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Abstract

A necessary and suffi cient condition is obtained for a family of difference equations to be asymptoti-
cally stable.

1. Introduction and Results

The following difference equation (see e.g. [1, 2] for its importance)

un = aun−τ + bun−σ, n = 0, 1, 2, ... (1.1)

where a, b are real numbers and τ , σ are positive integers, is said to be (globally) asymptotically stable if
each of its solutions tends to zero.
When the delays τ and σ are given (fixed), whether the corresponding equation (1.1) is asymptotically

stable clearly depends on the coeffi cients a and b. For this reason, we denote the set of all pairs (x, y) such
that the equation

un = xun−τ + yun−σ, n = 0, 1, 2, ... (1.2)

is asymptotically stable by Ω(x, y|τ , σ).
It is well known that equation (1.1) is asymptotically stable if, and only if, all the (complex) roots of its

characteristic equation
1 = aλ−τ + bλ−σ, (1.3)

are inside the open unit disk. In other words, the set Ω(x, y|τ , σ) is also the set of pairs (x, y) such that all
the (complex) roots of

1 = xλ−τ + yλ−σ (1.4)

has magnitude less than one.
By means of commercial software such as the MATLAB, it is not diffi cult to generate domains Ω(x, y|τ , σ)

in the x, y-plane for different values of the delays τ and σ. It is interesting to observe that the set

{(x, y)| |x|+ |y| < 1}

is included in all of these computer generated domains. This motivates the following theorem.

Theorem 1. Let Ω(x, y|τ , σ) be the set of all pairs of the form (x, y) such that equation (1.2) is asymptot-
ically stable. Then we have

∩τ,σ∈NΩ(x, y|τ , σ) = {(x, y)| |x|+ |y| < 1} ,

where N is the set of all positive integers.
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2 Asymptotic Stability of Difference Equations

One part of the proof is easy. Let µ be a nonzero root of equation (1.3). If |a|+ |b| < 1, then since

|a|+ |b| < 1 ≤ |a| |µ|−τ + |b| |µ|−σ ,

we see that
|a| < |a| |µ|−τ

or
|b| < |b| |µ|−σ .

But then |µ|τ < 1 or |µ|σ < 1. In other words, |µ| < 1.
In order to complete our proof, we need the following preparatory lemma.

Lemma 2 (cf. [4, Lemma 2.1]). Suppose a, b are real numbers such that |a| + |b| 6= 0, and τ and σ are
two positive integers. Then the equation

|a|x−τ + |b|x−σ = 1, x > 0

has a unique solution in (0,∞).

Proof. Consider the function
f(x) = |a|x−τ + |b|x−σ, x > 0.

Since f is continuous on (0,∞), limx→0+ f(x) =∞, limx→∞ f(x) = 0 and

f ′(x) = −
(
|a| τx−τ−1 + |b|σx−σ−1

)
< 0, x > 0,

thus our proof follows from the intermediate value theorem.

2. Proof of Main Result

Now if (a, b) belongs to ∩τ,σ∈NΩ(x, y|τ , σ), then for each pair (τ , σ) of integers, each root µ of equation (1.3)
satisfies |µ| < 1. Let us write µ = reθ and write (1.3) in the form

ar−τ cos τθ + br−σ cosσθ = 1, (2.1)

ar−τ sin τθ + br−τ sinσθ = 0. (2.2)

There are several cases to consider: (i) a = 0 or b = 0; (ii)a > 0, b > 0; (iii)a < 0, b < 0; (iv)a < 0, b > 0; and
(v) a > 0, b < 0. The first case is easily dealt with. In the second case, since the equation

ax−τ + bx−σ = 1

has a unique positive root ρ1 by Lemma 1, (r, θ) = (ρ1, 0) is a solution of equations (2.1)-(2.2). This implies
that ρ1 = r = |µ| < 1. But then

1 = aρ−τ1 + bρ−σ1 > a+ b = |a|+ |b| .

In the third case, since the equation
−ax−τ − bx−σ = 1

has a unique positive root ρ2 by Lemma 1, it we pick τ = 1 and σ = 3, then (r, θ) = (ρ2, π) is a solution of
equations (2.1)—(2.2). This implies ρ2 = |µ| < 1. But then

1 = −aρ−τ2 − bρ−σ2 > −a− b = |a|+ |b| .
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In the fourth case, since the equation

−ax−τ + bx−σ = 1

has a unique positive root ρ3 by Lemma 1, if we pick τ = 1 and σ = 2, then (r, θ) = (ρ3, π) is a solution of
equations (2.1)—(2.2). This implies ρ3 = |µ| < 1. But then

1 = −aρ−τ3 + bρ−σ3 > −a+ b = |a|+ |b| .

In the final case, since the equation
ax−τ − bx−σ = 1

has a positive root ρ4, if we pick τ = 2 and σ = 3, then (r, θ) = (ρ4, π) is a solution of equations (2.1)—(2.2).
This implies ρ4 < 1 and consequently

1 ≥ aρ−τ4 − bρ−σ4 > a− b = |a|+ |b| .

The proof is complete.
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