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Abstract
This paper deals with fractional boundary value problems involving the Hilfer fractional differential

operator of order 1 < α ≤ 2 and type 0 ≤ β ≤ 1. We derive the corresponding Lyapunov-type inequalities
for two prominent classes of Hilfer fractional boundary value problems (HFBVPs) involving separated
and anti-periodic boundary conditions. For this purpose, we construct the associated Green’s functions
and deduce their important properties.

1 Introduction

Fractional differential equations (FDEs) have proved to be valuable tools in modelling many phenomena
in various fields of science and engineering. There has been a significant development in the theory and
applications of FDEs in the last few decades; see the monographs of Podlubny [11], Kilbas et al. [7], Hilfer
[5] and the references therein.
Lyapunov [8] proved an inequality for Hill’s equation associated with conjugate boundary conditions,

known as Lyapunov’s inequality. Cheng [2] developed the discrete analogue of the inequality of Lyapunov
for the first time. Many improvements in Lyapunov’s inequality have been carried out due to its wide appli-
cations in oscillation theory, disconjugacy, eigenvalue problems etc. The study of Lyapunov-type inequalities
for fractional boundary value problems has recently begun. In [3], Ferreira replaced the second-order deriv-
ative with the αth -order, α ∈ (1, 2], Riemann—Liouville fractional derivative and obtained a Lyapunov-type
inequality for the corresponding conjugate boundary value problem. Following this work, many authors gave
valuable contributions to this topic. For an excellent introduction to the evolution of Lyapunov-type inequal-
ities for ordinary differential equations, ordinary difference equations and fractional differential equations,
we refer to [1, 9, 10, 12, 13] and the references therein.
Recently, Ntouyas et al. [9, 10] surveyed several generalizations of Lyapunov’s inequality for fractional

boundary value problems involving a variety of fractional derivative operators and boundary conditions.
Motivated by these works, in this paper, we establish Lyapunov-type inequalities for the following fractional
boundary value problems involving the Hilfer fractional differential operator of order 1 < α ≤ 2 and type
0 ≤ β ≤ 1, of the form 

(
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a y

)
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36 Lyapunov-Type Inequalities for Hilfer Fractional BVP

where l, m, n, p are constants such that l2 +m2 > 0 and n2 + p2 > 0, q : [a, b]→ R is a continuous function,
Dα,β
a denotes the Hilfer fractional differential operator of order 1 < α ≤ 2 and type 0 ≤ β ≤ 1 and D denotes

the first-order differential operator.

2 Preliminaries

In this section, we present some important definitions and results of fractional calculus which will be useful
in the next section.

Definition 1 ([7]) The Euler gamma function is given by

Γ(z) =

∫ ∞
0

tz−1e−tdt, <(z) > 0.

Using the reduction formula
Γ(z + 1) = zΓ(z), <(z) > 0,

the Euler gamma function can be extended to the half-plane <(z) ≤ 0 except for z = 0,−1,−2, . . .

Definition 2 ([7]) Let a, b ∈ R and α > 0. The αth -order Riemann—Liouville fractional integral of a
function y : [a, b]→ R is defined by

(Iαa y) (t) =
1

Γ(α)

∫ t

a

(t− s)α−1y(s)ds, t > a,

provided the right-hand side exists. For α = 0, we define Iαa to be the identity map.

Definition 3 ([6]) Let a, b ∈ R, α > 0, 0 ≤ β ≤ 1 and choose n ∈ N such that n − 1 < α ≤ n. The
αth -order and βth -type Hilfer fractional derivative of a function y : [a, b]→ R is defined by

(Dα,β
a y)(t) =

(
Iβ(n−α)a DnI(n−α)(1−β)a y

)
(t), t > a,

if the right-hand side exists. Here Dn = dn

dtn denotes the classical n
th -order differential operator.

Definition 4 ([7]) We denote by L(a, b) the space of Lebesgue measurable functions y : [a, b]→ R for which

‖y‖L =

∫ b

a

|y(t)|dt <∞.

Definition 5 ([7]) We denote by C[a, b] the space of continuous functions y : [a, b]→ R with the norm

‖y‖C = max
t∈[a,b]

|y(t)|.

Definition 6 ([7]) Let AC[a, b] be the space of real-valued functions y which are absolutely continuous on
[a, b]. We denote by ACn[a, b] the space of real-valued functions y which have continuous derivatives up to
order n− 1 on [a, b] such that y(n−1) ∈ AC[a, b]. In particular, AC1[a, b] = AC[a, b].

Definition 7 ([4]) Let a, b ∈ R, 1 < α ≤ 2, 0 ≤ β ≤ 1, γ = α+ 2β − αβ and δ = 2− γ = (2− α)(1− β) ∈
[0, 1). We denote by Cδ[a, b] the weighted space of continuous functions

Cδ[a, b] =
{
y : (a, b]→ R : (t− a)δy(t) ∈ C[a, b]

}
,

with the norm
‖y‖Cδ = max

t∈[a,b]
|(t− a)δy(t)|.
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Lemma 1 ([6]) For a ∈ R, α > 0, 0 ≤ β ≤ 1 and µ > −1, we have

Dα,β
a (t− a)µ =

Γ(µ+ 1)

Γ(µ+ 1− α)
(t− a)µ−α, t > a.

Lemma 2 For a ∈ R, 1 < α ≤ 2 and 0 ≤ β ≤ 1, we have

I(2−α)(1−β)a (t− a)−(2−α)(1−β) = Γ(1− (2− α)(1− β)), t > a,

I(2−α)(1−β)a (t− a)1−(2−α)(1−β) = (t− a)Γ(2− (2− α)(1− β)), t > a.

Lemma 3 ([14]) Let y ∈ L(a, b), n− 1 < α ≤ n, n ∈ N, β ∈ [0, 1] and I(n−α)(1−β)a y ∈ ACk[a, b]. Then, we
have (

IαaD
α,β
a y

)
(t) = y(t)−

n−1∑
k=0

(t− a)k−(n−α)(1−β)

Γ(k − (n− α)(1− β) + 1)
lim
t→a+

dk

dtk

(
I(n−α)(1−β)a y

)
(t),

for t > a.

Proposition 1 Let f and g be two nonnegative real-valued functions defined on a set S. Assume that f and
g attain their maximum values in S. Then, for each fixed t ∈ S,

|f(t)− g(t)| ≤ max {f(t), g(t)} ≤ max

{
max
t∈S

f(t),max
t∈S

g(t)

}
.

3 Main Results

In this section, we establish Lyapunov-type inequalities for the HFBVPs (1) and (2). For this purpose, we
consider the corresponding linear HFBVPs:

(
Dα,β
a y

)
(t) + h(t) = 0, a < t < b,

l
(
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a y

)
(a)−m

(
DI
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a y
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n
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a y
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(
DI
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a y
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(b) = 0,

(3)

and 
(
Dα,β
a y

)
(t) + h(t) = 0, a < t < b,(

I
(2−α)(1−β)
a y

)
(a) +

(
I
(2−α)(1−β)
a y

)
(b) = 0,(

DI
(2−α)(1−β)
a y

)
(a) +

(
DI

(2−α)(1−β)
a y

)
(b) = 0,

(4)

where h : [a, b]→ R is a continuous function.

Theorem 1 Assume that mn+ lp+ ln(b− a) 6= 0. The unique solution of the HFBVP (3) is given by

y(t) =

∫ b

a

G(t, s)h(s)ds, a < t < b, (5)

where

G(t, s) =

{
G1(t, s), a < s ≤ t < b,

G2(t, s), a < t ≤ s < b.
(6)

Here

G1(t, s) = G2(t, s)−
(t− s)α−1

Γ(α)
,

and

G2(t, s) = (t− a)−(2−α)(1−β)(b− s)−β(2−α) [l(t− a) +m(α− 1 + β(2− α))] [n(b− s) + p(1− 2β + αβ)]

[mn+ lp+ ln(b− a)] Γ(2− 2β + αβ)Γ(2− (2− α)(1− β))
.
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Proof. Applying the αth -order Riemann—Liouville fractional integration operator on both sides of (3) and
applying the Lemma 3, we get

y(t) = C1
(t− a)−(2−α)(1−β)

Γ(1− (2− α)(1− β))
+ C2

(t− a)1−(2−α)(1−β)

Γ(2− (2− α)(1− β))
−
∫ t

a

(t− s)α−1
Γ(α)

h(s)ds. (7)

Now, using Lemma 2 to (7), we have(
I(2−α)(1−β)a y

)
(t) = C1 + C2(t− a)−

∫ t

a

(t− s)1−2β+αβ
Γ(2− 2β + αβ)

h(s)ds (8)

and (
DI(2−α)(1−β)a y

)
(t) = C2 −

∫ t

a

(t− s)−2β+αβ
Γ(1− 2β + αβ)

h(s)ds. (9)

Using the boundary conditions

l
(
I(2−α)(1−β)a y

)
(a)−m

(
DI(2−α)(1−β)a y

)
(a) = 0

and
n
(
I(2−α)(1−β)a y

)
(b) + p

(
DI(2−α)(1−β)a y

)
(b) = 0

to (8) and (9), we get

C1 =
m

[mn+ lp+ ln(b− a)] Γ(2− 2β + αβ)

∫ b

a

(b− s)−β(2−α) [n(b− s) + p(1− 2β + αβ)]h(s)ds

and

C2 =
l

[mn+ lp+ ln(b− a)] Γ(2− 2β + αβ)

∫ b

a

(b− s)−β(2−α) [n(b− s) + p(1− 2β + αβ)]h(s)ds.

Now, substituting the values of C1 and C2 in (7) and rearranging the terms, we obtain (5). The proof is
complete.

Theorem 2 The unique solution of the HFBVP (4) is given by

y(t) =

∫ b

a

Ḡ(t, s)h(s)ds, a < t < b, (10)

where

Ḡ(t, s) =

{
Ḡ1(t, s), a < s ≤ t < b,

Ḡ2(t, s), a < t ≤ s < b.
(11)

Here

Ḡ1(t, s) = Ḡ2(t, s)−
(t− s)α−1

Γ(α)
,

and

Ḡ2(t, s) =
(t− a)−(2−α)(1−β)(b− s)−β(2−α)

[
(t−a)

(1−(2−α)(1−β)) + (b−s)
(1−β(2−α)) −

(b−a)
2

]
2Γ(1− 2β + αβ)Γ(1− (2− α)(1− β))

.

Proof. Using the boundary conditions(
I(2−α)(1−β)a y

)
(a) +

(
I(2−α)(1−β)a y

)
(b) = 0
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and (
DI(2−α)(1−β)a y

)
(a) +

(
DI(2−α)(1−β)a y

)
(b) = 0

to (8) and (9), we get

C1 = − (b− a)

4

∫ b

a

(b− s)−2β+αβ
Γ(1− 2β + αβ)

h(s)ds+
1

2

∫ b

a

(b− s)1−2β+αβ
Γ(2− 2β + αβ)

h(s)ds

and

C2 =
1

2

∫ b

a

(b− s)−2β+αβ
Γ(1− 2β + αβ)

h(s)ds.

Now, substituting the values of C1 and C2 in (7) and rearranging the terms, we obtain (10). The proof is
complete.

Theorem 3 Assume that l, m, n, p ≥ 0 and mn+ lp+ ln(b− a) > 0. Denote by

H(t, s) = (t− a)(2−α)(1−β)(b− s)β(2−α)G(t, s)

=

{
(t− a)(2−α)(1−β)(b− s)β(2−α)G1(t, s), a ≤ s ≤ t ≤ b,
(t− a)(2−α)(1−β)(b− s)β(2−α)G2(t, s), a ≤ t ≤ s ≤ b.

=

{
H1(t, s), a ≤ s ≤ t ≤ b,
H2(t, s), a ≤ t ≤ s ≤ b.

Then,

|H(t, s)| ≤ max

{
Ω,

(b− a)

Γ(α)

}
, (t, s) ∈ [a, b]× [a, b],

where

Ω =
[l(b− a) +m(α− 1 + β(2− α))] [n(b− a) + p(1− 2β + αβ)]

[mn+ lp+ ln(b− a)] Γ(2− 2β + αβ)Γ(2− (2− α)(1− β))
.

Proof. We have

H1(t, s) = H2(t, s)−
(t− s)α−1(t− a)(2−α)(1−β)(b− s)β(2−α)

Γ(α)
, a ≤ s ≤ t ≤ b,

and

H2(t, s) =
[l(t− a) +m(α− 1 + β(2− α))] [n(b− s) + p(1− 2β + αβ)]

[mn+ lp+ ln(b− a)] Γ(2− 2β + αβ)Γ(2− (2− α)(1− β))
,

for a ≤ t ≤ s ≤ b. Clearly,
H2(t, s) ≥ 0, (t, s) ∈ [a, b]× [a, b],

and
(t− s)α−1(t− a)(2−α)(1−β)(b− s)β(2−α)

Γ(α)
≥ 0, a ≤ s ≤ t ≤ b.

Now, we apply Proposition 1. For a ≤ s ≤ t ≤ b, we obtain

|H1(t, s)| =
∣∣∣∣H2(t, s)−

(t− s)α−1(t− a)(2−α)(1−β)(b− s)β(2−α)
Γ(α)

∣∣∣∣
≤ max

{
max

a≤s≤t≤b
H2(t, s), max

a≤s≤t≤b

[
(t− s)α−1(t− a)(2−α)(1−β)(b− s)β(2−α)

Γ(α)

]}
.

Denote by

K(t, s) =
(t− s)α−1(t− a)(2−α)(1−β)(b− s)β(2−α)

Γ(α)
, a ≤ s ≤ t ≤ b.



40 Lyapunov-Type Inequalities for Hilfer Fractional BVP

For a fixed t ∈ [a, b], consider

∂

∂s
K(t, s) = − (t− a)(2−α)(1−β)

Γ(α)

[
β(2− α)(t− s)α−1(b− s)β(2−α)−1(α− 1)(t− s)α−2(b− s)β(2−α)

]
.

Since 1 < α ≤ 2, 0 ≤ β ≤ 1, a ≤ s < t ≤ b, we have

∂

∂s
K(t, s) < 0, a ≤ s ≤ t ≤ b,

implying that K(t, s) is a decreasing function of s for a fixed t ∈ [a, b]. Then,

K(t, s) ≤ K(t, a), a ≤ s ≤ t ≤ b.

Denote by

f(t) = K(t, a) =
(t− a)α−1(t− a)(2−α)(1−β)(b− a)β(2−α)

Γ(α)
, a ≤ t ≤ b.

Consider

f ′(t) =
(1− β(2− α))(t− a)−β(2−α)(b− a)β(2−α)

Γ(α)
, a < t ≤ b.

Since 1 < α ≤ 2, 0 ≤ β ≤ 1, a ≤ t ≤ b, we have

f ′(t) > 0, a < t ≤ b,

implying that f is an increasing function of t for t ∈ [a, b]. Thus,

f(t) ≤ f(b), a ≤ t ≤ b.

Therefore,
K(t, s) ≤ K(b, a), a ≤ s ≤ t ≤ b.

That is,

max
a≤s≤t≤b

K(t, s) =
(b− a)

Γ(α)
.

We also know that
max

(t,s)∈[a,b]×[a,b]
H2(t, s) = Ω.

Therefore,

|H1(t, s)| ≤ max

{
Ω,

(b− a)

Γ(α)

}
, a ≤ s ≤ t ≤ b.

Hence, for all (t, s) ∈ [a, b]× [a, b],

|H(t, s)| = max

{
max

a≤t≤s≤b
|H2(t, s)| , max

a≤s≤t≤b
|H1(t, s)|

}
= max

{
Ω,

(b− a)

Γ(α)

}
.

The proof is complete.

Theorem 4 Denote by

H̄(t, s) = (t− a)(2−α)(1−β)(b− s)β(2−α)Ḡ(t, s)

=

{
(t− a)(2−α)(1−β)(b− s)β(2−α)Ḡ1(t, s), a ≤ s ≤ t ≤ b,
(t− a)(2−α)(1−β)(b− s)β(2−α)Ḡ2(t, s), a ≤ t ≤ s ≤ b.

=

{
H̄1(t, s), a ≤ s ≤ t ≤ b,
H̄2(t, s), a ≤ t ≤ s ≤ b.
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Then, ∣∣H̄(t, s)
∣∣ ≤ (b− a)

A

[
1

(1− (2− α)(1− β))
+

1

(1− β(2− α))
− 1

2

]
+

(b− a)

Γ(α)
,

for all (t, s) ∈ [a, b]× [a, b], where

A = 2Γ(1− 2β + αβ)Γ(1− (2− α)(1− β)).

Proof. We have

H̄1(t, s) = H̄2(t, s)−
(t− s)α−1(t− a)(2−α)(1−β)(b− s)β(2−α)

Γ(α)
, a ≤ s ≤ t ≤ b,

and

H̄2(t, s) =
1

A

[
(t− a)

(1− (2− α)(1− β))
+

(b− s)
(1− β(2− α))

− (b− a)

2

]
,

for a ≤ t ≤ s ≤ b. Clearly, A > 0 and

(t− s)α−1(t− a)(2−α)(1−β)(b− s)β(2−α)
Γ(α)

≥ 0, a ≤ s ≤ t ≤ b.

For a fixed s ∈ [a, b], we have

∂

∂t
H̄2(t, s) =

1

A(1− (2− α)(1− β))
> 0, (12)

implying that H̄2(t, s) is an increasing function of t. Thus, we have

max
a≤t≤s

∣∣H̄2(t, s)
∣∣ = max

{∣∣H̄2(a, s)
∣∣ , ∣∣H̄2(s, s)

∣∣} .
We observe that H̄2(s, s) is an increasing function of s for 0 ≤ β ≤ 1

2 and it is a decreasing function of s for
1
2 ≤ β ≤ 1, since

d

ds
H̄2(s, s) =

1

A

[
1

(1− (2− α)(1− β))
− 1

(1− β(2− α))

]
is positive for 0 ≤ β ≤ 1

2 and is negative for
1
2 ≤ β ≤ 1. Therefore, we have

max
a≤s≤b

H̄2(s, s) = max
{∣∣H̄2(a, a)

∣∣ , ∣∣H̄2(b, b)
∣∣}

=
1

A
max

{∣∣∣∣ (b− a)

(1− β(2− α))
− (b− a)

2

∣∣∣∣ , ∣∣∣∣ (b− a)

(1− (2− α)(1− β))
− (b− a)

2

∣∣∣∣}
=

(b− a)

A
max

{∣∣∣∣ 1

(1− β(2− α))
− 1

2

∣∣∣∣ , ∣∣∣∣ 1

(1− (2− α)(1− β))
− 1

2

∣∣∣∣} .
Since 1 < α ≤ 2 and 0 ≤ β ≤ 1, we have

1− β(2− α) < 1, 1− (2− α)(1− β) < 1,

implying that
1

(1− β(2− α))
> 1,

1

(1− (2− α)(1− β))
> 1. (13)

So,

max
a≤s≤b

H̄2(s, s) =
(b− a)

A
max

{
1

(1− β(2− α))
− 1

2
,

1

(1− (2− α)(1− β))
− 1

2

}
=

(b− a)

A

[
B − 1

2

]
, (14)
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where

B = max

{
1

(1− β(2− α))
,

1

(1− (2− α)(1− β))

}
.

Now, we consider
d

ds
H̄2(a, s) = − 1

A

[
1

(1− β(2− α))

]
< 0.

So, H̄2(a, s) is a decreasing function of s. Thus, from (13), we obtain

max
a≤s≤b

H̄2(a, s) = max
{∣∣H̄2(a, a)

∣∣ , ∣∣H̄2(a, b)
∣∣}

=
1

A
max

{∣∣∣∣ (b− a)

(1− β(2− α))
− (b− a)

2

∣∣∣∣ , ∣∣∣∣− (b− a)

2

∣∣∣∣}
=

(b− a)

A
max

{
1

(1− β(2− α))
− 1

2
,

1

2

}
=

(b− a)

A

[
1

(1− β(2− α))
− 1

2

]
.

Hence, we have

max
a≤t≤s≤b

∣∣H̄2(t, s)
∣∣ =

(b− a)

A

[
B − 1

2

]
.

Now, for a ≤ s ≤ t ≤ b, consider H̄2(t, s). For a fixed s ∈ [a, b], it follows from (12) that H̄2(t, s) is an
increasing function of t. Thus, we have

max
s≤t≤b

∣∣H̄2(t, s)
∣∣ = max

{∣∣H̄2(b, s)
∣∣ , ∣∣H̄2(s, s)

∣∣} .
Consider

d

ds
H̄2(b, s) = − 1

A

[
1

(1− β(2− α))

]
< 0.

So, H̄2(b, s) is a decreasing function of s. Thus, we have

max
a≤s≤b

H̄2(b, s) = max
{∣∣H̄2(b, a)

∣∣ , ∣∣H̄2(b, b)
∣∣}

=
1

A
max

{∣∣∣∣ (b− a)

(1− (2− α)(1− β))
+

(b− a)

(1− β(2− α))
− (b− a)

2

∣∣∣∣ ,∣∣∣∣ (b− a)

(1− (2− α)(1− β))
− (b− a)

2

∣∣∣∣
}

=
(b− a)

A
max

{∣∣∣∣ 1

(1− (2− α)(1− β))
+

1

(1− β(2− α))
− 1

2

∣∣∣∣ ,∣∣∣∣ 1

(1− (2− α)(1− β))
− 1

2

∣∣∣∣
}

=
(b− a)

A
max

{
1

(1− (2− α)(1− β))
+

1

(1− β(2− α))
− 1

2
,

1

(1− (2− α)(1− β))
− 1

2

}
(By (13))

=
(b− a)

A

[
1

(1− (2− α)(1− β))
+

1

(1− β(2− α))
− 1

2

]
.
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Then, it follows from (14) that

max
a≤s≤t≤b

∣∣H̄2(t, s)
∣∣ =

(b− a)

A

[
1

(1− (2− α)(1− β))
+

1

(1− β(2− α))
− 1

2

]
.

Denote by

K(t, s) =
(t− s)α−1(t− a)(2−α)(1−β)(b− s)β(2−α)

Γ(α)
, a ≤ s ≤ t ≤ b.

It follows from the proof of the above theorem, we obtain

max
a≤s≤t≤b

K(t, s) =
(b− a)

Γ(α)
.

Now, for a ≤ s ≤ t ≤ b, consider∣∣H̄1(t, s)
∣∣ =

∣∣H̄2(t, s)−K(t, s)
∣∣

≤
∣∣H̄2(t, s)

∣∣+ |K(t, s)|

≤ (b− a)

A

[
1

(1− (2− α)(1− β))
+

1

(1− β(2− α))
− 1

2

]
+

(b− a)

Γ(α)
.

Therefore, for all (t, s) ∈ [a, b]× [a, b],

∣∣H̄(t, s)
∣∣ = max

{
max

a≤t≤s≤b

∣∣H̄2(t, s)
∣∣ , max
a≤s≤t≤b

∣∣H̄1(t, s)
∣∣}

=
(b− a)

A

[
1

(1− (2− α)(1− β))
+

1

(1− β(2− α))
− 1

2

]
+

(b− a)

Γ(α)
.

The proof is complete.
Now, we are able to develop Lyapunov-type inequalities for (1) and (2).

Theorem 5 Assume that l, m, n, p ≥ 0 and mn+ lp+ ln(b− a) > 0. If the HFBVP (1) has a nontrivial
solution, then ∫ b

a

(s− a)(α−2)(1−β)(b− s)β(α−2)
∣∣q(s)∣∣ds ≥ 1

Λ
, (15)

where

Λ = max

{
Ω,

(b− a)

Γ(α)

}
.

Proof. We know that B = C(2−α)(1−β)[a, b] is a Banach space with the norm

‖y‖C(2−α)(1−β) = max
t∈[a,b]

∣∣∣(t− a)(2−α)(1−β)y(t)
∣∣∣.

It follows from Theorem 1 that y is a solution of (1) if and only if y is a solution of the Fredholm integral
equation

y(t) =

∫ b

a

G(t, s)q(s)y(s)ds.
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Consider

‖y‖C(2−α)(1−β) = max
t∈[a,b]

∣∣∣(t− a)(2−α)(1−β)y(t)
∣∣∣

= max
t∈[a,b]

∣∣∣∣∣(t− a)(2−α)(1−β)
∫ b

a

G(t, s)q(s)y(s)ds

∣∣∣∣∣
≤ max
t∈[a,b]

[
(t− a)(2−α)(1−β)

∫ b

a

|G(t, s)|
∣∣q(s)∣∣∣∣y(s)

∣∣ds]
= max
t∈[a,b]

[
(t− a)(2−α)(1−β)

∫ b

a

(s− a)−(2−α)(1−β)|G(t, s)|
∣∣q(s)∣∣[

(s− a)(2−α)(1−β)
∣∣y(s)

∣∣] ds]
≤ ‖y‖C(2−α)(1−β) max

t∈[a,b]

[
(t− a)(2−α)(1−β)

∫ b

a

(s− a)−(2−α)(1−β)|G(t, s)|
∣∣q(s)∣∣ds]

≤ ‖y‖C(2−α)(1−β)
∫ b

a

max
t∈[a,b]

∣∣∣(t− a)(2−α)(1−β)(b− s)β(2−α)G(t, s)
∣∣∣

(s− a)−(2−α)(1−β)(b− s)−β(2−α)
∣∣q(s)∣∣ds

= ‖y‖C(2−α)(1−β)
∫ b

a

[
max
t∈[a,b]

|H(t, s)|
]

(s− a)−(2−α)(1−β)(b− s)−β(2−α)
∣∣q(s)∣∣ds

≤ Λ‖y‖C(2−α)(1−β)
∫ b

a

(s− a)−(2−α)(1−β)(b− s)−β(2−α)
∣∣q(s)∣∣ds

implying that

1 ≤ Λ

∫ b

a

(s− a)−(2−α)(1−β)(b− s)−β(2−α)
∣∣q(s)∣∣ds.

The proof is complete.

Theorem 6 If the HFBVP (2) has a nontrivial solution, then∫ b

a

(s− a)(α−2)(1−β)(b− s)β(α−2)
∣∣q(s)∣∣ds ≥ 1

Θ
, (16)

where

Θ =
(b− a)

A

[
1

(1− (2− α)(1− β))
+

1

(1− β(2− α))
− 1

2

]
+

(b− a)

Γ(α)
.

Proof. The proof is similar to the proof of Theorem 5. So, we omit it.

Conclusion

In this article, we derived the corresponding Lyapunov-type inequalities for two prominent classes of HFBVPs
(1) and (2) involving separated and anti-periodic boundary conditions, respectively. For this purpose, we
constructed the associated Green’s functions and deduced their important properties.
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