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Abstract

This paper deals with a numerical method for solving a fractional-order model for the COVID-
19 epidemic. In the considered fractional model, which is described by a nonlinear system of fractional
order differential equations (SFODEs), the fractional derivatives are considered in the Caputo sense. The
numerical solution in this paper is based on the combination of Block-pulse functions and Chebyshev
polynomials. Also, convergence of the numerical method is studied. Furthermore, a numerical example
is presented to demonstrate the applicability and the efficiency of the method.

1 Introduction

At the end of 2019, the outbreak of an infectious disease in Wuhan city in China attracted worldwide
attention. At first, there was no idea it would spread to other parts of the world, but the world health
organization (WHO) declared it as a pandemic in February 2020 and named it COVID-19. This virus
because of its crown-like appearance is called coronavirus. Coronavirus disease (COVID-19), which is caused
by the SARS-CoV-2 virus [28], has not been formerly identified in humans. Bats, snakes, or pangolins have
been cited as possible sources of the outbreak [23, 34], but there is currently no certainty. Loss of smell or
taste, fever, cough, and tiredness are the most common symptoms of the disease. In some patients, symptoms
such as sore throat, headache, skin rash, diarrhea, aches, and pains, or discoloration of the fingers or toes,
and redness or irritation of the eyes have also been reported. According to WHO, after China, Iran and
Italy announced the outbreak of the virus in March 2020 with 43 and 29 deaths, respectively, and as the end
of the following month, 44045 deaths of COVID-19 were reported in 129 countries. The governments made
great efforts to control the disease, but for reasons such as the unknown behavior of the virus, the high rate
of transmission, and the ineffectiveness of available treatments, the virus spread in many countries. To date,
the outbreak of the virus has been reported in 175 countries, resulting in a large number of casualties, social
anomalies as well as individual traumas, and huge financial losses. It is not yet clear whether surviving
COVID-19 infection means long-term immunity and how long it will last if immunity is achieved. The
study of the COVID-19 epidemic, as other diseases, has attracted the attention of researchers in the fields of
mathematics, biology, epidemiology, pharmacy, and chemistry. The important role of mathematical models
in describing and analyzing diseases has made them powerful tools for determining effective and appropriate
strategies in the prediction, prevention, and treatment of diseases. Hence, various mathematical models have
been formulated and developed for analyzing the dynamics of COVID-19 [1, 2, 4, 10, 25, 31]. Zeb et al. in
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[31] proposed a mathematical model for COVID-19 infection for analyzing the impact of isolation as follows:























dX1

dt
= µ − δX1 − βX1(X2 + X3),

dX2

dt = βX1(X2 + X3) − ρX2 − (δ + τ )X2,
dX3

dt = ρX2 − σX3 − δX3,
dX4

dt = τX2 + σX3 − κX4 − δX4,
dX5

dt = κX4 − δX5,

(1)

with the initial conditions

Xi(0) = xi(0), i = 1, . . . , 5. (2)

Description of Xi(t)(i = 1, . . . , 5) as different classes of population and the parameters of the model are
considered as follows:

X1: Disease susceptible population,
X2: Population exposed to the disease,
X3: Population of infected people,
X4: Isolated population,
X5: Recovered population from the disease,
N = I + R + S + U + V : Total population,
µ = δN : Rate of recruitment,
δ: Natural death rate plus disease-related death rate,
κ: Rate at which isolated persons become recovered.
τ : Rate at which exposed people become isolated,
σ: Rate at which infected people are added to isolated individuals,
ρ: Rate at which exposed population moves to infected one,
β: Rate at which susceptible move to infected and exposed class.

The positivity and stability analysis of the model have been studied in [31]. In recent decades, fractional
calculus as a part of mathematical analysis has found a valuable role in describing phenomena in medicine,
physics, economics, and engineering. Since some properties of many dynamical systems such as the past
history or hereditary cannot be described by differential equations of integer order, fractional models of
these systems have been considered extensively by many researchers [5, 8, 9, 20, 22, 26]. Fractional models
in the study of diseases are important because they can help physicians to prescribe appropriate treatment
or medication for each patient with different choices for fractional derivatives. The fractional models of
COVID-19 have been studied by some researchers in [3, 6, 12, 14, 15, 19, 24, 27, 29, 30, 32, 33]. Here, we
consider model (1) with the Caputo fractional derivatives as [33]























C
0 D

α
xX1 = µα − δαX1 − βαX1(X2 + X3),

C
0 D

α
xX2 = βαX1(X2 + X3) − ραX2 − (δα + τα)X2 ,

C
0 D

α
xX3 = ραX2 − σαX3 − δαX3,

C
0 D

α
xX4 = ταX2 + σαX3 − καX4 − δαX4,

C
0 D

α
xX5 = καX4 − δαX5,

(3)

with the same initial conditions in (2) and 0 < α ≤ 1. Some analytical aspects of model (3) such as positivity,
boundedness, equilibria, the basic reproduction number and stability analysis have been investigated in [33].
Our purpose is to present a numerical method based on the combination of Block-pulse functions (BPFs) and
the first kind Chebyshev polynomials (FKCPs) for solving system (3). This paper is organized as follows: In
the next section, the required concepts are introduced. In Section 3, the HCBPM is implemented for solving
system (3). In Section 4, the convergence analysis of the method is proved. Also, an illustrative example is
given in Section 5 and numerical results are reported in this section.
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2 Preliminaries

In this section, we mention some concepts of fractional calculus. Furthermore, definitions and properties of
hybrid BPFs and FKCPs are reviewed. Also, required operational matrices are presented.

2.1 Fractional calculus

Fractional calculus as a branch of mathematical analysis deals with integral and derivative operators of
any positive real order. Several definitions have been presented for these operators by Caputo, Hadamard,
Riemann-Liouville, Grünwald-Letnikov, and others which we remind two accepted and common definitions
in the following.

Definition 1 ([22]) The Riemann-Liouville non-integer integral operator 0Iα
x (of order α > 0), for a func-

tion z ∈ L1(a, b) is presented as

(0I
α
x z)(x) =

{

1
Γ(α)

∫ x

0
z(ς)

(x−ς)1−α dς, α > 0,

z(x), α = 0.

Definition 2 ([22]) For x > 0, the Caputo non-integer derivative of order α > 0 is expressed as

(C
0 D

α
x z)(x) = (0I

n−α
x

C
0 D

n

xz)(t) =
1

Γ(n − α)

∫ x

0

(x − ς)n−α−1z(n)(ς) dς, n − 1 < α ≤ n ∈ N.

Property 1 For two fractional operators defined above, the following properties yield:

(a) (C
0 D

α1

x
C
0 D

α2

x z)(x) = (C
0 D

α1+α2

x z)(x),

(b) (0Iα1

x 0I
α2

x z)(x) = (0Iα2

x 0I
α1

x z)(x) = (0Iα1+α2

x z)(x),

(c)

(

C
0 D

α
xxγ

)

=

{

0 γ ∈ Z
+ and γ < α,

Γ(γ+1)
Γ(γ−α+1)

o. w.

(d) (0Iα
x

C
0 D

α

xz)(x) = z(x) −
∑dαe−1

j=0
xj

j! z
(j)(0+), n − 1 < α ≤ n ∈ N.

2.2 Hybrid Functions

Definition 3 The sets of BPFs βs(x) in the interval [0, bf) are defined as

βs(x) =

{

1, s−1
S bf ≤ x < s

S bf ,

0, o.w.,

where S ∈ N and s = 1, 2, . . . , S is the order of BPFs. Set {βs(x)} has orthogonality, disjointness, and
completeness properties. We consider the vector of BPFs as B(x) = [β1(x), β2(x), . . . , βs(x)]T .

Definition 4 ([21]) A sets of hybrid BPFs and FKCPs ωsr(t) on the interval [0, bf) are defined as

ωsr(x) =







Tr

(

2S
bf

x − 2s + 1

)

, s−1
S bf ≤ x < s

S bf ,

0, otherwise.,

where Tr indicates FKCPs of order r = 0, 1, 2, . . . , R − 1, (R ∈ N), and can be obtained by the following
formulas:

T0(x) = 1, T1(x) = x, and Tr+1(x) = 2xTr(x) − Tr−1(x), x ∈ [−1, 1].
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The FKCPs are orthogonal with respect to the non-constant weight function w(x) = (1 − x2)
−1

2 . In the
following, without losing generality, we assume that bf = 1. Any function z(x) ∈ L2[0, 1) can be expanded
in terms of the basis functions ωsr(x) as follows [11]:

z(x) =
∞
∑

s=1

∞
∑

r=0

zsr ωsr(x), (4)

where the hybrid coefficients zsr are calculated as

zsr =
〈z, ωsr〉w
〈ωsr, ωsr〉w

, s = 1, 2, . . . , r = 0, 1, . . . , (5)

where 〈u, v〉w =
∫ 1

0 u(x)v(x)w(x) d(x) denotes the inner product.

Theorem 1 ([13]) Let Θ be a strictly convex normed space and Z be a finite dimensional subspace of Θ.
Then, each z ∈ Θ has a unique best approximation in Z.

Corollary 1 Let

Z = span{ω10(x), . . . , ω1(R−1)(x), ω20(x), . . . , ω2(R−1)(x), . . . , ωS0(x), . . . , ωS(R−1)(x)},

where Z is a finite dimensional subspace of Θ. Since the Hilbert space Θ is strictly convex and considering
Theorem 1, we conclude that the hybrid series of z in Eq. (4) can be truncated by ẑ as

z(x) ' ẑ(x) = zSR(x) =

S
∑

s=1

R−1
∑

r=0

zsr ωsr(x) = ZTΩ(x) = ΩT (x)Z, (6)

where
Ω(x) = [ω10(x), . . . , ω1(R−1)(x), ω20(x), . . . , ω2(R−1)(x), . . . , ωS0(x), . . . , ωS(R−1)(x)]T ,

and
Z = [z10, z11, . . . , z1(R−1), z20, z21, . . . , z2(R−1), . . . , zS0, zS1, . . . , zS(R−1)]

T .

2.3 Operational Matrices

2.3.1 Operational Matrix of Integration of the Vector Ω

Let λ = SR. The integration of the vector Ω(x) can be expanded as [17]
∫ x

0

Ω(ζ) dζ ' Πλ×λ Ω(x),

where the operational matrix of integration Πλ×λ is presented as

Πλ×λ =















N M M . . . M
0 N M . . . M
0 0 N . . . M
...

...
...

. . .
...

0 0 0 . . . N















,

where M and N have the following forms:

M =
bf

S

















1 0 0 . . . 0
0 0 0 . . . 0
−1
3

0 0 . . . 0
...

...
...

. . .
...

(−1)R−1
2R(R−2) 0 0 . . . 0

















R×R

,
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N =
bf

2S





























1 1 0 0 . . . 0 0 0
−1
4

0 1
4

0 . . . 0 0 0
−1
3

−1
2

0 1
6

. . . 0 0 0
1
8 0 −1

4 0 1
8 . . . 0 0

−1
15 0 0 −1

6 0 1
10 . . . 0

...
...

...
... . . .

...
...

...
(−1)R−1

(R−1)(R−3) 0 0 0 . . . −1
2(R−3) 0 1

2(R−1)
(−1)R

R(R−2) 0 0 0 . . . 0 −1
2(R−2) 0





























R×R

.

2.3.2 Operational Matrix of the Fractional Integration

We remind that the vector Ω(x) can be approximated as

Ω(x) ' Ψλ×λB(x), (7)

in which

I) Ψλ×λ = [Ω(τ1) Ω(τ2) . . . Ω(τλ)], where τj = 2j−1
2λ ; j = 1, 2, . . . , λ.

II) B(x) is the vector of BPFs.

We define

(0I
α
x Ω)(x) ' Πα

λ×λΩ(x). (8)

where Πα
λ×λ is the operational matrix for the fractional integration. Using Eq. (7), we can write

(0I
α
x Ω)(x) ' (0I

α
x Ψλ×λB)(x) = Ψλ×λ(0I

α
x B)(x). (9)

From Eqs. (8) and (9), we get

Πα
λ×λΩ(x) ' Ψλ×λ(0I

α
x B)(x). (10)

Using Definition 1, the Riemann-Liouville fractional integral of the BPFs can be obtained as [16]

(0I
α
x B)(x) ' F αB(x), (11)

where F α is the Block-pulse operational matrix of fractional order integration and has the following shape:

F α =
1

λα Γ(α + 2)















1 ς1 ς2 . . . ςλ−1

0 1 ς1 . . . ςλ−2

0 0 1 . . . ςλ−3

...
...

...
. . .

...
0 0 0 . . . 1















.

with ςj = (j + 1)α+1 − 2jα+1 + (j − 1)α+1, j = 1, 2, . . . , λ− 1.

By substituting Eq. (11) in Eq. (10) and considering Eq. (7), we will have

Πα
λ×λΨλ×λB(x) ' Ψλ×λF αB(x). (12)

And finally, Πα
λ×λ is obtained as

Πα
λ×λ ' Ψλ×λF αΨ−1

λ×λ. (13)
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3 Method Implementation

In the current section, we consider system (3) under the Caputo fractional derivative. We need to approximate
C
0 D

α
x z(x) by hybrid functions as [18]

C
0 D

α
xz(x) ' ZTΩ(x), (14)

where Z = [z1, z2, . . . , zλ]T is the unknown vector.

Now, applying the operator 0Iα
x to both sides of Eq. (14), we get

0I
α
x

C
0 D

α
x z(x) ' ZT (0I

α
x Ω)(x). (15)

Using Eq. (8) and item (1) in property (1), the last equation can be written as

z(x) '

dαe−1
∑

j=0

xj

j!
z(j)(0+) + ZT Πα

λ×λΩ(x),

where, in the particular case α ∈ (0, 1], we will have

z(x) ' z(0+) + ZT Πα
λ×λΩ(x) = ZT

(α)Ω(x). (16)

Furthermore, we can expand the term u(x)v(x) in terms of the vector Ω(x) as

u(x)v(x) ' (UT
(α)Ω(x))(VT

(α)Ω(x)) = UT
(α)Ω(x)ΩT (x)V(α) = UT

(α)Ṽ(α)Ω(x), (17)

where the evaluation procedure of Ω(x)ΩT (x) and matrix Ṽ(α) are given by [21].

Now, we turn our attention to solving the system (3) with the initial conditions in (2). Using Eq. (14),
we can write

C
0 D

α
x Xi(x) ' XT

i Ω(x), i = 1, . . . , 5, (18)

where the vector Xi = [xi,1, xi,2, . . . , xi,λ]T is unknown. Also, from Eq. (16), we have

Xi(x) ' XT
i(α)Ω(x), i = 1, . . . , 5. (19)

Now, by substituting Eqs. (17)–(19) into system (3) and replacing ' with =, we obtain















































































(

XT
1 −MT + δαXT

1(α) + βα
(

X2(α) + X3(α)

)T
X̃1(α)

)

Ω(x) = 0,

(

XT
2 − βα

(

X2(α) + X3(α)

)T
X̃1(α) + (ρα + δα + τα)XT

2(α)

)

Ω(x) = 0,

(

XT
3 − ραXT

2(α) + (σα + δα)XT
3(α)

)

Ω(x) = 0,

(

XT
4 − ταXT

2(α) − σαXT
3(α) + (κα + δα)XT

4(α)

)

Ω(x) = 0,

(

XT
5 − καXT

4(α) + δαXT
5(α)

)

Ω(x) = 0,

(20)

where µα = MT Ω(x). The unknown vectors Xi, i = 1, . . . , 5 can be calculated by solving the nonlinear
system of algebraic equation obtained from collocated system (20) at the points xk = 2k−1

2λ , k = 1, 2, . . . , λ.
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4 Convergence Analysis

The current section is devoted to the study of the convergence of the proposed method. For this purpose, it
is necessary to present some required definitions and lemmas.

Definition 5 ([7]) Let w(x) be a weight function on the interval (−1, 1). The weighted Lp-norm for 1 ≤
p < ∞ is defined as

‖z‖L
p
w(−1,1) =

(
∫ 1

−1

|z(x)|pw(x) dx

)1/p

.

For p = ∞, we define

‖z‖L∞

w (−1,1) = sup
−1≤x≤1

|z(x)| = ‖z‖L∞(−1,1).

Definition 6 ([7]) Consider the Chebyshev weight w(x) = (1 − x2)−1/2. Let γ be a non-negative integer.
A Sobolev space is the vector space of the functions z ∈ L2

w(−1, 1) where z(m) ∈ L2
w(−1, 1), for 0 ≤ m ≤ γ.

Furthermore, the norm of the Sobolev space Hγ
w(−1, 1) is defined as

‖z‖Hγ
w(−1,1) =

( γ
∑

m=0

‖z(i)‖2
L2

w(−1,1)

)1/2

.

Definition 7 ([7]) Let (a, b) be a bounded interval in R. For each function z ∈ H1
w(a, b) the following

inequality (called the Sobolev inequality) holds:

‖z‖L∞(a,b) ≤

(

1

b − a
+ 2

)1/2

‖z‖
1/2
L2

w(a,b) ‖z‖
1/2
H1

w(a,b)

Lemma 1 ([7]) Let {Tr}r=0 be the sequence of Chebyshev polynomials and PJ(x) =
∑J

k=0 tkTk(x) be the
best polynomial approximation of degree J for z ∈ L2

w(−1, 1). Then, for γ ≥ 0, there exists a constant C > 0
such that

‖z − PJ‖L2
w(−1,1) ≤ CJ−γ‖z‖H

γ
w(−1,1),

for all functions z in Hγ
w(−1, 1).

Lemma 2 ([7]) Let γ ≥ 1 and 1 ≤ l ≤ γ. For z ∈ Hγ
w(−1, 1), the following inequality in higher order

Sobolev norms holds:

‖z − PJ‖H1
w(−1,1) ≤ CJ2l−1/2−γ‖z‖Hγ

w(−1,1),

The following corollary is obviously obtained using Lemma 1, Lemma 2 and the Sobolev inequality.

Corollary 2 Let l = 1 be defined in Lemma 2. With the assumptions of Lemma 1, and for γ ≥ 1, there
exists a constant C0 > 0 such that

‖z − PJ‖L∞(−1,1) ≤ C0J
3/4−γ‖z‖Hγ

w(−1,1).

Corollary 3 Let z ∈ Hγ
w[0, 1) and ẑ = zSR be the polynomial approximation of z defined in Eq. (6). Then,

‖z − ẑ‖L∞[0,1) ≤ η(SR)
3

4
−γ max

1≤s≤S
‖z‖Hγ

w(Is),

where Is = [ s−1
S , s

S ) and η is a positive constant.

Proof. It can be clearly concluded from Corollary 2.
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Now, by applying the operator 0Iα to both sides of equations in the system (3), we obtain







































0I
α
x (C

0 D
α
xX1) = 0I

α
x

(

µα − δαX1 − βαX1(X2 + X3)
)

,

0Iα
x (C

0 D
α
xX2) = 0Iα

x

(

βαX1(X2 + X3) − ραX2 − (δα + τα)X2

)

,

0Iα
x (C

0 D
α
xX3) = 0Iα

x

(

ραX2 − σαX3 − δαX3

)

,

0Iα
x (C

0 D
α
xX4) = 0Iα

x

(

ταX2 + σαX3 − καX4 − δαX4

)

,

0Iα
x (C

0 D
α
xX5) = 0Iα

x

(

καX4 − δαX5

)

,

(21)

Using Definitions 1, 2 and Property 1, the system (21) can be written as

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

X1(x) − X1(0
+) = µα

x
α

Γ(α+1) + 1
Γ(α)

R

x

0
(x − ζ)α−1 h1(ζ, X(ζ))dζ,

X2(x) − X2(0
+) = 1

Γ(α)

R

x

0
(x − ζ)α−1 h2(ζ,X(ζ)) dζ,

X3(x) − X3(0
+) = 1

Γ(α)

R

x

0
(x − ζ)α−1 h3(ζ,X(ζ)) dζ,

X4(x) − X4(0
+) = 1

Γ(α)

R

x

0
(x − ζ)α−1 h4(ζ,X(ζ)) dζ,

X5(x) − X5(0
+) = 1

Γ(α)

R

x

0
(x − ζ)α−1 h5(ζ,X(ζ)) dζ,

(22)

where

h1(ζ, X(ζ)) = −δαX1(ζ) − βαX1(ζ)
(

X2(ζ) + X3(ζ)
)

,

h2(ζ, X(ζ)) = βαX1(ζ)
(

X2(ζ) + X3(ζ)
)

− ραX2(ζ) − (δα + τα)X2(ζ),

h3(ζ, X(ζ)) = ραX2(ζ) − σαX3(ζ) − δαX3(ζ),

h4(ζ, X(ζ)) = ταX2(ζ) + σαX3(ζ) − καX4(ζ) − δαX4(ζ),

h5(ζ, X(ζ)) = καX4(ζ) − δαX5(ζ),

and
X(ζ) =

[

X1(ζ), X2(ζ), X3(ζ), X4(ζ), X5(ζ)
]T

.

We consider the matrix form of the system (22) as

X(x) = C(x) +
1

Γ(α)

∫ x

0

(x − ζ)α−1 H(ζ, X(ζ)) dζ, (23)

where

C(x) =
[

µα
xα

Γ(α+1) + X1(0
+), X2(0

+), X3(0
+), X4(0

+), X5(0
+)

]T

and
H(ζ, X(ζ)) =

[

h1(ζ, X(ζ)), h2(ζ, X(ζ)), h3(ζ, X(ζ)), h4(ζ, X(ζ)), h5(ζ, X(ζ))
]T

.

Theorem 2 Let X̂(x) = XSR(x) be the approximate solution obtained by the HCBPM and X ∈ Hγ
w[0, 1),

for γ ≥ 1, be the exact solution of Eq. (23). Let the function hi(ζ, X(ζ)) satisfies the Lipschitz condition
∣

∣hi(ζ, X(ζ)) − hi(ζ, Y (ζ))
∣

∣ ≤ Li ‖X − Y ‖∞, (24)

where Li > 0 (i = 1, . . . , 5) are Lipschitz constants. Moreover, assume that

Aα =
1

Γ(α)
sup

0≤x<1

∫ x

0

(x − ζ)α−1 dζ =
1

Γ(α + 1)
. (25)

There exists a positive constant ε such that

‖E‖∞ = ‖X − X̂‖∞ ≤ Aαε.
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Proof. For i = 1, . . . , 5, let X̂i(x) be the approximate solution of the system (22). We consider the error
terms as

ei(x) = Xi(x) − X̂i(x) =
1

Γ(α)

∫ x

0

(x − ζ)α−1 hi(ζ, X(ζ)) dζ, i = 1, . . . , 5. (26)

Using the assumptions (24) and (25) and 0 ≤ x < 1, we obtain

|ei(x)| ≤ AαLi ‖Xi − X̂i‖∞ = AαLiυ, i = 1, . . . , 5, (27)

where υ = max
1≤i≤5

{

‖Xi − X̂i‖∞

}

. Let L = max
1≤i≤5

Li. Then

‖ei‖∞ ≤ AαLυ for i = 1, . . . , 5. (28)

Using Corollary 3, there exists positive constant ηi; i = 1, . . . , 5 such that

‖Xi − X̂i‖∞ ≤ ηi (SR)
3

4
−γ max

1≤s≤S
‖Xi‖Hγ

w(Is) = θi, i = 1, . . . , 5. (29)

Now, by using Eqs. (28) and (29), we have

‖ei‖∞ ≤ AαL max
1≤i≤5

{θi} = Aαε, i = 1, . . . , 5, (30)

where ε = L max
1≤i≤5

{θi}.

Defining E(x) = X(x) − X̂(x) and using (30), we will have

‖E‖∞ = ‖X − X̂‖∞ ≤ Aαε.

5 Numerical Simulation

In this section, the model (3) is solved using the present method. The initial conditions and parameter values
are considered as [33]

(X1(0), X2(0), X3(0), X4(0), X5(0)) = (153, 55, 79, 68, 20),

µα = 0.145, δα = 0.000411, βα = 0.00038, ρα = 0.00211,

τα = 0.0021, σα = 0.0169, θα = 0.0181.

Figure 1 shows the approximate solutions of the model for the given initial values for α = 1. Since, the exact
solution of the model is unknown, we have compared the solutions of the model obtained using the proposed
method and the RK4 solutions in Table 1 on interval [0, 1] and Figure 2 on interval [0, 30]. The results
show us that the obtained solutions using the HCBPM, which also easily used in the implementation, are
in desired agreement with the RK4 solutions. Therefore, it can be concluded that the proposed method has
the ability to predict the behavior of variables in the region under investigation. Also, we solved the model
(3) using the peresent method for fractional derivatives. Figure 3 show the approximate solutions for the
compartments X1(t), X2(t), X3(t), X4(t) and X5(t) for some values of α. All our computations were done
using Matlab 2017a software.

6 Conclusions

In the present work, a hybrid functions method based on the combination of Chebyshev polynomials and
Block-pulse functions was used for solving a fractional model of COVID-19 epidemic. The properties of
selected hybrid functions were utilized to reduce the solution of the considered model to the solution of non-
linear algebraic equations. Also, the convergence analysis of the method was studied. Finally, an illustrative
example was given to demonstrate the validity and applicability of the proposed method.
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Table 1: Comparison of the solutions obtained by the present method and the RK4 solutions.
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Figure 1: Plots of compartments X1(t), X2(t), X3(t), X4(t) and X5(t) for the given initial values of the model
for α = 1.
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Figure 2: Intersection of the dual sets of order 0 in (a) and (b) (see [1, Lemma 4 and Theorem 3.3]) to yield
(c).
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Figure 3: The approximate solution for α = 1, 0.85, 0.75.
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