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Abstract

This paper is concerned with a geometric inverse problem related to the elasticity equation. We aim
to identify an unknown hole from boundary measurements of the displacement field. The Kohn-Vogelius
concept is employed for formulating the inverse problem as a topology optimization one. We develop a
topological sensitivity analysis based method for detecting the location, size and shape of the unknown
hole. We derive a higher-order asymptotic formula describing the variation of a Kohn-Vogelius type
functional with respect to the creation of an arbitrary shaped hole inside the computational domain.

1 Introduction

Let Ω be a bounded and smooth domain of R3, occupied by a material body of elastic nature. In this study,
we assume that the total boundary ∂Ω is decomposed into two disjoint parts Γ and Σ such that ∂Ω = Γ∪Σ
and Γ ∩ Σ = ∅. Also, we assume that the displacement field w in Ω satisfies the following elasticity system: −div σ(w) = F in Ω,

σ(w)n = G on Σ,
u = 0 on Γ,

(1)

where F is a given body force, G is an imposed external force and n denotes the outward normal to the
boundary Γ. Here, we recall that w 7→ σ(w) represents the stress tensor which is given by

σij(w) = λ div(w) δij + 2µεij(w), 1 ≤ i, j ≤ 3

with δij is the Kronecker symbol and w 7→ ε(w) is the strain tensor, defined as

εij(w) =
1

2

(
∂wi
∂xj

+
∂wj
∂xi

)
, 1 ≤ i, j ≤ 3.

Inside the structure domain Ω, we assume the existence of a small hole Oz, ε = z + εO that is characterized
by its center z, its size ε and its shape O, with O is a bounded domain of R3 containing the origin, whose
boundary ∂O is connected and piecewise of class C1.
The aim of this work is to develop an effi cient approach for identifying the unknown parameters (location,

size and shape) of the hole Oz, ε from boundary measurement of the displacement field on the boundary Σ.
This issue can be formulated as a geometric inverse problem having the form:

- Given a Neumann and Dirichlet data on the accessible boundary Σ: an imposed force F and a measured
displacement field Wm.
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- Determine the location z, size ε and shape O of the unknown hole Oz, ε such that the solution wOz, ε
of the Elasticity equation satisfies the following over-determined boundary value problem

−div σ(wOz, ε) = F in Ω\Oz, ε,
σ(wOz, ε)n =G on Σ,

wOz, ε =Wm on Σ,
wOz, ε = 0 on Γ,

σ(wOz, ε)n = 0 on ∂Oz, ε.

In order to examine the considered geometric inverse problem, we propose in this paper a new approach
combining the advantages of the Kohn-Vogelius formulation [8, 14, 15, 32] and the topological sensitivity
analysis method.
The topological sensitivity technique is an optimization method used for different applications [16, 17,

18, 19, 20, 21, 22, 23]. The main idea consists on developing of an asymptotic expansion of the objective
function in relation to the domain topological perturbation. Many operators has been studied in the case
of this method such as, the Laplace operator, the Stokes system, the Helmoltz equations. The majority
of the existing works using topological sensitivity method are limited to the first order expansion which is
suffi cient in the case where the size of the domain to be detected is of infinitesimal size and not close to
the boundary. However, In the case where this constraint is not ensured or if the first order term in the
asymptotic expansion is equal to zero at some critical points, we need an extension of the expansion to the
higher order terms. We present in this work an extension of this concept to the elasticity operator.

2 The Proposed Approach

The first step of our approach is based on the Kohn-Vogelius formulation which rephrase the considered
geometric inverse problem into a topology optimization one.

2.1 Kohn-Vogelius Formulation

It leads to define for any given hole Oz, ε two forward problems: The first one which is called Neumann
problem is associated to the Neumann datum F :

(PNε )


− div σ(wNε ) = F in Ω\Oz, ε,

σ(wNε )n =G on Σ,
wNε = 0 on Γ,
wNε = 0 on ∂Oz, ε.

The second one is associated to the measured displacementWm which will be called as the Dirichlet problem:

(PDε )


−div σ(wDε ) = F in Ω\Oz, ε,

wDε =Wm on Σ,
wDε = 0 on Γ,
wDε = 0 on ∂Oz, ε.

As one can remark here, if Oz, ε coincides with the exact hole Oz∗, ε∗ = z∗ + ε∗O∗, the misfit between
the solutions become zero (wNε = wDε ). Starting from this remark, the inverse problem can be formulated
as a topology optimization one. The unknown hole will be characterized as the minimum of the following
Kohn-Vogelius type functional

K(Ω \ Oz, ε) =

∫
Ω\Oz,ε

∣∣σ(wNε )− σ(wDε )
∣∣2 dx.
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More precisely, the identification problem can be formulated as follow:

(Popt)
{
find Oz∗,ε∗ ⊂ Ω, such that K(Ω \ Oz∗,ε∗) = min

Oz,ε∈Dad
K(Ω \ Oz, ε),

where Dad is a given set of admissible domains.
It is interesting to note that, in the absence of hole the function K reads

K(Ω) =

∫
Ω

∣∣σ(wN0 )− σ(wD0 )
∣∣2 dx,

where wN0 and wD0 satisfy the Elasticity systems in the non perturbed domain Ω

(PN0 )

 − div σ(wN0 ) = F in Ω,
σ(wN0 )n = G on Σ,

wN0 = 0 on Γ,
and (PD0 )

 − div σ(wD0 ) = F in Ω,
wD0 =Wm on Σ,
wD0 = 0 on Γ,

2.2 Sensitivity Analysis Method

To solve the topological optimization problem (Popt) and identify the unknown hole, we will propose a
simplified approach based on the topological sensitivity analysis for the Kohn-Vogelius function K.
The classical topological sensitivity analysis method is based on a first order asymptotic expansion of the

form

K(Ω \ Oz,ε)−K(Ω) = ρ(ε)δK(z) + o
(
ρ(ε)

)
, ∀z ∈ Ω,

where

• ε 7→ ρ(ε) is a positive scalar function going to zero with ε;

• z 7→ δK(z) is the first order topological gradient.

In this work, we extend the topological sensitivity notion for the high-order case. We will derive a high-
order topological asymptotic expansion for the Kohn-Vogelius functional K with respect to the presence
of the Dirichlet geometric perturbation Oz, ε inside the domain Ω. It consists in studying the variation
K(Ω \ Oz,ε)−K(Ω) with respect to ε and establishing an asymptotic formula on the form

K(Ω \ Oz,ε)−K(Ω) =

m∑
q=1

ρq(ε)δKq(z,O) + o(ρm(ε))

where

• ε 7→ ρq(ε), 1 ≤ q ≤ m are positive scalar functions defined on R+ verifying ρq+1(ε) = o(ρq(ε)) and
limε→0 ρq(ε) = 0;

• δKq denotes the qth topological derivative of the functional K;

• m ∈ N∗ an arbitrary order of the asymptotic expansion.

To this end, we start our analysis by deriving a preliminary result showing the relationship between the
quantity K(Ω \Oz,ε)−K(Ω) and the variations of the Neumann and Dirichlet perturbed solutions wNε −wN0
and wDε − wD0 .
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3 The Kohn-Vogelius Functional Variation

In this section, we discuss the sensitivity of the considered Kohn-Vogelius functional K with respect to the
presence of a small hole Oz, ε inside the elastic domain. We will prove that the variation K(Ω\Oz,ε)−K(Ω)
can be only described by four integral terms, involving the discrepancy between the initial and the perturbed
Elasticity problem solutions.

Theorem 1 Let Oz,ε be a small hole, strictly embedded into the elastic domain Ω. In the presence of Oz,ε,
the Kohn-Vogelius function K admits the following variation

K(Ω\Oz,ε)−K(Ω) =

∫
∂Oz,ε

σ(wNε − wN0 )nwN0 ds−
∫
∂Oz,ε

σ(wDε − wD0 )nwD0 ds

+

∫
Oz,ε

∣∣σ(wD0 )
∣∣2 dx− ∫

Oz,ε

∣∣σ(wN0 )
∣∣2 dx.

Proof. The variation of the function K is given by

K(Ω\Oz,ε)−K(Ω) =

∫
Ω\Oz,ε

∣∣σ(wNε )− σ(wDε )
∣∣2 dx− ∫

Ω

∣∣σ(wN0 )− σ(wD0 )
∣∣2 dx

=

∫
Ω\Oz,ε

∣∣σ(wNε )
∣∣2 dx+

∫
Ω\Oz,ε

∣∣σ(wDε )
∣∣2 dx− 2

∫
Ω\Oz,ε

σ(wDε )σ(wNε )dx

−
∫

Ω

∣∣σ(wN0 )
∣∣2 dx− ∫

Ω

∣∣σ(wD0 )
∣∣2 dx+ 2

∫
Ω\Oz,ε

σ(wD0 )σ(wN0 )dx.

As one can observe K(Ω\Oz,ε)−K(Ω) can be decomposed as

K(Ω\Oz,ε)−K(Ω) = TN (ε) + TD(ε)− 2TM (ε),

with TN is the Neumann term

TN (ε) =

∫
Ω\Oz,ε

∣∣σ(wNε )
∣∣2 dx− ∫

Ω

∣∣σ(wN0 )
∣∣2 dx,

TD is the Dirichlet term
TD(ε) =

∫
Ω\Oz,ε

∣∣σ(wDε )
∣∣2 dx− ∫

Ω

∣∣σ(wD0 )
∣∣2 dx,

and TM is the mixed term

TM (ε) =

∫
Ω\Oz,ε

σ(wDε )σ(wNε )dx−
∫

Ω\Oz,ε
σ(wD0 )σ(wN0 )dx.

Next, we will examine each term separately. We start our analysis by studying the term TN .

Variation of the Neumann term: The term TN reads

TN (ε) =

∫
Ω\Oz,ε

∣∣σ(wNε )
∣∣2 dx− ∫

Ω

∣∣σ(wN0 )
∣∣2 dx

=

∫
Ω\Oz,ε

σ(wNε − wN0 )σ(wNε )dx+

∫
Ω\Oz,ε

σ(wNε − wN0 )σ(wN0 )dx

−
∫
Oz,ε

∣∣σ(wN0 )
∣∣2 dx.
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Using Green formula, from the Elasticity system satisfied by wNε − wN0 , we obtain∫
Ω\Oz,ε

σ(wNε − wN0 )σ(wN0 )dx =

∫
∂Oz,ε

σ(wNε − wN0 )nwN0 ds.

In addition, ∫
Ω\Oz,ε

σ(wNε − wN0 )σ(wNε )dx = 0.

Then, the term TN can be written as

TN (ε) =

∫
∂Oz,ε

σ(wNε − wN0 )nwN0 ds−
∫
Oz,ε

∣∣σ(wN0 )
∣∣2 dx. (2)

Variation of the Dirichlet term: We have

TD(ε) =

∫
Ω\Oz,ε

∣∣σ(wDε )
∣∣2 dx− ∫

Ω

∣∣σ(wD0 )
∣∣2 dx

=

∫
Ω\Oz,ε

∣∣σ(wDε − wD0 )
∣∣2 dx+ 2

∫
Ω\Oz,ε

σ(wDε − wD0 )σ(wD0 )dx−
∫
Oz,ε

∣∣σ(wD0 )
∣∣2 dx.

Using Green formula, the system (PD0 ) implies∫
Ω\Oz,ε

σ(wDε − wD0 )σ(wD0 )dx =

∫
Ω\Oz,ε

F (wDε − wD0 )dx−
∫
∂Oz,ε

σ(wD0 )nwD0 ds.

Then, the Dirichlet term admits the following variation

TD(ε) =

∫
Ω\Oz,ε

∣∣σ(wDε − wD0 )
∣∣2 dx+ 2

∫
Ω\Oz,ε

F (wDε − wD0 )dx

−
∫
Oz,ε

∣∣σ(wD0 )
∣∣2 dx− 2

∫
∂Oz,ε

σ(wD0 )nwD0 ds.

Using Green formula, from the system verified by (wDε − wD0 ), we deduce

TD(ε) = −
∫
∂Oz,ε

σ(wDε − wD0 )nwD0 ds+ 2

∫
Ω\Oz,ε

F (wDε − wD0 )dx

−2

∫
∂Oz,ε

σ(wD0 )nwD0 ds−
∫
Oz,ε

∣∣σ(wD0 )
∣∣2 dx. (3)

Variation of the mixed term: We have

TM (ε) =

∫
Ω\Oz,ε

σ(wNε )σ(wDε )dx dt−
∫

Ω

σ(wN0 )σ(wD0 )dx.

From the weak formulation of problems (PNε ) and (PN0 ), it follows that

TM (ε) =

∫
Ω\Oz,ε

F (wDε − wD0 )dx−
∫
Oz,ε

FwD0 dx.

From the fact that −div σ(wD0 ) = F in Oz,ε, one can deduce∫
Oz,ε

FwD0 dx =

∫
Oz,ε

∣∣σ(wD0 )
∣∣2 dx+

∫
∂Oz,ε

σ(wD0 )nwD0 ds.
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Consequently, the term TM can be written as

TM (ε) =

∫
Ω\Oz,ε

F (wDε − wD0 )dx−
∫
Oz,ε

∣∣σ(wD0 )
∣∣2 dx− ∫

∂Oz,ε
σ(wD0 )nwD0 ds. (4)

Variation of the Kohn-Vogelius function K: Combining the variations (2), (3) and (4), one can deduce
that the variation of K can be written as

K(Ω\Oz,ε)−K(Ω) =

∫
∂Oz,ε

σ(wNε − wN0 )nwN0 ds−
∫
Oz,ε

∣∣σ(wN0 )
∣∣2 dx

+

∫
Oz,ε

∣∣σ(wD0 )
∣∣2 dx− ∫

∂Oz,ε
σ(wDε − wD0 )nwD0 ds.

4 Asymptotic Behavior of the Perturbed Solutions

In this section, we discuss the influence of the geometric perturbation Oz,ε on the solutions of the Elasticity
problems (PNε ) and (PDε ). More precisely, we derive an asymptotic formula describing the variations of the
displacement field with respect to the perturbation size ε. We start our analysis by the perturbed Elasticity
Neumann problem.

4.1 The Neumann Perturbed Solution

This section is devoted to an asymptotic formula describing the variation of the Neumann solution (wNε −wN0 )
with respect ε. We begin our analysis by the following first order estimate.

Lemma 2 Let Oz,ε be a small geometric perturbation strictly included into Ω. Then the perturbed Elasticity
solution wNε satisfies the behavior

wNε (x)− wN0 (x) = EN0 ((x− z)/ε) + O(ε) in Ω \ Oz,ε,

where the leading term EN0 is solution to the following Elasticity exterior problem −div σ(EN0 ) = 0 in R3 \ O,
EN0 −→ 0 at ∞,
EN0 = −wN0 (z) on ∂O.

Proof. The existence of EN0 can be established with the help of a single layer potential. One can derive

EN0 (y) =

∫
∂O

U(y − t) ηN0 (t)ds(t), ∀y ∈ R3 \ O

where U is the fundamental solution of the Elasticity system in R3

U(y) =
1

r

(
βI + γere

T
r

)
, β γ ∈ R

with r = ‖y‖, er = y
r and e

T
r is the transposed vector of er. Here η

N
0 is the solution to the following boundary

integral equation ∫
∂O

U(y − t) ηN0 (t)ds(t) = −wN0 (z),∀y ∈ ∂O.

Setting
zNε (x) = wNε (x)− wN0 (x)− EN0 ((x− z)/ε).
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As one can observe, zNε satisfies the system
−div σ(zNε ) = 0 in Ω\Oz, ε,

σ(zNε )n = − 1
εσ(EN0 )((x− z)/ε)n on Σ,

wNε = −EN0 ((x− z)/ε) on Γ,
wNε = −wN0 + wN0 (z) on ∂Oz, ε.

Using the change of variable x = z + εy and the standard energy estimate for the Elasticity problem, one
can derive that there exists a constant c > 0, independent of ε, such that∥∥zNε ∥∥H1(Ω\Oz, ε)

≤ c ε.

One can see ([26], Proposition 3.1) for similar proof.
Next, we extend this estimate to the high-order case. The obtained asymptotic behavior is illustrated by

the following theorem.

Theorem 3 Let Oz,ε = z+O be a small geometric perturbation, strictly embedded in the elastic domain Ω.
Then the displacement fild variation satisfis the following asymptotic behavior

wNε (x)− wN0 (x) = EN0 ((x− z)/ε) +

m∑
k=1

εk[V Nk (x) + ENk ((x− z)/ε))] + o(εm),

where (V Nk )0≤k≤m is a set of smooth functions satisfying the Elasticity system in Ω and (ENk )0≤k≤m is a set
of smooth functions verifying the exterior Elasticity problem in R3 \ O.

Proof. The terms of the derived asymptotic expansion are built iteratively.

Initialization: We start our construction process by the terms associated with k = 0. The two sequences
(V Nk )0≤k≤m and (ENk )0≤k≤m are initialized as follows:
− V N0 = wN0 which is the solution to the Elasticity problem (PN0 ), defined in the non perturbed domain

Ω.
− EN0 is the solution to the exterior Elasticity problem (5), defined in R3 \ O.

The kth term: Let k ∈ {1, ..., m}. Assume that we have already derived the terms V Ni and ENi for all
0 ≤ i ≤ k − 1, and we want to derive the terms V Nk and ENk .

In order to define the desired terms, we need to establish a preliminary calculus. It concerns the asymp-
totic behavior of the functions ENi with respect to ε. Recalling that ENi is constructed as a solution to an
exterior Elasticity problem defined in R3 \ O. Then, due to a single layer potential, ENi can be written as

ENi (y) =

∫
∂O

U(y − t) ηNi (t)ds(t), ∀y ∈ R3 \ O,

where ηNi is the solution to a boundary integral equation defined on ∂O. From the fact that U(y/ε) = εU(y)
it follows that for each x ∈ R3 \ Oz,ε we have

ENi ((x− z)/ε) =

∫
∂O

U((x− z)/ε− t) ηNi (t)ds(t)

= ε

∫
∂O

U((x− z)− ε t) ηNi (t)ds(t).

From the fact that Oz,ε is not close to the boundary ∂Ω, one can remark that for all t ∈ ∂O, the function
ε 7−→ Ux−z,t(ε) = εU((x−z)−ε t) is smooth with respect to ε and admits the following asymptotic expansion

Ux−z,t(ε) =

m∑
p=1

εp

(p− 1)!
U

(p−1)
x−z,t (0) + o(εm),
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where U (p)
x−z,t(0) is the pth derivative of Ux−z,t at ε = 0. It depends on the pth derivative of the function U at

the point x− z. Consequently, the function ε 7−→ ENi ((x− z)/ε) satisfies the following asymptotic behavior

ENi ((x− z)/ε) =

m∑
p=1

εpE
(p)
N,i(x− z) + o(εm), (5)

with E(p)
N,i is the smooth function defined in R3 \ O by

E
(p)
N,i(y) =

1

(p− 1)!

∫
∂O

U
(p−1)
y,t (0)ηNi (t)ds(t), ∀y ∈ R3 \ O. (6)

−Determining the term: V Nk . It is constructed using the functions ENi , 0 ≤ i ≤ k − 1. It is defined as
the solution to the following Elasticity system

−div σ(V Nk ) = 0 in Ω,

σ(V Nk )n = −
∑k

p=1 σ(E
(p)
N,k−p)(x− z)n on Σ,

V Nk = −
∑k

p=1E
(p)
N,k−p(x− z) on Γ,

(7)

where the functions E(p)
N,j is defined by (6).

−Determining the term: ENk . It is constructed using the functions V Ni , 0 ≤ i ≤ k. This term is defined
as a solution to the following exterior problem

−div σ(ENk ) = 0 in R3 \ O,
ENk −→ 0 at ∞,
ENk = −V Nk (z)−

∑k
p=1

1
p!D

pV Nk−p(z)(y
p) on ∂O,

(8)

where DpV Nk−p(z) is the p
th derivative of the function V Nk−p at the point z and y

p = (y, ..., y) ∈ (R3)p.

Justification of the asymptotic formulas: Here we will prove that the constructed sequences (V Nk )0≤k≤m and
(ENk )0≤k≤m permit us to derive the expected asymptotic formulas. Posing

RNm,ε(x) = wN0 (x) + EN0 ((x− z)/ε)) +

m∑
k=1

εk[V Nk (x) + ENk ((x− z)/ε))]− wNε .

One can easily verify that RNm,ε solves the Elasticity system in Ω \ Oz,ε

− div σ(RNm,ε) = 0 inΩ \ Oz,ε,

and satisfies the following boundaries conditions:

On ∂Oz,ε: Using the systems (7)—(8), the multi-linearity of DpV Nk−p(z), Taylor’s Theorem and the fact
that ‖x− z‖ = O(ε) on ∂Oz,ε, one can derive

RNm,ε(x) =

m∑
k=0

εk
[
V Nk (x)−

m−k∑
p=0

1

p!
DpV Nk (z)((x− z)p)

]
= o(εm).

On Γ: the Dirichlet boundary condition in (7) and the asymptotic expansions (5) imply

RNm,ε(x) =

m∑
k=0

εkENk ((x− z)/ε)) +

m∑
k=1

εkV Nk (x)

=

m∑
k=0

εk
[ m∑
p=1

εpE
(p)
N,k(x− z)

]
−

m∑
k=1

εk
[ k∑
p=1

E
(p)
N,k−p(x− z)

]
+ o(εm)

= o(εm).
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On Σ: by the change of variable x = z + εy, we have

σ(Rm,ε) =
1

ε

m∑
k=0

εkσy(ENk )((x− z)/ε) +

m∑
k=1

εkσ(V Nk )(x).

Using again the change of variable, from (5) one can deduce

σy(ENk )((x− z)/ε) = ε

m∑
p=1

εpσ(E
(p)
N,k)(x− z) + o(εm).

The two last relations combined with the Neumann condition used in (7) imply

σ(Rm,ε)n = o(εm) on Σ.

4.2 The Dirichlet Perturbed Solution

This section is concerned with brief analysis of the Dirichlet case. Here, we consider (V Dk )0≤k≤m a set of
smooth functions satisfying the Elasticity system in Ω and (EDk )0≤k≤m a set of smooth functions verifying
the exterior Elasticity problem in R3 \ O. The two considered sequences (V Dk )0≤k≤m and (EDk )0≤k≤m are
initialized as follows:
− V D0 = wD0 which is the solution to the Elasticity problem (PD0 ).
− ED0 is defined as the solution to the following exterior Elasticity problem − div σ(ED0 ) = 0 in R3 \ O,

ED0 −→ 0 at ∞,
ED0 = −wD0 (z) on ∂O,

The term V Dk : It is defined as the unique solution to the following Elasticity system{
−div σ(V Dk ) = 0 in Ω,

V Dk = −
∑k

p=1E
(p)
D,k−p(x− z) on Γ ∪ Σ,

(9)

where the functions E(p)
D,j , 0 ≤ j ≤ k are defined by

E
(p)
D,j(y) =

1

(p− 1)!

∫
∂O

U
(p−1)
y,t (0)ηDj (t)ds(t), ∀y ∈ R3 \ O. (10)

The term EDk : It is constructed using the functions V
D
j , 0 ≤ j ≤ k. This term is defined as a solution to

the following exterior problem
− div σ(EDk ) = 0 in R3 \ O,

EDk −→ 0 at ∞,
EDk = −V Dk (z)−

∑k
p=1

1
p!D

pV Dk−p(z)(y
p) on ∂O,

(11)

Theorem 4 In the presence of a small geometric perturbation Oz,ε = z + O inside the elastic domain Ω,
the solution wDε of the perturbed Dirichlet Elasticity problem admits the asymptotic behavior

wDε (x)− wD0 (x) = ED0 ((x− z)/ε) +

m∑
k=1

εk[V Dk (x) + EDk ((x− z)/ε))] + o(εm).
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5 High-Order Topological Asymptotic Expansion

In this section we extend the topological derivative notion for the high-order case. We derive a high-order
term in the topological asymptotic expansion for the Elasticity operator. We will derive an asymptotic
formula describing the variation of the Kohn-Vogelius functional K with respect to the insertion of a small
hole inside the elastic domain Ω.

From Theorem 1, the variation caused by the presence of the geometric perturbation Oz,ε = z + εO can
be decomposed as

K(Ω \ Oz,ε)−K(Ω) = JN (ε)− JD(ε),

where the Neumann and Dirichlet terms are defined by

JN (ε) =

∫
∂Oz,ε

σ(wNε − wN0 )nwN0 ds−
∫
Oz,ε

∣∣σ(wN0 )
∣∣2 dx, (12)

JD(ε) =

∫
∂Oz,ε

σ(wDε − wD0 )nwD0 ds−
∫
Oz,ε

∣∣σ(wD0 )
∣∣2 dx. (13)

To derive the expected high-order asymptotic expansion for Kohn-Vogelius functional K we will examine the
terms JN and JD separately.

5.1 Estimate of the Neumann Terms

Here, we derive a sensitivity analysis for each term in JN (ε) with respect to the parameter ε. We will
establish a high-order asymptotic expansion for each term. Our mathematical analysis is based on the
asymptotic behavior of the perturbed solution wNε .

Lemma 5 The first term in (13) admits the estimate∫
∂Oz,ε

σ(wNε − wN0 )n.wN0 ds =

m−1∑
k=0

εk+1

∫
∂O

σy(ENk )(y)n(y).wN0 (z + εy)ds(y)

+

m−2∑
k=1

εk+2

∫
∂O

σ(V Nk )(z + εy)n.wN0 (z + εy)ds(y) + o(εm). (14)

Proof. Using the previous relation and the decomposition presented in Theorem 3, one can derive

σ(wNε − wN0 ) =
1

ε
σy(EN0 )((x− z)/ε)) +

m∑
k=1

εkσ(V Nk )(x) +

m+1∑
k=1

εk−1σy(ENk )((x− z)/ε) + o(εm).

Then, the first term in (13) satisfies the estimate∫
∂Oz,ε

σ(wNε − wN0 )n.wN0 ds =
1

ε

∫
∂Oz,ε

σy(EN0 )((x− z)/ε))n.wN0 ds

+

m+1∑
k=1

εk−1

∫
∂Oz,ε

σy(ENk )((x− z)/ε)n.wN0 ds

+

m∑
k=1

εk
∫
∂Oz,ε

σ(V Nk )(x)n.wN0 ds+ o(εm).

Making use of the change of variable x = z + εy, one can deduce∫
∂Oz,ε

σy(ENk )((x− z)/ε)n.wN0 ds = ε2

∫
∂O

σy(ENk )(y)n(y).wN0 (z + εy)ds(y),
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∫
∂Oz,ε

σ(V Nk )(x)n.wN0 ds = ε2

∫
∂O

σ(V Nk )(z + εy)n(y).wN0 (z + εy)ds(y).

Consequently, we obtain∫
∂Oz,ε

σ(wNε − wN0 )n.wN0 ds =

m−1∑
k=0

εk+1

∫
∂O

σy(ENk )(y)n(y).wN0 (z + εy)ds(y)

+

m−2∑
k=1

εk+2

∫
∂O

σ(V Nk )(z + εy)n.wN0 (z + εy)ds(y) + o(εm).

Next, we will examine the two integral terms in the right hand side of (14).

Lemma 6 We have

m−1∑
k=0

εk+1

∫
∂O

σy(ENk )(y)n(y).wN0 (z + εy)ds(y) =

m−1∑
q=0

εq+1K1,N
q (z,O) + o(εm),

where the functions z 7−→ K1,N
q (z,O), 0 ≤ q ≤ m are defined in Ω by

K1,N
q (z,O) =

q∑
p=0

1

p!

∫
∂O

σy(ENq−p)(y)n(y).[D(p)wN0 (z)(yp)]ds(y)

with D(p)wN0 (z) denotes the pth derivative of the function wN0 at the point z ∈ Ω and yp = (y, ..., y) ∈ (R3)p.

Proof. Due to the smoothness of the velocity field wN0 , by Taylor’s theorem one can derive

wN0 (z + εy) =

m∑
p=0

εp

p!
D(p)wN0 (z)(yp) + o(εm). (15)

It follows

m−1∑
k=0

εk+1

∫
∂O

σy(ENk )(y)n(y).wN0 (z + εy)ds(y)

=

m−1∑
k=0

εk+1
( m∑
p=0

εp

p!

∫
∂O

σy(ENk )(y)n(y).[D(p)wN0 (z)(yp)]ds(y)
)

+ o(εm)

=

m−1∑
q=0

εq+1
( q∑
p=0

1

p!

∫
∂O

σy(ENq−p)(y)n(y).[D(p)wN0 (z)(yp)]ds(y)
)

+ o(εm)

Lemma 7 The second integral term in the right hand side of (14) satisfies

m−2∑
k=1

εk+2

∫
∂O

σ(V Nk )(z + εy)n.wN0 (z + εy)ds(y) =

m−2∑
q=1

εq+2K2,N
q (z,O) + o(εm),

where the functions z 7−→ K2,N
q (z,O), 1 ≤ q ≤ m− 2 are defined in Ω by

K2,N
q (z,O) =

q−1∑
p=0

p∑
l=0

1

l!(p− l)!

∫
∂O

σ(l)(V Nq−p)(z)n.D
(p−l)wN0 (z)(yp−l)ds(y).
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Proof. Here we exploit the smoothness of the functions V Nq . This follows from the fact that V Nq is solution
to the Elasticity problem (7), defined in a smooth domain Ω and verifying smooth boundary data on ∂Ω.
Using Taylor’s formula, one can derive

∂(V Nk )i
∂xj

(z + εy) =

m∑
p=0

εp

p!
D(p)

(
∂(V Nk )i
∂xj

)
(z)(yp) + o(εm), 1 ≤ i, j ≤ 3.

Recalling that

σ(V Nk )i,j = µ(
∂(V Nk )i
∂xj

+
∂(V Nk )j
∂xi

) + λ div (V Nk )δi,j

where δi,j is the Kronecker symbol. Then, for each 1 ≤ i, j ≤ 3, one can derive

σ(V Nk )i,j(z + εy) =

m∑
p=0

εp

p!
σ

(p)
i,j (V Nk )(z) + o(εm), (16)

with σ(p)
i,j (V Nk )(z) = D(p)

(
σ(V Nk )i,j

)
(z) which is the pth derivative of the function

µ(
∂(V Nk )i
∂xj

+
∂(V Nk )j
∂xi

) + λ div (V Nk )δi,j

at the point z ∈ Ω.
Due to the Cauchy product formula, the relations (15) and (16) imply∫

∂O
σ(V Nk )(z + εy)n.wN0 (z + εy)ds(y)

=

m∑
p=0

εp
( p∑
l=0

1

l!(p− l)!

∫
∂O

σ(l)(V Nk )(z)n.D(p−l)wN0 (z)(yp−l)ds(y)
)

+ o(εm).

Finally, we obtain

m−2∑
k=1

εk+2

∫
∂O

σ(V Nk )(z + εy)n.wN0 (z + εy)ds(y)

=

m−2∑
q=1

εq+2
( q−1∑
p=0

p∑
l=0

1

l!(p− l)!

∫
∂O

σ(l)(V Nq−p)(z)n.D
(p−l)wN0 (z)(yp−l)ds(y)

)
+ o(εm).

Lemma 8 The second term in (13) admits the estimate

∫
Oz,ε
|σ(wN0 )|2dx =

m−3∑
q=0

εq+3K3,N
q (z,O) + o(εm),

where {z 7−→ K3,N
q (z,O), 0 ≤ q ≤ m− 3} is a set of functions, defined in Ω by

K3,N
q (z,O) =

q∑
p=0

1

p!(q − p)!

∫
O
D(p+1)wN0 (z)(yp) : D(q−p+1)wN0 (z)(yq−p)dy.
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Proof. The change of variable x = z + εy, implies∫
Oz,ε
|σ(wN0 )|2dx = ε3

∫
O
|σ(wN0 )(z + εy)|2dy.

Since wN0 is smooth near z, by Taylor’s theorem it follows

σ(wN0 )(z + εy) =

m∑
p=0

1

p!
D(p+1)wN0 (z)(yp) + o(εm).

By Cauchy product formula, we obtain

|σ(wN0 )|2(z + εy) =

m∑
q=0

εq

(
q∑
p=0

1

p!(q − p)!D
(p+1)wN0 (z)(yp) : D(q−p+1)wN0 (z)(yq−p)

)
+ o(εm).

5.2 Estimate of the Dirichlet Terms

In this section, we examine the Dirichlet terms involved in the Kohn-Vogelius functional variation. Based
on the asymptotic behavior of the perturbed solution wDε with respect to the parameter ε, we establish a
high-order asymptotic formula for each term of the function JD(ε). Using Theorem 4, the function JD(ε)
admits the following estimate

JD(ε) =

m−1∑
k=0

εk+1

∫
∂O

σy(EDk )(y)n(y).wD0 (z + εy)ds(y)

+

m−2∑
k=1

εk+2

∫
∂O

σ(V Dk )(z + εy)n.wD0 (z + εy)ds(y)

−ε3

∫
O
|σ(wD0 )(z + εy)|2dy.+ o(εm).

Similar to the Naumann case, we derive the following preliminary lemmas estimating the integral terms in
the last equality.

Lemma 9 We have
m−1∑
k=0

εk+1

∫
∂O

σy(EDk )(y)n(y).wD0 (z + εy)ds(y) =
m−1∑
q=0

εq+1K1,D
q (z,O) + o(εm),

where the functions z 7−→ K1,D
q (z,O), 0 ≤ q ≤ m are defined in Ω by

K1,D
q (z,O) =

q∑
p=0

1

p!

∫
∂O

σy(EDq−p)(y)n(y).[σ(p)wD0 (z)(yp)]ds(y).

Lemma 10 The second integral term in the right hand side of (14) satisfies

m−2∑
k=1

εk+2

∫
∂O

σ(V Dk )(z + εy)n.wD0 (z + εy)ds(y) =

m−2∑
q=1

εq+2K2,D
q (z,O) + o(εm),

where the functions z 7−→ K2,D
q (z,O), 1 ≤ q ≤ m− 2 are defined in Ω by

K2,D
q (z,O) =

q−1∑
p=0

p∑
l=0

1

l!(p− l)!

∫
∂O

σ(l)(V Dq−p)(z)n.σ
(p−l)wD0 (z)(yp−l)ds(y)
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Lemma 11 The second term in (13) admits the estimate∫
O
|σ(wD0 )(z + εy)|2dy =

m∑
q=0

εq K3,D
q (z,O) + o(εm),

where {z 7−→ K3,D
q (z,O), 0 ≤ q ≤ m} is a set of functions, defined in Ω by

K3,D
q (z,O) =

q∑
p=0

1

p!(q − p)!

∫
O
σ(p+1)wD0 (z)(yp) : σ(q−p+1)wD0 (z)(yq−p)dy.

5.3 Topological Asymptotic Formula

In this section, we derive a high-order topological asymptotic expansion for the Kohn-Vogelius functional K.
The main result of this section is described by Theorem 12.

Theorem 12 Let Oz,ε = z + εO be a small hole inserted in the elastic domain Ω. In the presence of Oz,ε,
the Kohn-Vogelius functional K satisfies the following high-order asymptotic expansion

K(Ω\Oz,ε) = K(Ω) +

m∑
q=1

εqδqK(z,O) + o(εm),

where δqK is the qth topological derivative order, defined in Ω by

δqK(z,O) =
[
K1,N
q−1 −K

1,D
q−1

]
(z,O) if q = 1, 2,

and

δqK(z,O) =
[
K1,N
q−1 −K

1,D
q−1

]
(z,O) +

[
K2,N
q−2 −K

2,D
q−2

]
(z,O)−

[
K3,N
q−3 −K

3,D
q−3

]
(z,O) if 3 ≤ q ≤ m.

Proof. According to Lemmas 5—8, the Neuman term JN (ε) satisfies the estimate

JN (ε) =

m−1∑
q=0

εq+1K1,N
q (z,O) +

m−2∑
q=1

εq+2K2,N
q (z,O)−

m−3∑
q=0

εq+3K3,N
q (z,O) + o(εm).

Based on Lemmas 9—11, the Dirichlet term JD(ε) can be estimated as

JD(ε) =

m−1∑
q=0

εq+1K1,D
q (z,O) +

m−2∑
q=1

εq+2K2,D
q (z,O)−

m−3∑
q=0

εq+3K3,D
q (z,O) + o(εm).

Combining the two previous estimates and using the fact that

K(Ω\Oz,ε)−K(Ω) = JN (ε)− JD(ε),

one can derive the desired asymptotic formula.

6 Conclusion

In this paper, we have derived a high-order topological asymptotic formula describing the variation of the
Kohn-Vogelius functional with respect to the presence of a small hole immersed in the elastic domain. The
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obtained formula can serve as very useful tools for the numerical identification of the location “z”, the size“ε”
and the shape “O”of the unknown geometric perturbation.

From the asymptotic formula in Theorem 12, it now follows that, up to terms of smaller order, the
unknown parameters z, ε and O can be characterized as the solution of a parameters estimate problem
minimizing the nonlinear scalar function

F(ε, z,O) =

m∑
q=1

εqδqK(z,O).

A first task of the identification process, is then the determination of the location “z”(center of the geometric
perturbation) and the size“ε”. A second task would be (as well as possible) the determination of other
informations about the created hole, such as its shape “O”.

A detailed account of this work and some numerical investigations will be the subject of a forthcoming
paper.
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