Common Domain Of Asymptotic Stability Of A Family Of Difference Equations* ${ }^{* \dagger}$

Sui Sun Cheng ${ }^{\ddagger}$

Received 20 July 2023

Abstract

A necessary and sufficient condition is obtained for a family of difference equations to be asymptotically stable.

1. Introduction and Results

The following difference equation (see e.g. [1, 2] for its importance)

$$
\begin{equation*}
u_{n}=a u_{n-\tau}+b u_{n-\sigma}, n=0,1,2, \ldots \tag{1.1}
\end{equation*}
$$

where a, b are real numbers and τ, σ are positive integers, is said to be (globally) asymptotically stable if each of its solutions tends to zero.

When the delays τ and σ are given (fixed), whether the corresponding equation (1.1) is asymptotically stable clearly depends on the coefficients a and b. For this reason, we denote the set of all pairs (x, y) such that the equation

$$
\begin{equation*}
u_{n}=x u_{n-\tau}+y u_{n-\sigma}, n=0,1,2, \ldots \tag{1.2}
\end{equation*}
$$

is asymptotically stable by $\Omega(x, y \mid \tau, \sigma)$.
It is well known that equation (1.1) is asymptotically stable if, and only if, all the (complex) roots of its characteristic equation

$$
\begin{equation*}
1=a \lambda^{-\tau}+b \lambda^{-\sigma}, \tag{1.3}
\end{equation*}
$$

are inside the open unit disk. In other words, the set $\Omega(x, y \mid \tau, \sigma)$ is also the set of pairs (x, y) such that all the (complex) roots of

$$
\begin{equation*}
1=x \lambda^{-\tau}+y \lambda^{-\sigma} \tag{1.4}
\end{equation*}
$$

has magnitude less than one.
By means of commercial software such as the MATLAB, it is not difficult to generate domains $\Omega(x, y \mid \tau, \sigma)$ in the x, y-plane for different values of the delays τ and σ. It is interesting to observe that the set

$$
\{(x, y)||x|+|y|<1\}
$$

is included in all of these computer generated domains. This motivates the following theorem.

Theorem 1. Let $\Omega(x, y \mid \tau, \sigma)$ be the set of all pairs of the form (x, y) such that equation (1.2) is asymptotically stable. Then we have

$$
\cap_{\tau, \sigma \in N} \Omega(x, y \mid \tau, \sigma)=\{(x, y)| | x|+|y|<1\},
$$

where N is the set of all positive integers.

[^0]One part of the proof is easy. Let μ be a nonzero root of equation (1.3). If $|a|+|b|<1$, then since

$$
|a|+|b|<1 \leq|a||\mu|^{-\tau}+|b||\mu|^{-\sigma}
$$

we see that

$$
|a|<|a||\mu|^{-\tau}
$$

or

$$
|b|<|b||\mu|^{-\sigma}
$$

But then $|\mu|^{\tau}<1$ or $|\mu|^{\sigma}<1$. In other words, $|\mu|<1$.
In order to complete our proof, we need the following preparatory lemma.

Lemma 2 (cf. [4, Lemma 2.1]). Suppose a, b are real numbers such that $|a|+|b| \neq 0$, and τ and σ are two positive integers. Then the equation

$$
|a| x^{-\tau}+|b| x^{-\sigma}=1, x>0
$$

has a unique solution in $(0, \infty)$.
Proof. Consider the function

$$
f(x)=|a| x^{-\tau}+|b| x^{-\sigma}, x>0
$$

Since f is continuous on $(0, \infty), \lim _{x \rightarrow 0^{+}} f(x)=\infty, \lim _{x \rightarrow \infty} f(x)=0$ and

$$
f^{\prime}(x)=-\left(|a| \tau x^{-\tau-1}+|b| \sigma x^{-\sigma-1}\right)<0, x>0
$$

thus our proof follows from the intermediate value theorem.

2. Proof of Main Result

Now if (a, b) belongs to $\cap_{\tau, \sigma \in N} \Omega(x, y \mid \tau, \sigma)$, then for each pair (τ, σ) of integers, each root μ of equation (1.3) satisfies $|\mu|<1$. Let us write $\mu=r e^{\theta}$ and write (1.3) in the form

$$
\begin{align*}
& a r^{-\tau} \cos \tau \theta+b r^{-\sigma} \cos \sigma \theta=1 \tag{2.1}\\
& a r^{-\tau} \sin \tau \theta+b r^{-\tau} \sin \sigma \theta=0 \tag{2.2}
\end{align*}
$$

There are several cases to consider: (i) $a=0$ or $b=0$; (ii) $a>0, b>0$; (iii) $a<0, b<0$; (iv) $a<0, b>0$; and (v) $a>0, b<0$. The first case is easily dealt with. In the second case, since the equation

$$
a x^{-\tau}+b x^{-\sigma}=1
$$

has a unique positive root ρ_{1} by Lemma $1,(r, \theta)=\left(\rho_{1}, 0\right)$ is a solution of equations (2.1)-(2.2). This implies that $\rho_{1}=r=|\mu|<1$. But then

$$
1=a \rho_{1}^{-\tau}+b \rho_{1}^{-\sigma}>a+b=|a|+|b| .
$$

In the third case, since the equation

$$
-a x^{-\tau}-b x^{-\sigma}=1
$$

has a unique positive root ρ_{2} by Lemma 1 , it we pick $\tau=1$ and $\sigma=3$, then $(r, \theta)=\left(\rho_{2}, \pi\right)$ is a solution of equations (2.1)-(2.2). This implies $\rho_{2}=|\mu|<1$. But then

$$
1=-a \rho_{2}^{-\tau}-b \rho_{2}^{-\sigma}>-a-b=|a|+|b| .
$$

In the fourth case, since the equation

$$
-a x^{-\tau}+b x^{-\sigma}=1
$$

has a unique positive root ρ_{3} by Lemma 1 , if we pick $\tau=1$ and $\sigma=2$, then $(r, \theta)=\left(\rho_{3}, \pi\right)$ is a solution of equations (2.1)-(2.2). This implies $\rho_{3}=|\mu|<1$. But then

$$
1=-a \rho_{3}^{-\tau}+b \rho_{3}^{-\sigma}>-a+b=|a|+|b| .
$$

In the final case, since the equation

$$
a x^{-\tau}-b x^{-\sigma}=1
$$

has a positive root ρ_{4}, if we pick $\tau=2$ and $\sigma=3$, then $(r, \theta)=\left(\rho_{4}, \pi\right)$ is a solution of equations (2.1)-(2.2). This implies $\rho_{4}<1$ and consequently

$$
1 \geq a \rho_{4}^{-\tau}-b \rho_{4}^{-\sigma}>a-b=|a|+|b| .
$$

The proof is complete.
Acknowledgment. The original idea of the present work was communicated to me by Professor Y. Z. Lin. Unfortunately we cannot finish a joint paper before he passed away. This short note is meant to be my appreciation for all his wonderful contributions in this and also our other joint works.

References

[1] S. A. Levin and R. M. May, A note on difference-delay equations, Theort. Popul. Biology, 9(1976), 178-187.
[2] S. A. Kuruklis, The asymptotic stability of $x_{n+1}-a x_{n}+b x_{n-k}=0$, J. Math. Anal. Appl., 188(1994), 719-731.
[3] R. J. Duffin, Algorithms for classical stability problems, SIAM Review, 11(2)(1969), 196-213.
[4] L. A. V. Carvalho, An analysis of the characteristic equation of the scalar linear difference equation with two delays, Functional Differential Equations and Bifurcation, Lecture Notes in Mathematics, 799, Springer, Berlin, 1980.

[^0]: *Subject Classifications: 39A30
 ${ }^{\dagger}$ Key words and phrases: Asymptotic stability, family of difference equations.
 \ddagger Department of Mathematics, Tsing Hua University, Hsinchu, Taiwan 30043, R. O. China

