of the predator, and after being attacked, they chase
the predator and attack it. For this situation an additional rate of death of the predators will come into
account. Let the death rate of predators due to the retaliation by preys be γ. So the model will reduce to

dU

dt
= rU(1− U

N
) − α

√
UV

1 + thα
√

U
, (5)

dV

dt
= −sV +

cα
√

UV

1 + thα
√

U
− γV. (6)

Here U(0) > 0 and V (0) ≥ 0.

3 Stability Analysis of Predator-Prey Model with Herd Boundary
and Retaliation Behaviour in Preys

3.1 Positivity and Boundedness of the Model

Let us investigate the positivity and boundedness of the system of equations (5) and (6). The right hand
sides of (5) and (3) are continuous functions of the dependent variables U and V . Integrating both sides of
the equations of the system, we have

U(t) = U(0)exp

[
∫ t

0

(

r

(

1 − U

N

)

− αV

1 + thαU

)

dx

]

,

V (t) = V (0)exp

[

∫ t

0

(

−s +
cα

√
U

1 + thα
√

U
− γ

)

dx

]

.
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In view of the above expressions of U(t) and V (t) it can be inferred that U(t) and V (t) remain non-negative
for the infinite time, if they starts from an interior point of

R2
+ = {(U(t), V (t)) ∈ R2 : U(t) > 0, V (t) ≥ 0}.

Thus R2
+ is positively invariant for the system considered.

Regarding the uniform boundedness, let us prove the following

Theorem 3.1 The solutions of the system of equations (5) and (6) consisting the model with non-negative
initial conditions (U(0), V (0)) starting from the interior of R2

+ are uniformly bounded.

Proof. Let

W (t) = U(t) +
1

c
V (t). (7)

Hence, along the solution trajectories of the model

dW

dt
= rU(1 − U

N
) − (γ +

s

c
)V. (8)

By virtue of (7) and (8)
dW

dt
+ θW = (r + θ)U − r

N
U2 − (γ +

s− θ

c
)V.

Choosing θ such that 0 < θ < s, we have from above

dW

dt
+ θW ≤ (r + θ)U − r

N
U2

=
r

N

(

N2(r + θ)2

4r2
−
(

N(r + θ)

2r
− U

)2
)

≤ N(r + θ)2

4r
.

Thus from above
dW

dt
+ θW ≤ P, (9)

where P = N(r+θ)2

4r
. In view of differential inequality from (9), one obtains

0 ≤ W (t) ≤ P

θ
(1 − e−θt) + W (0)e−θt.

As t → ∞, we infer 0 ≤ W (t) ≤ P
θ

+ ε for 0 < ε < W (0). Hence, in view of positivity of U(t) and V (t), we
conclude that all solutions initiating in R2

+ are restricted in the region

D =

{

(

U(t), V (t)
)

∈ R2 : U(t) +
1

c
V (t) ≤ P

θ
+ ε, ε > 0

}

.

Thus the solutions of the system are uniformly bounded. Hence the model is biologically well posed.

3.2 Equilibrium Points and Their Stability:

It is seen that the equilibrium points of the above model are

(i) U = N , V = cr
(s+γ)

(

N − 1
r

)

.

(ii) U = (s+γ)2

α2(c−th(s+γ))2
, V = c(s+γ)

α2(c−th(s+γ))2

(

r
α2 − r

N

(s+γ)2

(c−th(s+γ))2

)

.
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(iii) U = 0, V = 0.

The Jacobian of the system is





r − 2rU
N

− αV

2
√

U(1+thα
√

U)2
− α

√
U

1+thα
√

U

cαV

2
√

U(1+thα
√

U)
−s + cα

√
U

1+thα
√

U
− γ



 .

3.3 Local Stability for Case (i)

In this subsection, we investigate the nature of stability for U = N , V = cr
r(s+γ)

(

N − 1
r

)

and prove the

following:

Theorem 3.2 The equilibrium point U = N , and V = cr
(s+γ)

(

N − 1
r

)

is locally asymptotically stable if
(

1
r
− N

)

< 2, provided

s + γ =
cα

√
N

1 + thα
√

N
.

Proof. The Jacobian matrix for case (i) is of the form

[

a11 a12

a21 a22

]

,

where

a11 = −r − α

2
√

N
(

1 + thα
√

N
)2 .

cr

(s + γ)
.

(

N − 1

r

)

,

a12 = − α
√

N

1 + thα
√

N
,

a21 =
αc2r2

(

N − 1
r

)

2r(s + γ)
√

N
(

1 + thα
√

N
)2 ,

a22 = −s − γ +
cα

√
N

1 + thα
√

N
.

The eigenvalues λ of the above Jacobian is given by

λ2 − B1λ + B2 = 0,

where B1 = a11 + a12 and B2 = a11a22 − a12a21. Assume r > 0 and

s + γ =
cα

√
N

1 + thα
√

N
.

In that case, a22 = 0, a12 < 0, a21 > 0. So the determinant of the Jacobian is positive and thus B2 > 0.

Hence, by Routh Hurwitz criterion theorem [13], the solution will be asymptotically stable if a11 + a22 < 0.

Now, by our assumed condition a22 = 0. Hence, the solution will be asymptotically stable if a11 < 0. For

s + γ =
cα

√
N

1 + thα
√

N
,

we obtain a11 = 1
2r
(

1
r
− N

)

− r. Hence, the solution will be asymptotically stable if
(

1
r
− N

)

< 2.
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3.4 Local Stability for Case (ii)

In this subsection, we investigate the nature of stability for

U =
(s + γ)2

α2(c − th(s + γ))2
,

V =
c(s + γ)

α2(c − th(s + γ))2

(

r

α2
− r

N

(s + γ)2

(c − th(s + γ))2

)

and establish the following:

Theorem 3.3 The equilibrium point

U =
(s + γ)2

α2(c − th(s + γ))2
and V =

c(s + γ)

α2(c − th(s + γ))2

(

r

α2
− r

N

(s + γ)2

(c − th(s + γ))2

)

is locally asymptotically stable if

rα2

N
.

(s + γ)2

(c − th(s + γ))2
< r <

rα(s + γ)2
(

4rc − α(c − th(s + γ))
)

+ rN(c − th(s + γ))3

2Nα3rc(c − th(s + γ))2
.

Proof. The Jacobian matrix for case (ii) is of the form

[

a11 a12

a21 a22

]

,

where

a11 = r − rα(s + γ)2
(

4rc − α(c − th(s + γ))
)

+ rN(c − th(s + γ))3

2Nα3rc(c − th(s + γ))2
,

a12 = −s + γ

c
,

a21 =
1

2

(

r

α2
− r

N

(s + γ)2

(c − th(s + γ))2

)

,

a22 = 0.

The eigenvalues λ of the above Jacobian is given by

λ2 − B1λ + B2 = 0,

where B1 = a11 + a12 and B2 = a11a22 − a12a21. Assume

α2

N
.

(s + γ)2

(c − th(s + γ))2
< 1. (10)

Then a22 = 0, a12 < 0 and a21 > 0. So the determinant of the Jacobian for this case is positive. Consequently,
B2 > 0. Hence, by Routh Hurwitz criterion theorem [13], the solution will be asymptotically stable if
a11 + a22 < 0. Now, a22 = 0. Hence, the solution will be asymptotically stable if a11 < 0, i.e.,

r <
rα(s + γ)2

(

4rc − α(c − th(s + γ))
)

+ rN(c − th(s + γ))3

2Nα3rc(c − th(s + γ))2
. (11)

Combining (10) and (11), we get the result.
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3.5 Local Stability for Case (iii)

In this subsection, we discuss the nature of stability for U = 0 and V = 0. Since 1√
U

is indeterminate for

U = 0 and the square root function is not differentiable at U = 0, the stability of this case cannot be
determined by simply evaluating the Jacobian matrix at U = 0 and V = 0. The authors in [1] used the
re-scaling u = u′2 to remove such a singularity in an analogous problem. In [3], the authors tackled such a
situation using some re scaling and special assumption as follows:

u =
U

N
, v =

αV

r
√

N
, tnew = rtold, snew =

sold

r
,

a = thα
√

N cnew = cold

α
√

N

r
and γnew = γold

r
√

N

α
.

With these changes the model transforms to

du

dt
= u(1 − u) −

√
uv

1 + a
√

u
, (12)

dv

dt
= −sv +

c
√

uv

1 + a
√

u
− γv. (13)

Further, if we assume the average handling time th is zero, then a = 0 the model transforms to

du

dt
= u(1− u) −

√
uv, (14)

dv

dt
= −(s + γ)v + c

√
uv. (15)

Assuming 1 − u → 1, i.e., u is very small compared to 1, and c
√

u → 0, we have the system as

du

dt
= u −

√
uv, (16)

dv

dt
= −s′v, (17)

where s′ = s + γ. The above model is completely treated in [3].

Remark 1 Since the scale changing formulas are continuous, the change of formula will not change any
topological properties of the solution, i.e., the nature of the solution will remain unaffected but due to change
of scaling, numerical aspects like population number, rate of consumption etc. will be changed. So due to
scaling we obtain qualitatively(topologically) same but quantitatively (numerically) different results. However,
with the conversion formula, we can realize the results for the original case.

4 Bifurcation Analysis

In the following we give the bifurcation analysis of the model.

Theorem 4.1 At the equilibrium point U = N , V = cr
(s+γ)

(

N − 1
r

)

for

s + γ =
cα

√
N

1 + thα
√

N
,

the system undergoes through Hopf bifurcation with respect to the parameter r for the critical value r0 = 1−N
N

.
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Proof. Consider the Jacobian matrix
[

a11 a12

a21 a22

]

,

of the system for U = N , V = cr
(s+γ)

(

N − 1
r

)

for

s + γ =
cα

√
N

1 + thα
√

N
,

and 2r + 2Nr
Nr−1 = 0, we have a11 = 0, a22 = 0, a12 < 0 and a21 > 0. In this case, the characteristic

equation of the Jacobian matrix is λ2 = a12a21 < 0. Thus the eigenvalues are purely imaginary. Verifying
the transversality condition, one can conclude that the model undergoes Hopf bifurcation for r = 1−N

N
with

r as bifurcation parameter.

Theorem 4.2 At the equilibrium point

U =
(s + γ)2

α2(c − th(s + γ))2
, V =

c(s + γ)

α2(c − th(s + γ))2

(

r

α2
− r

N

(s + γ)2

(c − th(s + γ))2

)

for α2

N
.

(s+γ)2

(c−th(s+γ))2
< 1, the system undergoes Hopf bifurcation with respect to the parameter r for the critical

values r = 0 or

r =
1

4c

(

1 − N(c − th(s + γ))3

α(s + γ)2
+ α(c − th(s + γ))

)

.

Proof. Consider the Jacobian matrix
[

a11 a12

a21 a22

]

,

of the system for

U =
(s + γ)2

α2(c − th(s + γ))2
, V =

c(s + γ)

α2(c − th(s + γ))2

(

r

α2
− r

N

(s + γ)2

(c − th(s + γ))2

)

.

For α2

N
.

(s+γ)2

(c−th(s+γ))2
< 1 and r = 0 or r = 1

4c

(

1−N(c−th(s+γ))3

α(s+γ)2
+ α(c − th(s + γ))

)

, a12 < 0 and a21 > 0.

Again a22 = 0. Hence, as the previous case, the system undergoes Hopf bifurcation at the considered point

for r = 0 or r = 1
4c

(

1−N(c−th(s+γ))3

α(s+γ)2
+ α(c − th(s + γ))

)

.

5 Numerical Simulations

In this section we exhibit graphical representation of nullclines, phase portrait and time series for different
numerical values of the associated parameters.

5.1 Nullclines and Solution Curves

In the following we give nullclines and solution curves for different parameter values. Blue line denotes preys
and green line denotes predators. Magenta line denotes solution curve.
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Fig. 1: Nullclines and solution curve for
c = 3, s = 1, α = 2, γ = 2.5, r = 5.

Fig. 2: Nullclines and solution curve for
c = 3, s = 1, α = 2, γ = .5, r = 1.
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Fig. 3: Nullclines and solution curve for
c = 3, s = 1, α = 2, γ = .8, r = 1.

Fig. 4: Nullclines and solution curve for
c = 8, s = 1, α = 2, γ = .8, r = 1.
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Fig. 5: Nullclines and solution curve for
c = 4, s = 1, α = 1, γ = .2, r = 1.

Fig. 6: Nullclines and solution curve for
c = 10, s = 5, α = 1, γ = .2, r = 1.
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Fig. 7: Nullclines and solution curve for
c = 3, s = 3, α = 1, γ = .2, r = 1.

Fig. 8: Nullclines and solution curve for
c = 4, s = 4, α = 1, γ = .2, r = 1.
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Fig. 9: Nullclines and solution curve for
c = 5, s = 5, α = 1, γ = .2, r = 1.

Fig. 10: Nullclines and solution curve for
c = 10, s = 10, α = 1, γ = .2, r = 1.

From Figure 1 to Figure 6, we exhibit how the solution i.e. the prey-predator coexistence varies for
change of parameters. The values of the parameters are written bellow each figure. Figure 7 to Figure 9show
existence of asymptotically stable equilibrium points. Figure 10 shows existence of unstable equilibrium
point with stable limit cycle. periodic solutions for different parameters written bellow each figure.

5.2 Time Series and Phase Portrait
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Fig. 11: Time series U − t and V − t for s =
1.5, c = 3, r = .01, N = 200, α = .8, th = 1, γ = .444

Fig. 12: Time series U − V − t for s = 1.5, c =
3, r = .01, N = 200, α = .8, th = 1, γ = .444
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Phase-portrait: U vs. V
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Fig. 13: Phase portrait for s = 1.5, c = 3, r =
.01, N = 200, α = .8, th = 1, γ = .444

Fig. 14: Time series U − t and V − t for s = 1.5, c =
4, r = .01, N = 200, α = .9, th = 1, γ = .444
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Phase-portrait: U vs. V

Fig. 15: U − V − t for s = 1.5, c = 4, r =
.01, N = 200, α = .9, th = 1, γ = .444

Fig. 16: Phase portrait for s = 1.5, c = 4, r =
.01, N = 200, α = .9, th = 1, γ = .444

Figure 11 and Figure 14 show the time series for different parametric values written bellow the figures.
Figure 13 and Figure 16 show the existence of unstable equilibrium points with stable limit cycle. The values
of the parameters are written bellow each figure. Figures 12 and 14 indicate time series in three-dimension
and exhibit existence of periodic oscillatory orbits for the values of the parameters noted bellow each figure.

5.3 Bifurcation

From Figures 7, 8 and 9, we observe the existence of asymptotically stable equilibrium points, while Figures
10, 13 and 16 show existence of unstable equilibrium points with stable limit cycle. This establishes the
existence of bifurcation for change of parameters mentioned bellow each figure.

6 Conclusion

Prey-predator model with preys moving in groups and exhibiting retaliation behaviour has been studied.
Positivity and boundedness of the solution of the model is established. Conditions for the stability of the
equilibrium points have been deduced. Existence for Hopf bifurcation has been shown by analytical proof.
Different situations have been illustrated by graphical representations.
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