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Abstract

The main aim of this paper is to study the extensions of the classical Eneström-Kakeya theorem and
its various generalizations about the distribution of zeros of polynomials from complex to the quaternionic
setting.

1 Introduction

In mathematics, polynomial zeros have a long and illustrious history. The study of the distribution of zeros
of polynomials in the geometric function theory is a problem of interest both in mathematics and in the
application areas such as physical systems. In addition to having numerous applications, this study has been
the inspiration for much more research, both from the theoretical point of view, as well as from the practical
point of view. The zeros of a polynomial are continuous functions of its coeffi cients, in general, it is quite
complicated to derive bounds on the norm of zeros of a general algebraic polynomial. Therefore, for attaining
better and sharp bounds it is desirable to put restrictions on the coeffi cients of the polynomial. The subject
dates back to around the time when the geometric representation of complex numbers was introduced into
mathematics, and the first contributors to the subject were Gauss and Cauchy [3]. A classical result due to
Cauchy [3] on the distribution of zeros of a polynomial may be stated as follows:

Theorem 1 If p(z) =
∑n

v=0 avz
v is a polynomial of degree n, then all the zeros of p lie in

|z| < 1 + max
1≤v≤n−1

∣∣∣av
an

∣∣∣.
Although there are other results in the literature about the bounds for polynomial zeros (see, e.g. [19],

[20]), the striking property of the bound in Theorem 1 that distinguishes it from other such bounds is its
ease of computation. This simplicity, however, comes at the expense of precision. The following elegant
result concerning the distribution of zeros of a polynomial when its coeffi cients are restricted is known in the
literature as Eneström-Kakeya theorem (for reference, see [5], [19], [20]).

Theorem 2 If p(z) =
n∑
v=0

avz
v, is a polynomial of degree n (where z is a complex variable) with real

coeffi cients satisfying
an ≥ an−1 ≥ ... ≥ a1 ≥ a0 ≥ 0,

then all the zeros of p(z) lie in
|z| ≤ 1.
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It seems that G. Eneström was the first to get a result of this nature when he was studying a problem
in the theory of pension funds. In essence, the above result appeared for the first time in a little circulated
paper of Eneström [4]. Later, Eneström made the significant parts of his earlier paper accessible to the
international mathematical community and mentioned it in his publications of 1893-95. Independently, in
1912, the result was obtained by S. Kakeya [17] with a purely geometrical approach and in a more general
form. The Eneström-Kakeya theorem is particularly important in the study of stability of numerical methods
for differential equations and, subsequently it has been extended in various ways, even to complex coeffi cients
with restricted arguments. In the literature, for example see ([1], [9], [13], [14], [15], [16]), there exist various
extensions and generalizations of the Eneström-Kakeya theorem. We refer the reader to the comprehensive
books of Marden [19] and Milovanovíc et al. [20] for an exhaustive survey of extensions and refinements of
this well-known result. In 1967, Joyal, Labelle and Rahman [16] published a result which might be considered
the foundation of the studies which we are currently studying. The Eneström-Kakeya theorem, stated as
Theorem 2 above deals with polynomials with non-negative coeffi cients which form a monotone sequence.
In fact, Joyal, Labelle and Rahman generalized Theorem 2 by dropping the condition of non-negativity and
maintaining the condition of monotonicity. Namely, they proved the following result.

Theorem 3 If p(z) =
n∑
v=0

avz
v, is a polynomial of degree n (where z is a complex variable) with real

coeffi cients satisfying
an ≥ an−1 ≥ ... ≥ a1 ≥ a0,

then all the zeros of p(z) lie in

|z| ≤ an − a0 + |a0|
|an|

.

Of course, when a0 ≥ 0, Theorem 3 reduces to Theorem 2. Various estimates for the location of zeros in
terms of coeffi cients, with emphasis on the distribution of zeros of the algebraic polynomials with restricted
coeffi cients has been intensively studied since the second half of the nineteenth century, and substantial
breakthroughs have been achieved. The Eneström-Kakeya Theorem 1 and its various generalizations as
mentioned above are the classic and significant examples of this kind. Provided such a richness of the complex
setting, a natural question is to ask what kind of results in the quaternionic setting can be obtained. In this
paper we consider this problem and present extensions to the quaternionic setting of some classical results
of Eneström-Kakeya type as discussed above.

2 Background

In order to introduce the framework in which we will work, let us introduce some preliminaries on quaternions
which will be useful in the sequel. Quaternions are essentially a generalization of complex numbers to four
dimensions (one real and three imaginary parts) and were first studied and developed by Sir Rowan William
Hamilton in 1843. This number system of quaternions is denoted by H in honor of Hamilton. This theory
of quaternions is by now very well developed in many different directions, and we refer the reader to [10],
[11], [18], [12] and [21] for the basic features of quaternions and quaternionic functions. Before we proceed
further, we need to introduce some preliminaries on quaternions. The set of quaternions denoted by H is a
noncommutative division ring. It consists of elements of the form q = α+βi+ γj+ δk, α, β, γ, δ ∈ R, where
the imaginary units i, j, k satisfy i2 = j2 = k2 = ijk = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j.
Every element q = α + βi + γj + δk ∈ H is composed by the real part Re(q) = α and the imaginary part
Im(q) = βi + γj + δk. The conjugate of q is denoted by q and is defined as q = α − βi − γj − δk and the
norm of q is |q| =

√
qq =

√
α2 + β2 + γ2 + δ2. The inverse of each non zero element q of H is defined as

q−1 = |q|−2q. We define the ball B(0, r) = {q ∈ H; |q| < r}, for r > 0.
Very recently, Carney et al. [2] proved the following extension of Theorem 2 for the quaternionic poly-

nomial p(q). More prescisely, they proved the following result.



I. A. Wani and A. Hussain 57

Theorem 4 If p(q) =
n∑
v=0

qvav, is a polynomial of degree n (where q is a quaternionic variable) with real

coeffi cients satisfying
an ≥ an−1 ≥ ... ≥ a1 ≥ a0 ≥ 0,

then all the zeros of p(q) lie in
|q| ≤ 1.

They also proved the following result similar to Theorem D but instead of polynomials with monotone
increasing real coeffi cients, it considers quaternionic polynomials with monotone increasing real and imagi-
nary parts and thus giving the quaternionic analogue of Theorem D.

Theorem 5 If p(q) =
n∑
v=0

qvav, is a polynomial of degree n (where q is a quaternionic variable) with quater-

nionic coeffi cients, where av = αv + βvi+ γvj + δvk for v = 0, 1, 2, ..., n, satisfying

αn ≥ αn−1 ≥ ... ≥ α1 ≥ α0,

βn ≥ βn−1 ≥ ... ≥ β1 ≥ β0,

γn ≥ γn−1 ≥ ... ≥ γ1 ≥ γ0,

δn ≥ δn−1 ≥ ... ≥ δ1 ≥ δ0,

then all the zeros of p(q) lie in

|q| ≤ (|α0| − α0 + αn) + (|β0| − β0 + βn) + (|γ0| − γ0 + γn) + (|δ0| − δ0 + δn)|an|
.

In the meantime, Tripathi [22] besides proving some other results also established the following general-
ization of Theorem 5.

Theorem 6 Let p(q) =
n∑
v=0

qvav be a polynomial of degree n (where q is a quaternionic variable) with

quaternionic coeffi cients, where av = αv + βvi+ γvj + δvk for v = 0, 1, 2, ..., n, satisfying

αn ≥ αn−1 ≥ ... ≥ αl,

βn ≥ βn−1 ≥ ... ≥ βl,

γn ≥ γn−1 ≥ ... ≥ γl,

δn ≥ δn−1 ≥ ... ≥ δl,

for 0 ≤ l ≤ n. Then all the zeros of p(q) lie in

|q| ≤ 1

|an|

[
|α0|+ |β0|+ |γ0|+ |δ0|+ (αn − αl) + (βn − βl) + (γn − γl) + (δn − δl) +Ml

]
,

where

Ml =

l∑
v=1

[
|αv − αv−1|+ |βv − βv−1|+ |γv − γv−1|+ |δv − δv−1|

]
.

Remark 1 For l = 0, Theorem 6 reduces to Theorem 5.
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3 Main Results

In this section, we state our main results and their proofs are given in the next section. We begin with the
following result which as a special case gives generalization of Theorem D.

Theorem 7 If p(q) =
n∑
v=0

qvav, is a quaternionic polynomial of degree n with real coeffi cients av, v =

0, 1, 2, ..., n and for some kv ≥ 1, v = 0, 1, 2, ..., r, 0 ≤ r ≤ n− 1, and we have

k0an ≥ k1an−1 ≥ k2an−2 ≥ ... ≥ kr−1an−r+1 ≥ kran−r ≥ an−r−1 ≥ ... ≥ a1 ≥ a0,

then all the zeros of p(q) lie in

|q| ≤ 1

|an|

{
k0(|an|+ an) + 2

r∑
v=1

(kv − 1)|an−v| − a0 + |a0| − |an|
}
.

If we take kv = 1, v = 0, 1, 2, ..., r in Theorem 7, we obtain the following result which is an extension of
Theorem D from the complex to quaternionic setting.
It is important to mention that this corollary is a special case of a result due to Tripathi ([22], Theorem

3.9).

Corollary 8 If p(q) =
n∑
v=0

qvav, is a quaternionic polynomial of degree n with real coeffi cients av, v =

0, 1, 2, ..., n, and satisfying
an ≥ an−1 ≥ an−2 ≥ ... ≥ a1 ≥ a0,

then all the zeros of p(q) lie in

|q| ≤ 1

|an|
(an − a0 + |a0|).

Setting a0 > 0 in Corollary 8, we get Theorem 4.

Theorem 9 If p(q) =
n∑
v=0

qvav, is a quaternionic polynomial of degree n with quaternionic coeffi cients

av = αv + βvi+ γvj + δvk for v = 0, 1, 2, ..., n, and for some kv ≥ 1, v = 0, 1, 2, ..., r, 0 ≤ r ≤ n− 1, and we
have

k0αn ≥ k1αn−1 ≥ k2αn−2 ≥ ... ≥ kr−1αn−r+1 ≥ krαn−r ≥ αn−r−1 ≥ ... ≥ α1 ≥ α0,
then all the zeros of p(q) lie in

|q| ≤ 1

|an|

{
k0(|αn|+ αn) + 2

r∑
v=1

(kv − 1)|αn−v| − α0 + |α0| − |αn|+ L
}
,

where

L = 2

n∑
v=0

(|βv|+ |γv|+ |δv|).

On setting βv = γv = δv = 0 for v = 0, 1, 2, ..., n in Theorem 9, we recover Theorem 7. Similarly by
taking kv = 1, v = 0, 1, 2, ..., r in Theorem 9, we obtain the following result.

Corollary 10 If p(q) =
n∑
v=0

qvav, is a quaternionic polynomial of degree n where av = αv + βvi+ γvj + δvk

for v = 0, 1, 2, ..., n, satisfying
αn ≥ αn−1 ≥ αn−2 ≥ ... ≥ α1 ≥ α0,

then all the zeros of p(q) lie in

|q| ≤ 1

|an|

{
αn − α0 + |α0|+ L

}
,

where L is defined in Theorem 9.
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If in Corollary 10, we assume α0 > 0 and use the fact that αn ≤ |an|, we get the following generalization
of Theorem 4 (see also Carney et al. [2], Theorem 7).

Corollary 11 If p(q) =
n∑
v=0

qvav, is a quaternionic polynomial of degree n where av = αv + βvi+ γvj + δvk

for v = 0, 1, 2, ..., n, satisfying
αn ≥ αn−1 ≥ ... ≥ α1 ≥ α0 > 0,

then all the zeros of p(q) lie in

|q| ≤ 1 + 2

αn

n∑
v=0

(|βv|+ |γv|+ |δv|).

4 Lemma

We need the following lemma due to Gentili and Stoppato [6] for the proofs of the main results.

Lemma 12 If f(q) =
∞∑
v=0

qvav and g(q) =
∞∑
v=0

qvbv be two given quaternionic power series with radii of

convergence greater than R. The regular product of f(q) and g(q) is defined as

(f ? g)(q) =

∞∑
v=0

qvcv, where cv =
v∑
l=0

albv−l.

Let |q0| < R. Then (f ?g)(q0) = 0 if and only if either f(q0) = 0 or f(q0) 6= 0 implies g(f(q0)−1q0f(q0)) = 0.

5 Proofs of the Main Results

Proof of Theorem 7. Consider the polynomial

f(q) =

n∑
v=1

qv(av − av−1) + a0.

We have p(q) ? (1 − q) = f(q) − qn+1an. Therefore by Lemma 12, p(q) ? (1 − q) = 0 if and only if either
p(q) = 0 or p(q) 6= 0 implies p(q)−1qp(q)−1 = 0, that is, p(q)−1qp(q) = 1. If p(q) 6= 0, then q = 1. Therefore,
the only zeros of p(q) ? (1− q) are q = 1 and the zeros of p(q).
For |q| = 1, we have

|f(q)| = |qn(an − an−1) + ...+ qn−r(an−r − an−r−1) + ...+ q(a1 − a2) + a0|

=

∣∣∣∣qn(k0an − k1an−1 − (k0 − 1)an + (k1 − 1)an−1)
+qn−1

(
k1an−1 − k2an−2 − (k1 − 1)an−1 + (k2 − 1)an−2

)
+...+ qn−r−1

(
kr−1an−r+1 − kran−r − (kr−1 − 1)an−r+1 + (kr − 1)an−r

)
+qn−r

(
kran−r − an−r−1 − (kr − 1)an−r

)
+ qn−r−1(an−r−1 − an−r−2)

+...+ q2(a2 − a1) + q(a1 − a0) + a0
∣∣∣∣

=

∣∣∣∣− (k0 − 1)qnan + qn(k0an − k1an−1) + (k1 − 1)qnan−1 + qn−1(k1an−1 − k2an−2)
−qn−1(k1 − 1)an−1 + (k2 − 1)qn−1an−2 + ...+ qn−r+1(kr−1an−r+1 − kran−r)
−(kr−1 − 1)qn−r+1an−r+1 + (kr − 1)qn−r−1an−r + qn−r(kran−r − an−r−1)
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−(kr − 1)qn−ran−r + qn−r−1(an−r−1 − an−r−2) + ...+ q2(a2 − a1) + q(a1 − a0) + a0
∣∣∣∣

≤ (k0 − 1)|an|+ k0an − k1an−1 + (k1 − 1)|an−1|+ k1an−1 − k2an−2 + (k1 − 1)|an−1|
+(k2 − 1)|an−2|+ ...+ kr−1an−r+1 − kran−r + (kr−1 − 1)|an−r+1|+ (kr − 1)|an−r|
+kran−r − an−r+1 + (kr − 1)|an−r|+ an−r−1 − an−r−2 + ...+ a2 − a1 + a1 − a0 + |a0|

= k0(|an|+ an) + 2
r∑
v=1

(kv − 1)|an−v| − a0 + |a0| − |an|.

Since
max
|q|=1

∣∣∣qn ? f(1
q

)∣∣∣ = max
|q|=1

∣∣∣f(1
q

)∣∣∣ = max
|q|=1

|f(q)|,

we see that qn ? f
(
1
q

)
has the same bound on |q| = 1 as f(q), that is

∣∣∣qn ? f(1
q

)∣∣∣ ≤ k0(|an|+ an) + 2 r∑
v=1

(kv − 1)|an−v| − a0 + |a0| − |an| for |q| = 1.

Applying maximum modulus theorem ([7], Theorem 3.4), it follows that∣∣∣qn ? f(1
q

)∣∣∣ ≤ k0(|an|+ an) + 2 r∑
v=1

(kv − 1)|an−v| − a0 + |a0| − |an| for |q| ≤ 1.

Replacing q by 1
q , we get for |q| ≥ 1

|f(q)| ≤
{
k0(|an|+ an) + 2

r∑
v=1

(kv − 1)|an−v| − a0 + |a0| − |an|
}
|q|n. (1)

But
|p(q) ? (1− q)| = |f(q)− qn+1an| ≥ |an||q|n+1 − |f(q)|.

Using (1), we have for |q| ≥ 1

|p(q) ? (1− q)| ≥ |an||q|n+1 −
{
k0(|an|+ an) + 2

r∑
v=1

(kv − 1)|an−v| − a0 + |a0| − |an|
}
|q|n.

This implies that |p(q) ? (1− q)| > 0, i.e., p(q) ? (1− q) 6= 0 if

|q| > 1

|an|

{
k0(|an|+ an) + 2

r∑
v=1

(kv − 1)|an−v| − a0 + |a0| − |an|
}
.

Since the only zeros of p(q) ? (1− q) are q = 1 and the zeros of p(q), we see that p(q) 6= 0 for

|q| > 1

|an|

{
k0(|an|+ an) + 2

r∑
v=1

(kv − 1)|an−v| − a0 + |a0| − |an|
}
.

Hence all the zeros of p(q) lie in

|q| ≤ 1

|an|

{
k0(|an|+ an) + 2

r∑
v=1

(kv − 1)|an−v| − a0 + |a0| − |an|
}
.

This completes the proof of Theorem 7.
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Proof of Theorem 9. Consider the polynomial

f(q) =

n∑
v=1

qv(av − av−1) + a0.

We have p(q) ? (1− q) = f(q)− qn+1an. So by Lemma 12, p(q) ? (1− q) = 0 if and only if either p(q) = 0 or
p(q) 6= 0 implies p(q)−1qp(q) − 1 = 0, that is, p(q)−1qp(q) = 1. If p(q) 6= 0, then q = 1. Therefore the only
zeros of p(q) ? (1− q) are q = 1 and the zeros of p(q).

For |q| = 1, we have

|f(q)| ≤ |a0|+
n∑
v=1

|av − av−1|

≤ |α0|+ |β0|+ |γ0|+ |δ0|+
n∑
v=1

|αv − αv−1|

+

n∑
v=1

{
|βv − βv−1|+ |γv − γv−1|+ |δv − δv−1|

}

≤ |α0|+ |β0|+ |γ0|+ |δ0|+
n−1∑
v=0

|αn−v − αn−v−1|

+

n∑
v=1

{
|βv|+ |βv−1|+ |γv|+ |γv−1|+ |δv|+ |δv−1|

}

= |α0|+
n−1∑
v=r+1

|αn−v − αn−v−1|+ 2
n∑
v=0

{
|βv|+ |γv|+ |δv|

}

+

r∑
v=0

|kvαn−v − kv+1αn−v−1 − (kv − 1)αn−v + (kv+1 − 1)αn−v−1|, kr+1 = 1

≤ |α0|+
n−1∑
v=r+1

|αn−v − αn−v−1|+ 2
n∑
v=0

{
|βv|+ |γv|+ |δv|

}

+

r∑
v=0

|kvαn−v − kv+1αn−v−1|+
r∑
v=0

|(kv − 1)αn−v|+
r∑
v=0

|(kv+1 − 1)αn−v−1|, kr+1 = 1

= |α0|+
n−1∑
v=r+1

(αn−v − αn−v−1) + 2
n∑
v=0

{
|βv|+ |γv|+ |δv|

}

+

r∑
v=0

(kvαn−v − kv+1αn−v−1) + (k0 − 1)|αn|+ 2
r∑
v=1

(kv − 1)|αn−v|, kr+1 = 1

= k0(|αn|+ αn) + 2
r∑
v=1

(kv − 1)|αn−v| − α0 + |α0| − |αn|+ L,

where L = 2
∑n

v=0(|βv|+ |γv|+ |δv|).
Since

max
|q|=1

∣∣∣qn ? f(1
q

)∣∣∣ = max
|q|=1

∣∣∣f(1
q

)∣∣∣ = max
|q|=1

|f(q)|,

we see that qn ? f
(
1
q

)
has the same bound on |q| = 1 as f(q), that is

∣∣∣qn ? f(1
q

)∣∣∣ ≤ k0(|αn|+ αn) + 2 r∑
v=1

(kv − 1)|αn−v| − α0 + |α0| − |αn|+ L for |q| = 1.
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After few steps as in the proof of Theorem 7, we conclude that all the zeros of p(q) lie in

|q| ≤ 1

|an|

{
k0(|αn|+ αn) + 2

r∑
v=1

(kv − 1)|αn−v| − α0 + |α0| − |αn|+ L
}
.

This completes the proof of Theorem 9.

6 Conclusions

Some new generalizations of the Eneström-Kakeya Theorem 5 for quaternionic polynomials has been estab-
lished that are benefical in determining the regions containing all the zeros of a polynomial.
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