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Abstract

This paper explores the existence and uniqueness of fixed points for cyclic (σ̈, λ̈)-admissible generalized
contraction type maps in complete b-metric spaces. Further, we apply it to a pair of maps and establish
the presence of common fixed points. Our results extend/generalize the results of Kumar et al. [21] from
the metric space setting to b-metric spaces. We incorporate a few corollaries from our results and present
instances to bolster the findings. Several applications are illustrated.

1 Introduction

The cornerstones of fixed point theory are the generalization of contraction conditions in one direction
or/and the generalization of the surroundings of the operators being studied in the other direction. One of
the most useful findings in fixed point theory is the Banach contraction principle, which is crucial for solving
nonlinear equations. Many researchers have established contraction conditions by replacing several general
conditions and many fixed point results achieved for contraction type mappings in ambient spaces with their
applications in diverse domains throughout the last few decades [7, 8, 10, 11, 12, 14]. Czerwik [13] created
the idea of b-metric space or metric type space as a generalization of metric space. Afterwards, many authors
studied the existence of fixed points for a single-valued and multi-valued mappings in b-metric spaces under
certain contraction conditions [1, 4, 5, 15, 19, 20, 23, 24, 25, 26, 27, 28, 29, 30].
In this paper, R represents the set of real numbers and N is the set of all natural numbers.

Definition 1 ([13]) Suppose that Θ̃ is a non-empty set and s ≥ 1 is a given real number. A mapping
ð : Θ̃× Θ̃→ [0,∞) is said to be a b-metric if the following conditions are satisfied: for any θ, %, ξ ∈ Θ̃,

(ð1) 0 ≤ ð(θ, %) and ð(θ, %) = 0 if and only if θ = %,

(ð2) ð(θ, %) = ð(%, θ),

(ð3) ð(θ, ξ) ≤ s[ð(θ, %) + ð(%, ξ)].

In this case, the pair (Θ̃,ð) is called a b-metric space with parameter s.

Every metric space is a b-metric space with s = 1. In general, b-metric space is not a metric space (see
[3]).

Definition 2 ([9]) Suppose (Θ̃,ð) is a b-metric space. A sequence {θn} in Θ̃ is:
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• b-convergent, if there exists θ ∈ Θ̃ such that ð(θn, θ)→ 0 as n→∞.

• b-Cauchy, if ð(θn, θm)→ 0 as n,m→∞.

In general, b-metric is not necessarily continuous [16].

Definition 3 ([18]) A pair (z, η) of self-maps on a set Θ̃ is said to be weakly compatible if zηθ = ηzθ
whenever zθ = ηθ for any θ ∈ Θ̃.

Definition 4 ([2]) Let Θ̃ be a nonempty set, z be a self-map defined on Θ̃ and σ̈, λ̈ : Θ̃ → [0,∞) be two
functions. Then z is a cyclic (σ̈, λ̈)-admissible mapping if it has the following properties:

(i) σ̈(θ) ≥ 1 for some θ ∈ Θ̃ =⇒ λ̈(zθ) ≥ 1,

(ii) λ̈(θ) ≥ 1 for some θ ∈ Θ̃ =⇒ σ̈(zθ) ≥ 1.

Definition 5 ([17] ) Let Θ̃ be a nonempty set, σ̈, λ̈ : Θ̃ → [0,∞) be two mappings and z, η : Θ̃ → Θ̃ be
self-mappings. Then z is said to be an η-cyclic-(σ̈, λ̈)-admissible mapping if the following conditions are
satisfied:

(i) σ̈(ηθ) ≥ 1 for some θ ∈ Θ̃ implies λ̈(zθ) ≥ 1,

(ii) λ̈(ηθ) ≥ 1 for some θ ∈ Θ̃ implies σ̈(zθ) ≥ 1.

The following lemma is useful in proving our main results.

Lemma 1 ([22]) Suppose (Θ̃,ð) is a b-metric space with coeffi cient s ≥ 1 and {θn} is a sequence in Θ̃ such
that ð(θn, θn+1) → 0 as n → ∞. If {θn} is not a Cauchy sequence then there exist an ε > 0 and sequences
of positive integers {mk} and {nk} with nk > mk ≥ k such that for every k > 0, corresponds to mk, we can
take nk which is smallest such that ð(θmk , θnk) ≥ ε,ð(θmk , θnk−1) < ε and

(i) ε ≤ lim
k→∞

ð(θmk , θnk) ≤ lim
k→∞

ð(θmk , θnk) ≤ sε,

(ii) ε
s ≤ lim

k→∞
ð(θmk+1, θnk) ≤ lim

k→∞
ð(θmk+1, θnk) ≤ s2ε,

(iii) ε
s ≤ lim

k→∞
ð(θmk , θnk+1) ≤ lim

k→∞
ð(θmk , θnk+1) ≤ s2ε,

(iv) ε
s2 ≤ lim

k→∞
ð(θmk+1, θnk+1) ≤ lim

k→∞
ð(θmk+1, θnk+1) ≤ s3ε.

In 2019, Zada et al. [6] established the following:

Theorem 1 ([6]) Let (Θ̃,ð) be a complete b-metric space and σ̈, λ̈ : Θ̃ → [0,∞) be two mappings. If
z : Θ̃ → Θ̃ and η : Θ̃ → Θ̃ such that z is an η-cyclic-(σ̈, λ̈)− (ψ, φ)s-rational contraction map satisfies the
following:

(i) zΘ̃ ⊆ ηΘ̃ with ηΘ̃ are closed sub spaces of Θ̃;

(ii) there exists θ0 ∈ Θ̃ with σ̈(ηθ0) ≥ 1 and λ̈(ηθ0) ≥ 1;

(iii) if the sequence {θn} in Θ̃ with λ̈(θn) ≥ 1 for all n and θn → θ, then λ̈(θ) ≥ 1;

(iv) σ̈(ηa) ≥ 1, λ̈(ηb) ≥ 1 whenever za = ηa, zb = ηb.

Then z and η have a unique point of coincidence in Θ̃. Furthermore, if z and η are weakly compatible, then
z and η have a unique common fixed point in Θ̃.
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Recently, Kumar et al. [21] proved the following result in complete metric spaces.

Theorem 2 ([21]) Let (Θ̃,ð) be a complete metric space and z : Θ̃ → Θ̃ satisfies the following condition:
for all θ, % ∈ Θ̃ and there exist α1 ≥ 0, α2, α3, α4 > 0, 0 < h < 1 with α1 + 2α2 + 2α3 + 2α4 = 1 such that

ð(zθ,z%) ≤ α1ð(θ, %) + α2[ð(θ,zθ) + ð(%,z%)] + α3[ð(θ,z%) + ð(zθ, %)] + α4[M(θ, %) + hm(θ, %)],

where,
M(θ, %) = max{ð(θ,z%),ð(zθ, %)},m(θ, %) = min{ð(θ,z%),ð(zθ, %)}.

Then z has a unique fixed point in Θ̃.

We introduce ‘cyclic (σ̈, λ̈)-admissible generalized contraction type maps’in b-metric space and prove the
existence of fixed points in complete b-metric spaces. We also extend the same to a pair of maps and prove
the existence of common fixed points. We draw some corollaries from our results and provide examples to
support our results. We include applications to nonlinear integral and functional equations.

2 Fixed Points of Cyclic (σ̈, λ̈)-Admissible Generalized Contrac-
tion Type Maps

We first introduce cyclic (σ̈, λ̈)-admissible generalized contraction type maps in b-metric spaces:

Definition 6 Suppose (Θ̃,ð) is a b-metric space with s ≥ 1 and σ̈, λ̈ : Θ̃→ [0,∞) are two given mappings.
Let z : Θ̃→ Θ̃ be a self-map on Θ̃ such that z is a cyclic (σ̈, λ̈)-admissible mapping. If there exist µ1 ≥ 0,
µ2, µ3, µ4 > 0, 0 < h < 1 with µ1 + 2µ2 + 2sµ3 + 2sµ4 = 1 such that if σ̈(θ)λ̈(%) ≥ 1, then

s3ð(zθ,z%) ≤ µ1ð(θ, %) + µ2[ð(θ,zθ) + ð(%,z%)]

+µ3[ð(θ,z%) + ð(%,zθ)] + µ4[∆(θ, %) + hδ(θ, %)] (1)

for all θ, % ∈ Θ̃, where ∆(θ, %) = max{ð(θ,z%),ð(%,zθ)} and δ(θ, %) = min{ð(θ,z%),ð(%,zθ)}, then we say
that z is a cyclic (σ̈, λ̈)-admissible generalized contraction type map.

Example 1 Let Θ̃ = (0, 1) ∪ {1, 2, 3, ...}. We define ð : Θ̃× Θ̃→ [0,∞) by

ð(θ, %) =

{
0, θ = %,
(θ + %)2, θ 6= %.

Then ð is a b-metric with s = 2. We define z : Θ̃→ Θ̃ by

z(θ) =

{
θ2

100 , θ ∈ (0, 1),
1 + θ, θ ∈ {1, 2, 3, ...},

and σ̈, λ̈ : Θ̃→ [0,∞) by

σ̈(θ) =

{
3
1+θ , θ ∈ (0, 1),

0, otherwise,
and λ̈(θ) =

{
4
1+θ , θ ∈ (0, 1),

0, otherwise.

It is easy to see that z is a cyclic (σ̈, λ̈)-admissible mapping. The next step is to demonstrate that z is a
cyclic (σ̈, λ̈)-admissible generalized contraction type map. For θ, % ∈ Θ̃ with

σ̈(θ)λ̈(%) ≥ 1 ⇐⇒ θ, % ∈ (0, 1).
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We choose µ1 = 2
5 , µ2 = 1

5 , µ3 = 1
40 = µ4, h = 9

10 . Then we have µ1 + 2µ2 + 2sµ3 + 2sµ4 = 1. For θ 6= %,
we have

s3ð(zθ,z%) = (2)3(
θ2

100
+

%2

100
)2

≤ (
2

5
)(θ + %)2 + (

1

5
)

[
(θ +

θ2

100
)2 + (%+

%2

100
)2
]

+ (
1

40
)

[
(θ +

%2

100
)2 + (%+

θ2

100
)2
]

+(
1

40
)

[
max{(θ +

%2

100
)2, (%+

θ2

100
)2}+

9

10
min{(θ +

%2

100
)2, (%+

θ2

100
)2}
]

≤ µ1ð(θ, %) + µ2[ð(θ,zθ) + ð(%,z%)] + µ3[ð(θ,z%) + ð(%,zθ)]
+µ4[max{ð(θ,z%),ð(%,zθ)}+ hmin{ð(θ,z%),ð(%,zθ)}].

Therefore z is a cyclic (σ̈, λ̈)-admissible generalized contraction type map.

The following is the main result of this paper.

Theorem 3 Let (Θ̃,ð) be a complete b-metric space with s ≥ 1 and z : Θ̃→ Θ̃ be a cyclic (σ̈, λ̈)-admissible
generalized contraction type map. Further, suppose that there exists θ0 ∈ Θ̃ such that σ̈(θ0) ≥ 1, λ̈(θ0) ≥ 1
and either one of the following holds:

(a1) z is b-continuous; or

(a2) if {θn} ⊆ Θ̃ such that θn → ν and λ̈(θn) ≥ 1 for all n then λ̈(ν) ≥ 1.

Then z has a fixed point and it is unique if σ̈(ν) ≥ 1 or λ̈(ν) ≥ 1.

Proof. Let θ0 ∈ Θ̃. Then by the hypotheses, we have σ̈(θ0) ≥ 1 and λ̈(θ0) ≥ 1. We construct a sequence
{θn} by θn+1 = zθn, n ∈ N ∪ {0}. Assume that θn0+1 = θn0 for some n0, so that zθn0 = θn0+1 = θn0 and
hence the proof.
Without diminishing the generality, we presume that θn 6= θn+1 for all n ∈ N∪ {0}. Since σ̈(θ0) ≥ 1 and

z is a cyclic (σ̈, λ̈)-admissible map, we attain λ̈(θ1) = λ̈(zθ0) ≥ 1 and that σ̈(θ2) = σ̈(zθ1) ≥ 1. Continuing
in this manner, we get

σ̈(θ2k) ≥ 1 and λ̈(θ2k+1) ≥ 1 for all k ∈ N ∪ {0}. (2)

As λ̈(θ0) ≥ 1 and z is a cyclic (σ̈, λ̈)-admissible map, we get σ̈(θ1) = σ̈(zθ0) ≥ 1. Therefore it follows that
λ̈(θ2) = λ̈(zθ1) ≥ 1. Continuing in this way, we get that

λ̈(θ2k) ≥ 1 and σ̈(θ2k+1) ≥ 1 for all k ∈ N ∪ {0}. (3)

From the inequalities (2) and (3), we conclude that

σ̈(θn) ≥ 1 and λ̈(θn) ≥ 1 for all n ∈ N ∪ {0}.

We now prove that lim
n→∞

ð(θn, θn+1) = 0. Since σ̈(θn)λ̈(θn+1) ≥ 1 for all n ∈ N∪{0} and from the inequality
(1), we get

s3ð(zθn,zθn+1) ≤ µ1ð(θn, θn+1) + µ2[ð(θn,zθn) + ð(θn+1,zθn+1)]
+µ3[ð(θn,zθn+1) + ð(θn+1,zθn)] + µ4[∆(θn, θn+1) + hδ(θn, θn+1)], (4)

where
∆(θn, θn+1) = max{ð(θn,zθn+1),ð(θn+1,zθn)} = ð(θn, θn+2)

and
δ(θn, θn+1) = min{ð(θn,zθn+1),ð(θn+1,zθn)} = 0.
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From the inequality (4), we have

s3ð(θn+1, θn+2) ≤ µ1ð(θn, θn+1) + µ2[ð(θn, θn+1) + ð(θn+1, θn+2)]

+µ3[ð(θn, θn+2) + ð(θn+1, θn+1)] + µ4ð(θn, θn+2). (5)

Now, we suppose that ð(θn, θn+1) < ð(θn+1, θn+2) for some n ∈ N ∪ {0} and from the inequality (5),

s3ð(θn+1, θn+2) ≤ (µ1 + 2µ2 + 2sµ3 + 2sµ4)ð(θn+1, θn+2) = ð(θn+1, θn+2) (6)

which implies that (s3 − 1)ð(θn+1, θn+2) ≤ 0 and hence that θn+1 = θn+2, which is a contradiction as
θn+1 6= θn+2. Therefore ð(θn, θn+1) ≥ ð(θn+1, θn+2) for every n ∈ N∪{0}. Thus, {ð(θn, θn+1)} is decreasing
and there exists r ≥ 0 such that lim

n→∞
ð(θn, θn+1) = r. Let r > 0. As n→∞ in (6), we get

s3(r) ≤ r =⇒ (s3 − 1)r ≤ 0,

which a contradiction. Thus, lim
n→∞

ð(θn, θn+1) = 0. We suppose that {θn} is not b-Cauchy. As σ̈(θmk) ≥ 1

and λ̈(θnk) ≥ 1 we obtain σ̈(θmk)λ̈(θnk) ≥ 1, using (1) and Lemma 1, we get

s3ð(θmk+1, θnk+1) = s3ð(zθmk ,zθnk)

≤ µ1ð(θmk , θnk) + µ2[ð(θmk , θmk+1) + ð(θnk , θnk+1)]

+µ3[ð(θmk , θnk+1) + ð(θnk , θmk+1)] + µ4[∆(θmk , θnk) + hδ(θmk , θnk)], (7)

where {
∆(θmk , θnk) = max{ð(θmk , θnk+1),ð(θnk , θmk+1)},
δ(θmk , θnk) = min{ð(θmk , θnk+1),ð(θnk , θmk+1)}.

(8)

By Lemma 1 and taking limit superior as k →∞ in (8), we get{
lim
k→∞

∆(θmk , θnk) ≤ max{s2ε, s2ε} = s2ε,

lim
k→∞

δ(θmk , θnk) ≤ max{s2ε, s2ε} = s2ε.
(9)

Let k →∞ in (7) and from (9), we obtain

sε = s3(
ε

s2
) ≤ s3[ lim

k→∞
ð(θmk+1, θnk+1)]

= lim
k→∞

[s3ð(zθmk ,zθnk)]

≤ lim
k→∞

[µ1ð(θmk , θnk) + µ2[ð(θmk , θmk+1) + ð(θnk , θnk+1)]

+µ3[ð(θmk , θnk+1) + ð(θnk , θmk+1)] + µ4[∆(θmk , θnk) + hδ(θmk , θnk)]]

≤ µ1 lim
k→∞

ð(θmk , θnk) + µ2[ lim
k→∞

ð(θmk , θmk+1) + lim
k→∞

ð(θnk , θnk+1)]

+µ3[ lim
k→∞

ð(θmk , θnk+1) + lim
k→∞

ð(θnk , θmk+1)]

+µ4[ lim
k→∞

∆(θmk , θnk) + h lim
k→∞

δ(θmk , θnk)]

≤ µ1(sε) + 2µ3(s
2ε) + µ4(s

2ε+ hs2ε) ≤ (µ1 + 2sµ3 + 2sµ4)sε < sε,

which is a contradiction. Therefore {θn} is a b-Cauchy sequence in Θ̃. Since Θ̃ is b-complete, there exists
ν ∈ Θ̃ such that lim

n→∞
θn = ν. Firstly, assume z is b-continuous. Then lim

n→∞
zθn = zν and that zν =

lim
n→∞

zθn = lim
n→∞

θn+1 = ν. Therefore ν is a fixed point of z. We suppose that (a2) is true, which means,

λ̈(θn) ≥ 1 for all n. Then we have λ̈(ν) ≥ 1. Suppose that zν 6= ν. The b-triangular inequality gives us

ð(ν,zν) ≤ s[ð(ν,zθn) + ð(zθn,zν)].
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If we consider the upper limit to be n→∞, we obtain

1

s
ð(ν,zν) ≤ lim

n→∞
ð(zθn,zν). (10)

Also, we have ð(zθn,zν) ≤ s[ð(zθn, ν) + ð(ν,zν)]. Taking upper limit as n→∞, we get

lim
n→∞

ð(zθn,zν) ≤ sð(ν,zν). (11)

From the inequalities (10) and (11), we have

1

s
ð(ν,zν) ≤ lim

n→∞
ð(zθn,zν) ≤ sð(ν,zν). (12)

Since σ̈(θn)λ̈(ν) ≥ 1, from the inequalities (1) and (12),

ð(ν,zν) ≤ s2ð(ν,zν)

= s3(
1

s
ð(ν,zν))

≤ lim
n→∞

s3ð(zθn,zν)

≤ lim
n→∞

[µ1ð(θn, ν) + µ2[ð(θn,zθn) + ð(ν,zν)]

+µ3[ð(θn,zν) + ð(ν,zθn)] + µ4[∆(θn, ν)] + hδ(θn, ν)], (13)

where
∆(θn, ν) = max{ð(θn,zν),ð(ν,zθn)} and δ(θn, ν) = min{ð(θn,zν),ð(ν,zθn)}.

If we take the limit superior as n→∞ then we get

lim
n→∞

∆(θn, ν) ≤ sð(ν,zν) and lim
n→∞

δ(θn, ν) = 0.

From the inequality (13), we get

ð(ν,zν) ≤ (µ2 + sµ3 + sµ4)ð(ν,zν) < ð(ν,zν),

which is a contradiction. Thus, zν = ν. Therefore ν is a fixed point of z in Θ̃.
Assume that ν 6= ν′ be two fixed points of z. Then σ̈(ν) ≥ 1 or λ̈(ν) ≥ 1 and σ̈(ν′) ≥ 1 or λ̈(ν′) ≥ 1.

Since z is a cyclic (σ̈, λ̈)-admissible mapping, we obtain that

σ̈(ν) ≥ 1 =⇒ λ̈(z(ν)) = λ̈(ν) ≥ 1

and
λ̈(ν) ≥ 1 =⇒ σ̈(z(ν)) = σ̈(ν) ≥ 1.

Hence σ̈(ν) ≥ 1 and λ̈(ν) ≥ 1. Now,

σ̈(ν′) ≥ 1 =⇒ λ̈(z(ν′)) = λ̈(ν′) ≥ 1

and
λ̈(ν′) ≥ 1 =⇒ σ̈(z(ν′)) = σ̈(ν′) ≥ 1.

Thus, σ̈(ν) ≥ 1, λ̈(ν) ≥ 1, σ̈(ν′) ≥ 1 and λ̈(ν′) ≥ 1 =⇒ σ̈(ν)λ̈(ν′) ≥ 1.
From the inequality (1), we get

s3ð(zν,zν′) ≤ µ1ð(ν, ν′) + µ2[ð(ν,zν) + ð(ν′,zν′)] + µ3[ð(ν′,zν) + ð(ν,zν′)]
+µ4[∆(ν, ν′) + hδ(ν, ν′)], (14)
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where
∆(ν, ν′) = max{ð(ν′,zν),ð(ν,zν′)} = ð(ν, ν′)

and
δ(ν, ν′) = min{ð(ν′,zν),ð(ν,zν′)} = ð(ν, ν′).

From (14), we have

s3ð(ν, ν′) ≤ (µ1 + 2µ2 + 2µ3 + µ4(1 + h))ð(ν, ν′) < ð(ν, ν′),

which is a contradiction. Hence ν = ν′. This completes the proof.

Definition 7 Suppose (Θ̃,ð) is a b-metric space with parameter s ≥ 1, σ̈, λ̈ : Θ̃ → [0,∞) are two given
mappings and z, η : Θ̃→ Θ̃ are two self-mappings on Θ̃ with z is an η-cyclic (σ̈, λ̈)-admissible mapping. If
there exist µ1 ≥ 0, µ2, µ3, µ4 > 0, 0 < h < 1 with µ1 + 2µ2 + 2sµ3 + 2sµ4 = 1 such that if σ̈(ηθ)λ̈(η%) ≥ 1,
then

s3ð(zθ,z%) ≤ µ1ð(ηθ, η%) + µ2[ð(ηθ,zθ) + ð(η%,z%)]

+µ3[ð(ηθ,z%) + ð(η%,zθ)] + µ4[∆s(θ, %) + hδs(θ, %)] (15)

for all θ, % ∈ Θ̃, where ∆s(θ, %) = max{ð(ηθ,z%),ð(η%,zθ)} and δs(θ, %) = min{ð(ηθ,z%),ð(η%,zθ)}. Then
we say that z is an η-cyclic (σ̈, λ̈)-admissible generalized contraction type map.

Example 2 Let Θ̃ = (0, 1) ∪ {1, 2, 3, ...}. We define ð : Θ̃× Θ̃→ [0,∞) by

ð(θ, %) =

{
0, θ = %,
(θ + %)2, θ 6= %.

Then, ð is a b-metric with s = 2. We define z, η : Θ→ Θ by

z(θ) =

{
θ2

100 , θ ∈ (0, 1),
1 + 2

3(θ+1) , θ ∈ {1, 2, 3, ...},

η(θ) =

{
θ, θ ∈ (0, 1),
1 + θ, θ ∈ {1, 2, 3, ...},

and σ̈, λ̈ : Θ̃→ [0,∞) by

σ̈(θ) =

{
4
θ , θ ∈ (0, 1),
0, otherwise,

and λ̈(θ) =

{
3
θ , θ ∈ (0, 1),
0, otherwise.

Since
σ̈(ηθ) =



ηθ
=


θ
≥  ⇐⇒ θ ∈ (, ),

we have λ̈(zθ) = 3
zθ = 300

θ2
≥ 1 and also θ ∈ Θ̃, λ̈(ηθ) = 3

ηθ = 3
θ ≥ 1 ⇐⇒ θ ∈ (0, 1), we have

σ̈(zθ) = 4
zθ = 400

θ2
≥ 1. Therefore z is an η-cyclic (σ̈, λ̈)-admissible mapping. Now, we show that z is an

η-cyclic (σ̈, λ̈)-admissible generalized contraction type map.
For θ, % ∈ Θ̃ with σ̈(ηθ)λ̈(η%) ≥ 1 ⇐⇒ θ, % ∈ (0, 1). Hence, for θ, % ∈ (0, 1) with θ 6= %, we choose

µ =



, µ =




, µ =




= µ, h =




.

Then we have µ1 + 2µ2 + 2sµ3 + 2sµ4 = 1. We now consider

s3ð(zθ,z%) = (2)3(
θ2

100
+

θ2

100
)2
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≤ 2

5
(θ + %)2 +

1

5
[(θ +

θ2

100
)2 + (%+

%2

100
)2] +

1

40
[(θ +

%2

100
)2 + (%+

θ2

100
)2]

+µ4

[
max{(θ +

%2

100
)2, (%+

θ2

100
)2}+ hmin{(θ +

%2

100
)2, (%+

θ2

100
)2}
]

= µ1ð(ηθ, η%) + µ2[ð(ηθ,zθ) + ð(η%,z%)] + µ3[ð(ηθ,z%) + ð(η%,zθ)]
+µ4[max{ð(ηθ,z%),ð(η%,zθ)}+ hmin{ð(ηθ,z%),ð(η%,zθ)}].

Thus, z is an η-cyclic (σ̈, λ̈)-admissible generalized contraction type map.

Theorem 4 Let (Θ̃,ð) be a complete b-metric space with coeffi cient s ≥ 1 and z be an η-cyclic (σ̈, λ̈)-
admissible generalized contraction type map. Further, if θ0 ∈ Θ̃ with σ̈(ηθ0) ≥ 1, λ̈(ηθ0) ≥ 1 and the
following conditions hold:

(b1) z(Θ̃) ⊆ η(Θ̃) with η(Θ̃) is closed subspace of Θ̃;

(b2) if {θn} ⊆ Θ̃ with λ̈(θn) ≥ 1 for all n and θn → ν, then λ̈(ν) ≥ 1;

(b3) σ̈(ηu) ≥ 1 and λ̈(ηv) ≥ 1 whenever zu = ηu and zv = ηv.

Then z and η have a unique common fixed point whenever the pair (z, η) is weakly compatible.
Proof. Let θ0 ∈ Θ̃. Then by the hypotheses, we have σ̈(θ0) ≥ 1 and λ̈(θ0) ≥ 1. We can define two sequences
{θn} and {%n} in Θ̃ by %n = zθn = ηθn+1 for all n. Consider %n0+1 = %n0 for some n0 ∈ N ∪ {0} i.e., θn0+1
is a coincidence point of z and η. In order to maintain generality, we therefore suppose that %n+1 6= %n for
all n ∈ N ∪ {0}. As σ̈(ηθ0) ≥ 1 and z is an η-cyclic-(σ̈, λ̈)-admissible map, we obtain λ̈(ηθ1) = λ̈(zθ0) ≥ 1
and that σ̈(ηθ2) = σ̈(zθ1) ≥ 1. Continuing in this manner, we achieve

σ̈(ηθ2k) ≥ 1 and λ̈(ηθ2k+1) ≥ 1 for all k ∈ N ∪ {0}. (16)

Also, we have λ̈(ηθ0) ≥ 1 and z is an η-cyclic-(σ̈, λ̈)-admissible map, we get σ̈(ηθ1) = σ̈(zθ0) ≥ 1. Therefore
it follows that λ̈(ηθ2) = λ̈(zθ1) ≥ 1. Generally, we continue this process, we can find that

λ̈(ηθ2k) ≥ 1 and σ̈(ηθ2k+1) ≥ 1 for all k ∈ N ∪ {0}. (17)

Hence, from these inequalities (16) and (17), we conclude that

σ̈(ηθn) ≥ 1, λ̈(ηθn) ≥ 1 for all n ∈ N ∪ {0},

it suggests that σ̈(ηθn)λ̈(ηθn+1) ≥ 1.
From this inequality (15), we have

s3ð(zθn,zθn+1) ≤ µ1ð(ηθn, ηθn+1) + µ2[ð(ηθn,zθn) + ð(ηθn+1,zθn+1)]
+µ3[ð(ηθn,zθn+1) + ð(ηθn+1,zθn)]

+µ4[∆s(θn, θn+1) + hδs(θn, θn+1)], (18)

where
∆s(θn, θn+) = max{ð(ηθn,zθn+),ð(ηθn+,zθn)} = ð(%n−, %n+)

and
δs(θn, θn+) = min{ð(ηθn,zθn+),ð(ηθn+,zθn)} = .

From this inequality (18), we have

s3ð(%n, %n+1) ≤ µ1ð(%n−1, %n) + µ2[ð(%n−1, %n) + ð(%n, %n+1)]

+µ3[ð(%n−1, %n+1) + ð(%n, %n)] + µ4ð(%n−1, %n+1). (19)



Babu et al. 387

If ð(%n−1, %n) < ð(%n, %n+1) for some n ∈ N then from (19), we get that

s3ð(%n, %n+1) ≤ (µ1 + 2µ2 + 2sµ3 + 2sµ4)ð(%n, %n+1) = ð(%n, %n+1)

which implies that (s3−1)ð(%n, %n+1) ≤ 0 and that %n = %n+1, which a contradiction. Therefore ð(%n−1, %n) ≥
ð(%n, %n+1) for all n ∈ N. Hence, the sequence {ð(%n, %n+1)} is decreasing in Θ̃. So there exists r ≥ 0 such
that lim

n→∞
ð(%n, %n+1) = r.

Assume that r > 0 and from the inequality (19), we obtain

s3ð(%n, %n+1) ≤ (µ1 + 2µ2 + 2sµ3 + 2sµ4)ð(%n−1, %n) = ð(%n−1, %n). (20)

On taking as n→∞ in (20), we have s3(r) ≤ r implies that (s3 − 1)r ≤ 0, which is a contradiction. Thus,
lim
n→∞

ð(%n, %n+1) = 0. Next, we demonstrate that {%n} is b-Cauchy on the contrary way. Assume that {%n}
is not b-Cauchy. We have σ̈(%mk+1) ≥ 1 and λ̈(%nk+1) ≥ 1 and that σ̈(%mk+1)λ̈(%nk+1) ≥ 1. From the
inequality (15) and using Lemma 1,

s3ð(%mk+1, %nk+1) = s3ð(zθmk+1,zθnk+1)
≤ µ1ð(ηθmk+1, ηθnk+1) + µ2[ð(ηθmk+1,zθmk+1) + ð(ηθnk+1,zθnk+1)]

+µ3[ð(ηθmk+1,zθnk+1) + ð(ηθnk+1,zθmk+1)]
+µ4[∆s(θmk+1, θnk+1) + hδs(θmk+1, θnk+1)]

= µ1ð(%mk , %nk) + µ2[ð(%mk , %mk+1) + ð(%nk , %nk+1)]

+µ3[ð(%mk , %nk+1) + ð(%nk , %mk+1)]

+µ4[∆s(θmk+1, θnk+1) + hδs(θmk+1, θnk+1)], (21)

where

∆s(θmk+, θnk+) = max{ð(ηθmk+,zθnk+),ð(ηθnk+,zθmk+)}
= max{ð(%mk , %nk+),ð(%nk , %mk+)}

and
δs(θmk , θnk) = min{ð(%mk , %nk+),ð(%nk , %mk+)}.

On taking limit superior as k →∞ and by Lemma 1, we get{
lim
k→∞

∆s(θmk+1, θnk+1) ≤ max{s2ε, s2ε} = s2ε,

lim
k→∞

δs(θmk+1, θnk+1) ≤ max{s2ε, s2ε} = s2ε.
(22)

Taking limit superior now as k →∞ in (21), using (22) and (i)—(iv) of Lemma 1, we have

sε = s3(
ε

s2
) ≤ s3[ lim

k→∞
ð(%mk+1, %nk+1)]

= lim
k→∞

[s3ð(zθmk+1,zθnk+1)]

≤ lim
k→∞

[µ1ð(ηθmk+1, ηθnk+1) + µ2[ð(ηθmk+1,zθmk+1) + ð(ηθnk+1,zθnk+1)]

+µ3[ð(ηθmk+1,zθnk+1) + ð(ηθnk+1,zθmk+1)]
+µ4[∆s(θmk+1, θnk+1) + hδs(θmk+1, θnk+1)]]

≤ µ1 lim
k→∞

ð(%mk , %nk) + µ2[ lim
k→∞

ð(%mk , %mk+1) + lim
k→∞

ð(%nk , %nk+1)]

+µ3[ lim
k→∞

ð(%mk , %nk+1) + lim
k→∞

ð(%nk , %mk+1)]

+µ4[ lim
k→∞

∆s(θmk+1, θnk+1) + h lim
k→∞

δs(θmk+1, θnk+1)]
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≤ µ1(sε) + 2µ3(s
2ε) + µ4(s

2ε+ hs2ε) ≤ (µ1 + 2sµ3 + 2sµ4)sε < sε,

which is a contradiction. Thus, {%n} is b-Cauchy in (Θ̃,ð). Since Θ̃ is b-complete, there exists ν in Θ̃ such
that lim

n→∞
%n = ν. Then we have lim

n→∞
zθn = lim

n→∞
ηθn+1 = ν. Since η(Θ̃) is closed, we can find u ∈ Θ̃ such

that ηu = ν. Thus, we prove that z(u) = ν. Suppose z(u) 6= ν. The b-triangular inequality leads to the
following:

ð(ν,zu) ≤ s[ð(ν,zθn) + ð(zθn,zu)] =⇒ 

s
ð(ν,zu) ≤ lim

n→∞
ð(zθn,zu).

Also, ð(zθn,zu) ≤ s[ð(zθn, ν) + ð(ν,zu)] implies

lim
n→∞

ð(zθn,zu) ≤ sð(ν,zu).

Thus,


s
ð(ν,zu) ≤ lim

n→∞
ð(zθn,zu) ≤ sð(ν,zu).

Since %n → ν, it follows that λ̈(%n) = λ̈(ηθn+1) ≥ 1. By the hypotheses, we obtain λ̈(ν) = λ̈(ηu) ≥ 1 and
that σ̈(ηθn)λ̈(ηu) ≥ 1 for all n ∈ N. From the inequality (15), we get

s3ð(zθn,zu) ≤ µ1ð(ηθn, ηu) + µ2[ð(ηθn,zθn) + ð(ηu,zu)]

+µ3[ð(ηθn,zu) + ð(ηu,zθn)] + µ4[∆s(θn, u) + hδs(θn, u)], (23)

where
∆s(θn, u) = max{ð(ηθn,zu),ð(ηu,zθn)} = max{ð(%n−,zu),ð(ηu, %n)}

and
δs(θn, u) = min{ð(%n−,zu),ð(ηu, %n)}.

On letting n→∞ in (23), we get

s2ð(ν,zu) = s3(
1

s
ð(ν,zu))

≤ lim
n→∞

s3ð(zθn,zu)

≤ lim
n→∞

[µ1ð(ηθn, ηu) + µ2[ð(ηθn,zθn) + ð(ηu,zu)]

+µ3[ð(ηθn,zu) + ð(ηu,zθn)] + µ4[∆s(θn, u) + hδs(θn, u)]], (24)

where
lim
n→∞

∆s(θn, u) ≤ max{sð(ν,zu), } = sð(ν,zu)

and
lim
n→∞

δs(θn, u) ≤ min{sð(ν,zu), } = .

From the inequality (24), we have

sð(ν,zu) ≤ (µ + sµ + sµ)ð(ν,zu) < d(ν,zu),

which is a contradiction. Thus, zu = ηu = ν. We show that z and η has a unique point of coincidence ν.
Let ν 6= ν′ be a point of coincidence. After it, there is v ∈ Θ̃ with zv = ηv = ν′. By the hypotheses, we
have σ̈(ηu)λ̈(ηv) ≥ 1. Thus, from the inequality (15), we get that

s3ð(ν, v′) = s3ð(zu,zv)

≤ µ1ð(ηu, ηv) + µ2[ð(ηu,zu) + ð(ηv,zv)]

+µ3[ð(ηu,zv) + ð(ηv,zu)] + µ4[∆s(u, v) + hδs(u, v)],
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where
∆s(u, v) = max{ð(ηu,zv),ð(ηv,zu)} = ð(ν, ν′)

and
δs(u, v) = min{ð(ηu,zv),ð(ηv,zu)} = ð(ν, ν′).

Therefore
sð(ν, ν′) ≤ [µ + µ + µ(+ h)]ð(ν, ν′) < ð(ν, ν′),

which is a contradiction. Thus, ν = ν′. Since the pair (z, η) is weakly compatible and zu = ηu, we have

zν = zηu = ηzu = ην = w.

So w is a point of coincidence of z and η. But ν is unique point of coincidence of z and η so w = ν and
that ν = zν = ην. Further, if ξ = zξ = ηξ then ξ is a point of coincidence of z and η. By the uniqueness
of coincidence point, we get that ν = ξ. Thus ν is a unique common fixed point of z and η.

3 Examples and Corollaries

We start the section with an illustration of Theorem 3.

Example 3 Suppose Θ̃ = [1, 2] ∪ {3, 4, 5, ...}. We define ð : Θ̃× Θ̃→ [0,∞) by

ð(θ, %) =


0, θ = %,
1
θ+% , θ, % ∈ [1, 2],

4 + 1
θ+% , θ, % ∈ {3, 4, 5, ...},

2, otherwise.

It is easy to see that ð is a b-metric with s = 27
26 . We define z : Θ̃→ Θ̃ by

z(θ) =

{
2− θ

3 , θ ∈ [1, 2],
1 + 2

3θ , θ ∈ {3, 4, 5, ...},

and σ̈, λ̈ : Θ̃→ [0,∞) by

σ̈(θ) =

{
3
1+θ , θ ∈ [1, 2],

0, otherwise,

λ̈(θ) =

{
4
1+θ , θ ∈ [1, 2],

0, otherwise.

Since σ̈(θ) ≥ 1 if and only if θ ∈ [1, 2], we have λ̈(z(θ)) = 4
1+zθ = 4

3− θ3
≥ 1 and also θ ∈ Θ̃, λ̈(θ) ≥ 1 if and

only if θ ∈ [1, 2], we have

σ̈(z(θ)) =


+zθ
=



− θ


≥ .

As a result z is a cyclic (σ̈, λ̈)-admissible mapping. Now we prove that the mapping z is a cyclic (σ̈, λ̈)-
admissible generalized contraction type map. For θ, % ∈ Θ̃ with σ̈(θ)λ̈(%) ≥ 1 if and only if θ, % ∈ [1, 2].
Hence, for θ, % ∈ [1, 2], we have zθ = 2− θ

3 , z% = 2− %
3 . We choose

µ =



, µ =




, µ =




= µ, h =




.

Then we have µ1 + 2µ2 + 2sµ3 + 2sµ4 = 1. For θ 6= %,

ð(zθ,z%) =


− (θ + %)
, ð(θ, %) =



θ + %
, ð(θ,zθ) =



(θ + )
, ð(%,z%) =



(+ %)
,
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ð(θ,z%) =


θ − %+ 
, ð(%,zθ) =



%− θ + 
,

max{ð(θ,z%),ð(%,zθ)} = { 

θ − %+ 
,



%− θ + 
} ≥ 



and
min{ð(θ,z%),ð(%,zθ)} = { 

θ − %+ 
,



%− θ + 
} ≥ 


.

Now we consider

s3ð(zθ,z%) = (
27

26
)3(

3

12− (θ + %)
)

≤ (
27

26
)3(

3

8
)

≤ (
1

10
)(

1

4
) + (

1

4
)[

1

2
+

1

2
] + (

13

135
)[

3

7
+

3

7
] + (

13

135
)[

3

7
+

27

70
]

≤ µ1(
1

θ + %
) + µ2[

3

2(θ + 1)
+

3

2(1 + %)
] + µ3[

3

3θ − %+ 2
+

3

3%− θ + 2
]

+µ4[max{ 3

3θ − %+ 2
,

3

3%− θ + 2
}+ hmin{ 3

3θ − %+ 2
,

3

3%− θ + 2
}]

≤ µ1ð(ηθ, η%) + µ2[ð(ηθ,zθ) + ð(η%,z%)]

+µ3[ð(ηθ,z%) + ð(η%,zθ)] + µ4[∆(θ, %) + hδ(θ, %)].

Therefore z satisfies all the hypotheses of Theorem 3 and 3
2 is the unique fixed point.

The following is an example in support of Theorem 4.

Example 4 Let Θ̃ = [1, 2] ∪ {3, 4, 5, ...}. We define ð : Θ̃× Θ̃→ [0,∞) by

ð(θ, %) =


0, θ = %,
1
θ + 1

% , θ, % ∈ [1, 2],

5 + 1
θ + 1

% , θ, % ∈ {3, 4, 5, ...},
5
2 , otherwise.

It is obvious that ð is a b-metric with s = 8
7 . We define z, η : Θ̃→ Θ̃ by

z(θ) =

{
θ(3− θ), θ ∈ [1, 2],
1 + 2

3(θ+1) , θ ∈ {3, 4, 5, ...},

η(θ) =

{
θ2+2
3 , θ ∈ [1, 2],

1 + 2
3(θ+1) , θ ∈ {3, 4, 5, ...},

and σ̈, λ̈ : Θ̃→ [0,∞) by

σ̈(θ) =

{
4
θ , θ ∈ [1, 2],
0, otherwise,

λ̈(θ) =

{
3
θ θ ∈ [1, 2],
0 otherwise.

Since σ̈(ηθ) = 4
ηθ = 12

θ2+2
≥ 1 if and only if θ ∈ [1, 2], we have λ̈(z(θ)) = 3

zθ = 3
θ(3−θ) ≥ 1 and also θ ∈ Θ̃,

λ̈(ηθ) = 3
ηθ = 9

θ2+2
≥ 1 if and only if θ ∈ [1, 2], we have σ̈(z(θ)) = 4

zθ = 4
θ(3−θ) ≥ 1. Therefore z is an

η-cyclic (σ̈, λ̈)-admissible mapping. Clearly z(Θ̃) ⊆ η(Θ̃) and η(Θ̃) is a closed subspace of Θ̃. Now we show
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that z is an η-cyclic (σ̈, λ̈)-admissible generalized contraction type map. For θ, % ∈ Θ̃ with σ̈(ηθ)λ̈(η%) ≥ 1
if and only if θ, % ∈ [1, 2]. Hence, for θ, % ∈ [1, 2] with θ 6= %, we choose

µ =



, µ =




, µ =




= µ, h =




.

Then we have µ1 + 2µ2 + 2sµ3 + 2sµ4 = 1. Now

ð(zθ,z%) =


θ(− θ) +


%(− %)
,ð(ηθ, η%) =



θ + 
+



% + 
,ð(ηθ,zθ) =



θ + 
+



θ(− θ) ,

ð(η%,z%) =


% + 
+



%(− %)
,ð(ηθ,z%) =



θ + 
+



%(− %)
,ð(η%,zθ) =



% + 
+



θ(− θ) ,

max{ð(ηθ,z%),ð(η%,zθ)} = { 

θ + 
+



%(− %)
,



% + 
+



θ(− θ)} ≥




and
min{ð(ηθ,z%),ð(η%,zθ)} = { 

θ + 
+



%(− %)
,



% + 
+



θ(− θ)} ≥



.

Now we consider

s3ð(zθ,z%) = (
27

26
)3(

1

θ(3− θ) +
1

%(3− %)
)

≤ (
8

7
)3(

1

2
+

1

2
)

≤ (
1

4
)(

1

2
+

1

2
) + (

1

2
)[

1

2
+

1

2
+

1

2
+

1

2
] + (

7

128
)[

1

2
+

1

2
+

1

2
+

1

2
]

+(
7

128
)[

1

2
+

1

2
+

9

10
(
1

2
+

1

2
)]

≤ µ1(
3

θ2 + 2
+

3

%2 + 2
) + µ2[

3

θ2 + 2
+

1

θ(3− θ) +
3

%2 + 2
+

1

%(3− %)
]

+µ3[
3

θ2 + 2
+

1

%(3− %)
+

3

%2 + 2
+

1

θ(3− θ) ] + µ4[
1

2
+

9

10

1

2
]

≤ µ1ð(ηθ, η%) + µ2[ð(ηθ,zθ) + ð(η%,z%)] + µ3[ð(ηθ,z%) + ð(ηθ,z%)]

+µ4[max{ð(ηθ,z%),ð(η%,zθ)}+ hmin{ð(ηθ,z%),ð(η%,zθ)}].

Therefore z and η satisfy all the hypotheses of Theorem 4 and 2 is the unique common fixed point.

If we take σ̈(θ) = λ̈(θ) = 1 in Theorem 3 and Theorem 4, we get Corollary 1 and Corollary 2 respectively.

Corollary 1 Let (Θ̃,ð) be a complete b-metric space with parameter s ≥ 1. Suppose z : Θ̃ → Θ̃ be a
continuous self-map satisfies the following:

s3ð(zθ,z%) ≤ µ1ð(θ, %) + µ2[ð(θ,zθ) + ð(%,z%)]

+µ3[ð(θ,z%) + ð(%,zθ)] + µ4[∆(θ, %) + hδ(θ, %)],

where ∆(θ, %) = max{ð(θ,z%),ð(%,zθ)}, δ(θ, %) = min{ð(θ,z%),ð(%,zθ)}, for all θ, % ∈ Θ̃ and the exist
µ1 ≥ 0, µ2, µ3, µ4 > 0, 0 < h < 1 with µ1 + 2µ2 + 2sµ3 + 2sµ4 = 1. Then z has a unique fixed point.

Remark 1 Corollary 1 extends and generalizes Theorem 2 to b-metric space.

Corollary 2 Suppose (Θ̃,ð) is a complete b-metric space with parameter s ≥ 1 and z, η : Θ̃ → Θ̃ are two
self-maps with z(Θ̃) ⊆ η(Θ̃), η(Θ̃) is closed subspace of Θ̃ and z, η satisfy the following:

s3ð(zθ,z%) ≤ µ1ð(ηθ, η%) + µ2[ð(ηθ,zθ) + ð(η%,z%)]
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+µ3[ð(ηθ,z%) + ð(η%,zθ)] + µ4[∆s(θ, %) + hδs(θ, %)],

where
∆s(θ, %) = max{ð(ηθ,z%),ð(η%,zθ)}, δs(θ, %) = min{ð(ηθ,z%),ð(η%,zθ)},

for all θ, % ∈ Θ̃ and there exist µ1 ≥ 0, µ2, µ3, µ4 > 0, 0 < h < 1 with µ1 + 2µ2 + 2sµ3 + 2sµ4 = 1. If the
pair (z, η) is weakly compatible, then there is a unique common fixed point for z and η in Θ̃.

4 Application to Nonlinear Integral Equations

Suppose Ω̃ = C̃[al, bu] is a set of real valued continuous functions on [al, bu]. We define ð : Ω̃× Ω̃→ R+ by

ð(ζ, ξ) = max
ς∈[al,bu]

|ζ(τ)− ξ(τ)|℘,

for all ζ, ξ ∈ Ω̃ with s = 2℘−1, ℘ > 1 a real number. In this section, we present unique solution to nonlinear
integral equations of the Fredholm type defined by

ζ(ς) = ℵ(ς) + µ

bu∫
al

D̃(ς, τ , ζ(ς))dτ (25)

where ζ ∈ C̃[al, bu], µ ∈ R, ς, τ ∈ [al, bu], D̃ : [al, bu]× [al, bu]× R→ R and ℵ : [al, bu]→ R are continuous.
Let = : Ω̃→ Ω̃ be a mappings defined as

=(ζ(ς)) = ℵ(ς) + µ

bu∫
al

D̃(ς, τ , ζ(ς))dτ. (26)

Considering the following:

(=1) γ : [al, bu]× [al, bu]→ R+ is continuous with

max
τ∈[al,bu]

bu∫
al

γ(ς, τ)dτ ≤ 1

(bu − al)℘−1
and |µ| ≤ 1;

(=2) there exists ζ0 ∈ Ω̃ such that η1( ζ0) ≥ 0 and η2(ζ0) ≥ 0;

(=3) if {ζn} ⊆ Ω̃ such that lim
n→∞

ζn = ζ and η2(ζn) ≥ 0 for all n, then η2(ζ) ≥ 0;

(=4) η1(ζ) ≥ 0 for some ζ ∈ Ω̃ =⇒ η2(=ζ) ≥ 0 and η2(ζ) ≥ 0 for some ζ ∈ Ω̃ =⇒ η1(=ζ) ≥ 0;

(=5) η1(u) ≥ 0 and η2(v) ≥ 0 whenever =u = u and =v = v;

(=6) if η1(=ζ) ≥ 0, η2(=ξ) ≥ 0, for all ζ, ξ ∈ Ω̃ such that for ς, τ ∈ [al, bu], the following holds:∣∣∣D̃(ς, τ , ζ(ς))− D̃(ς, τ , ξ(ς)
∣∣∣℘ ≤ 1

23℘−3
γ(ς, τ)∇s(ζ, ξ)

where

∇s(ζ, ξ) = µ1 |ζ − ξ|
℘

+ µ2 [|ζ −=ζ|℘ + |ξ −=ξ|℘]

+µ3[|ζ −=ξ|
℘

+ |ξ −=ζ|℘]

+µ4[max{|ζ −=ξ|℘ , |ξ −=ζ|℘}+ hmin{|ζ −=ξ|℘ , |ξ −=ζ|℘}].
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Theorem 5 Let = : Ω̃ → Ω̃ be defined by (26) for which the conditions (=1)—(=6) hold. Then (25) has a
unique solution in Ω̃.

Proof. Now we prove that = is a cyclic (σ̈, λ̈)-admissible generalized contraction type map. We define
σ̈, λ̈ : Ω̃→ Ω̃ as

σ̈(ζ) =

{
1, η1(ζ) > 0 where ζ ∈ Ω̃,
0, otherwise,

and

λ̈(ζ) =

{
1, η2(ζ) > 0 where ζ ∈ Ω̃,
0, otherwise.

From the condition (=6), η1(=ζ) ≥ 0 and η2(=ξ) ≥ 0, for all ζ, ξ ∈ Ω̃ so that σ̈(=ζ)λ̈(=ξ) ≥ 1. Let q ∈ R be
such that 1

℘ + 1
q = 1 using the Hölder’s inequality and ζ, ξ ∈ Ω̃ and from (=1) and (=6), for all ς. So we have

ð(=ζ,=ξ) = max
ς∈[al,bu]

|=ζ(ς)−=ξ(ς)|℘

= max
ς∈[al,bu]

|µ|℘
∣∣∣∣∣∣
bu∫
al

D̃(ς, τ , ζ(ς))dτ −
bu∫
al

D̃(ς, τ , ξ(ς))dτ

∣∣∣∣∣∣
℘

= max
ς∈[al,bu]

|µ|℘
∣∣∣∣∣∣
bu∫
al

(D̃(ς, τ , ζ(ς))− D̃(ς, τ , ξ(ς)))dτ

∣∣∣∣∣∣
℘

≤

 max
ς∈[al,bu]

|µ|℘
 bu∫
al

1℘dτ


1
q
 bu∫
al

∣∣∣(D̃(ς, τ , ζ(ς))− D̃(ς, τ , ξ(ς)))dτ
∣∣∣℘


1
℘


℘

≤ (bu − al)
℘
q max
ς∈[al,bu]

 bu∫
al

∣∣∣D̃(ς, τ , ζ(ς)− D̃(ς, τ , ξ(ς)
∣∣∣℘ dτ


= (bu − al)℘−1 max

ς∈[al,bu]

 bu∫
al

∣∣∣D̃(ς, τ , ζ(ς)− D̃(ς, τ , ξ(ς)
∣∣∣℘ dτ


≤ (bu − al)℘−1 max

ς∈[al,bu]

bu∫
al

1

23℘−3
γ(ς, τ)∇s(ζ, ξ)

= max
ς∈[al,bu]

bu∫
al

(bu − al)℘−1
23℘−3

γ(ς, τ)[µ1 |ζ − ξ|
℘

+ µ2[|ζ −=ζ|
℘

+ |ξ −=ξ|℘]

+µ3[|ζ −=ξ|
℘

+ |ξ −=ζ|℘] + µ4[max{|ζ −=ξ|℘ , |ξ −=ζ|℘}
+hmin{|ζ −=ξ|℘ , |ξ −=ζ|℘}]]

which implies that

s3ð(=ζ,=ξ) ≤ µ1ð(ζ, ξ) + µ2[ð(ζ,=ζ) + ð(ξ,=ξ)] + µ3[ð(ζ,=ξ) + ð(ξ,=ζ)]

+µ4 [max{ð(ζ,=ξ),ð(ξ,=ζ)}+ hmin{ð(ζ,=ξ),ð(ξ,=ζ)}] .

The hypotheses of Theorem 3 is satisfied. Hence = defined in (26) has a unique solution.
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5 Application to Dynamic Programming

We discuss the following existence of bounded solution for functional equations that arises in dynamic
programming. Let ‘opt’represents inf or sup, Θ̃1 and Θ̃2 are two Banach spaces; D̃ ⊆ Θ̃1 is the decision
space; S̃ ⊆ Θ̃2 is the state space; f(S̃), the set of all bounded real valued functions on S̃ with b-metric is
defined by:

ð(px, py) = sup
t∈S̃
|px(t)− py(t)|r, for all px, py ∈ f(S̃) with parameter s = 2r−1.

Now we consider the following functional equations:{
z(vs) = optvd∈D̃{ζ1(vs, vd) + C1(vs, vd,z(ω1(vs, vd)))} for all vs ∈ S̃,
η(vs) = optvd∈D̃{ζ2(vs, vd) + C2(vs, vd, η(ω2(vs, vd)))} for all vs ∈ S̃,

(27)

where vd is a decision vector, vs is a state vector where as ω1, ω2 denotes the transformations of the process,
and z(vs), η(vs) indicates the optimal return functions.

Let =,ℵ : f(S̃)→ f(S̃) be two mappings defined by:{
=f(vs) = optvd∈D̃{ζ1(vs, vd) + C1(vs, vd, f(ω1(vs, vd)))} for all vs ∈ S̃,
ℵf(vs) = optvd∈D̃{ζ2(vs, vd) + C2(vs, vd, f(ω2(vs, vd)))} for all vs ∈ S̃,

(28)

where (vs, f) ∈ S̃ × f(S̃).
Let ξ1, ξ2 : f(S̃)× R. Assume the following:

(DP1) =(f(S̃)) ⊆ ℵ(f(S̃)) and ℵ(f(S̃)) is closed subspace of f(S̃),

(DP2) if f0 ∈ f(S̃) such that ξ1(ℵf0) ≥ 0 and ξ2(ℵf0) ≥ 0,

(DP3) if {fn} is a sequence in f(S̃) such that lim
n→∞

fn = f and ξ2(fn) ≥ 0 for all n then ξ2(f) ≥ 0,

(DP4) if ξ1(=f) ≥ 0, ξ2(ℵg) ≥ 0, for all f, g ∈ f(S̃) and there exist µ1 ≥ 0, µ2, µ3, µ4 > 0, 0 < h < 1 such
that µ1 + 2µ2 + 2sµ3 + 2sµ4 = 1 then for all (vs, vd, f, g) ∈ S̃ × D̃ × f(S̃)× f(S̃), we have

|C1(vs, vd, f(ω1(vs, vd)))− C2(vs, vd, g(ω2(vs, vd)))|+ |ζ1(vs, vd)− ζ2(vs, vd)| ≤ (23−3r∆s(f, g))
1
r ,

where

∆s(f, g) = µ1 |ℵf − ℵg|
r

+ µ2[|ℵf −=f |
r

+ |ℵg −=g|r]
+µ3[|ℵf −=g|r + |ℵg −=f |r]
+µ4[max{|ℵf −=g|r, |ℵg −=f |r}+ hmin{|ℵf −=g|r, |ℵg −=f |r}].

(DP5) ξ1(ℵf) ≥ 0 for some f ∈ f(S̃) =⇒ ξ2(=f) ≥ 0 and ξ2(ℵf) ≥ 0 for some f ∈ f(S̃) =⇒ ξ1(=f) ≥ 0,

(DP6) ξ1(ℵu) ≥ 0 and ξ2(ℵv) ≥ 0 whenever =u = ℵu and =v = ℵv,

(DP7) for some f ∈ f(S̃),=ℵf = ℵ=f whenever =f = ℵf ,

(DP8) ωi, Ci are bounded for i = 1, 2.

Theorem 6 Suppose =,ℵ : f(S̃) → f(S̃) are defined by (28) for which the conditions (DP1)—(DP8) hold.
Then (27) has a unique bounded common solution in f(S̃).
Proof. Take ε > 0. Let p ∈ S̃, f, g ∈ f(S̃) with ζ1(ℵf) ≥ 0 and ζ2(ℵg) ≥ 0.Since ωi, Ci are bounded for
i = 1, 2, there exists L ≥ 0 such that

sup{‖ω1(vs, vd)‖, ‖ω2(vs, vd)‖, ‖C1(vs, vd, t)‖, ‖C2(vs, vd, t)‖ : (vs, vd, t) ∈ S̃ × D̃ × R} ≤ L. (29)
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Now we demonstrate = is an ℵ-cyclic (σ̈, λ̈)-admissible generalized contraction type map. We define σ̈, λ̈ :
f(S̃)→ f(S̃) as

σ̈(f) =

{
1, ξ1(f) > 0 where f ∈ f(S̃),
0, otherwise,

and

λ̈(f) =

{
1, ξ2(f) > 0 where f ∈ f(S̃),
0, otherwise.

From the condition (DP4), ξ1(=f) ≥ 0 and ξ2(ℵg) ≥ 0, for all f, g ∈ f(S̃) so thatσ̈(ℵf)λ̈(ℵg) ≥ 1. First, we
assume that optvd∈D̃= inf

vd∈D̃
.By using (28), we can find vd ∈ D̃ and (vs, f, g) ∈ S̃ × f(S̃)× f(S̃) such that

=f(vs) > C1(vs, vd, f(ω1(vs, vd))) + ζ1(vs, vd)− ε, (30)

=g(vs) > C2(vs, vd, g(ω2(vs, vd))) + ζ2(vs, vd)− ε, (31)

=f(vs) ≤ C1(vs, vd, f(ω1(vs, vd))) + ζ1(vs, vd), (32)

=g(vs) ≤ C2(vs, vd, g(ω2(vs, vd))) + ζ2(vs, vd). (33)

From (30) and (33), we get

=f(vs)−=g(vs)

> C1(vs, vd, f(ω1(vs, vd)))− C2(vs, vd, g(ω2(vs, vd))) + ζ1(vs, vd)− ζ2(vs, vd)− ε
≥ −{|C1(vs, vd, f(ω1(vs, vd)))− C2(vs, vd, g(ω2(vs, vd)))|+ |ζ1(vs, vd)− ζ2(vs, vd)|+ ε}. (34)

Also by using (31) and (32), we have

=f(vs)−=g(vs)

≤ C1(vs, vd, f(ω1(vs, vd)))− C2(vs, vd, g(ω2(vs, vd))) + ζ1(vs, vd)− ζ2(vs, vd) + ε

≤ |C1(vs, vd, f(ω1(vs, vd)))− C2(vs, vd, g(ω2(vs, vd)))|+ |ζ1(vs, vd)− ζ2(vs, vd)|+ ε. (35)

From (34) and (35), we have

|=f(vs)−=g(vs)| < C1(vs, vd, f(ω1(vs, vd)))− C2(vs, vd, g(ω2(vs, vd))) + ζ1(vs, vd)− ζ2(p, q) + ε

≤ |C1(vs, vd, f(ω1(vs, vd)))− C2(vs, vd, g(ω2(vs, vd)))|+ |ζ1(vs, vd)− ζ2(p, q)|+ ε.

Suppose that optvd∈D̃= sup
vd∈D̃

.Again by using the inequality (28), we can find vd ∈ D̃ and (vs, f, g) ∈ S̃ ×

f(S̃)× f(S̃) such that
=f(vs) < C1(vs, vd, f(ω1(vs, vd))) + ζ1(vs, vd) + ε, (36)

=g(vs) < C2(vs, vd, g(ω2(vs, vd))) + ζ2(vs, vd) + ε, (37)

=f(vs) ≥ C1(vs, vd, f(ω1(vs, vd))) + ζ1(vs, vd), (38)

=g(vs) ≥ C2(vs, vd, g(ω2(vs, vd))) + ζ2(vs, vd). (39)

From (36) and (39), we get

=f(vs)−=g(vs)

< C1(vs, vd, f(ω1(vs, vd)))− C2(vs, vd, g(ω2(vs, vd))) + ζ1(vs, vd)− ζ2(vs, vd) + ε

≤ |C1(vs, vd, f(ω1(vs, vd)))− C2(vs, vd, g(ω2(vs, vd)))|+ |ζ1(vs, vd)− ζ2(vs, vd)|+ ε. (40)

Also by using (37) and (38), we have

=f(vs)−=g(vs)
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≥ C1(vs, vd, f(ω1(vs, vd)))− C2(vs, vd, g(ω2(vs, vd))) + ζ1(vs, vd)− ζ2(vs, vd)− ε
≥ −{|C1(vs, vd, f(ω1(vs, vd)))− C2(vs, vd, g(ω2(vs, vd)))|+ |ζ1(vs, vd)− ζ2(vs, vd)|+ ε}. (41)

From (40) and (41), we have

|=f(vs)−=g(vs)|
< C1(vs, vd, f(ω1(vs, vd)))− C2(vs, vd, g(ω2(vs, vd))) + ζ1(vs, vd)− ζ2(vs, vd) + ε

≤ |C1(vs, vd, f(ω1(vs, vd)))− C2(vs, vd, g(ω2(vs, vd)))|+ |ζ1(vs, vd)− ζ2()|+ ε. (42)

On letting ε→ 0 in (42), we obtain

|=f(vs)−=g(vs)| ≤ |C1(vs, vd, f(ω1(vs, vd)))− C2(vs, vd, g(ω2(vs, vd)))|+ |ζ1(vs, vd)− ζ2(vs, vd)|.

By using the condition (DP4), we have

|=f(vs)−=g(vs)| ≤ |C1(vs, vd, f(ω1(vs, vd)))− C2(vs, vd, g(ω2(vs, vd)))|+ |ζ1(vs, vd)− ζ2(vs, vd)|
≤ (23−3r∆s(f, g))

1
r

= (23−3r(µ1|ℵf − ℵg|r + µ2[|ℵf −=f |r + |ℵg −=g|r]
+µ3[|ℵf −=g|r + |ℵg −=f |r]
+µ4[max{|ℵf −=g|r, |ℵg −=f |r}+ hmin{|ℵf −=g|r, |ℵg −=f |r}])) 1r

≤ (23−3r sup
vs∈S̃

(µ1|ℵf − ℵg|r + µ2[|ℵf −=f |r + |ℵg −=g|r]

+µ3[|ℵf −=g|r + |ℵg −=f |r]
+µ4[max{|ℵf −=g|r, |ℵg −=f |r}+ hmin{|ℵf −=g|r, |ℵg −=f |r}])) 1r

= (23−3r(µ1ð(ℵf,ℵg) + µ2[ð(ℵf,=f) + ð(ℵg,=g)]

+µ3[ð(ℵf,=g) + ð(ℵg,=f)]

+µ4[max{ð(ℵf,=g),ð(ℵg,=f)}+ hmin{ð(ℵf,=g),ð(ℵg,=f)}])) 1r

which implies that

|=f(vs)−=g(vs)|r ≤ 23−3r(µ1ð(ℵf,ℵg) + µ2[ð(ℵf,=f) + ð(ℵg,=g)]

+µ3[ð(ℵf,=g) + ð(ℵg,=f)]

+µ4[max{ð(ℵf,=g),ð(ℵg,=f)}+ hmin{ð(ℵf,=g),ð(ℵg,=f)}]).

Now, for all f, g ∈ f(S̃), we have

s3ð(=f(vs),=g(vs)) = 23r−3 sup
p∈S̃
|=f(vs)−=g(vs)|r

≤ µ1ð(ℵf,ℵg) + µ2[ð(ℵf,=f) + ð(ℵg,=g)] + µ3[ð(ℵf,=g) + ð(ℵg,=f)]

+µ4[max{ð(ℵf,=g),ð(ℵg,=f)}+ hmin{ð(ℵf,=g),ð(ℵg,=f)}].

It is clear that Theorem 6 satisfies all the hypotheses of Theorem 4. According to Theorem 4, a unique
common fixed point for = and ℵ exists in f(S̃), implies that the functional equations which are defined in
(27) has a unique bounded common solution.
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