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Abstract

In 1960, T.J. Rivlin proved a well-known inequality, also known as Rivlin’s inequality. This inequality
states that if P (z) is a polynomial of degree n having no zero in |z| < 1, then for 0 ≤ r ≤ 1

max
|z|=r

|P (z)| ≥
(
1 + r

2

)n
max
|z|=1

|P (z)|.

In this paper, we prove some extensions and generalizations of the above inequality which also sharpen
Rivlin’s inequality as a special case. Some related results are also obtained and some important conse-
quences of the results are discussed as well.

1 Introduction

If P (z) is a polynomial of degree n, then for R ≥ 1

max
|z|=1

|P
′
(z)| ≤ nmax

|z|=1
|P (z)| (1)

and
max
|z|=R

|P (z)| ≤ Rnmax
|z|=1

|P (z)|. (2)

The above inequalities are the famous Bernstein inequalities [1] for polynomials. Inequality (1) is a direct
consequence of Bernstein’s theorem on the derivative of a trigonometric polynomial [2], and inequality (2)
follows from the maximum modulus theorem (see [3, Problem 269]).
The reverse analogue of inequality (2) whenever R ≤ 1 is given by Varga [4] by proving that if P (z) is a

polynomial of degree n, then
max
|z|=r

|P (z)| ≥ rnmax
|z|=1

|P (z)|, (3)

whenever 0 ≤ r ≤ 1. Inequality (3) attains equality whenever P (z) = azn.
For the class of polynomials having no zero inside the unit circle, Rivlin [5] proved that if P (z) is a

polynomial of degree n having no zero in |z| < 1, then for 0 ≤ r ≤ 1

max
|z|=r

|P (z)| ≥
(
1 + r

2

)n
max
|z|=1

|P (z)|. (4)

Equality holds in inequality (4) if P (z) = (z + a)n whenever |a| = 1.
Aziz [6] generalized Rivlin’s inequality (4) by proving that if P (z) has no zero in |z| < K,K ≥ 1, then

for 0 ≤ r ≤ 1

max
|z|=r

|P (z)| ≥
(
K + r

K + 1

)n
max
|z|=1

|P (z)|. (5)
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The above inequality is best possible and equality holds if P (z) = (z + a)n and |a| = K. In inequality
(5), the bound does not address the issue of how far the zeros lie outside the disc |z| = K. Now there
arises a question naturally; is there any way to refine inequality (5) by capturing some informations on the
moduli of zeros? Can we obtain a bound via two extreme coeffi cients of P (z) which are informative about
the distance of zeros from the origin? In view of the example for the equality case in inequality (5) which
holds with the property |a0|/|an| = Kn, it should be possible to improve upon the bound for polynomials
P (z) =

∑n
v=0 avz

v having no zero in |z| < K,K ≥ 1, satisfying |a0|/|an| 6= Kn.
As a way to this approach, Kumar and Milovanovíc [7] sharpened inequalities (4) and (5) significantly

by proving that if P (z) =
∑n
v=0 avz

v has no zero in |z| < K,K ≥ 1, then for 0 ≤ r ≤ 1

max
|z|=r

|P (z)| ≥
{(

K + r

K + 1

)n
+

1

Kn−1

(
|a0| − |an|Kn

|a0|+ |an|

)(
1− r
K + 1

)}
max
|z|=1

|P (z)|. (6)

The above result is sharp and equality holds if P (z) = (z +K)n and also for P (z) = z + a for any a with
|a| ≥ K.
In this paper, we prove some extensions and generalizations of inequality (6) which are sharpened forms

of Rivlin’s inequality.

2 Lemmas

We need the following lemmas to prove the theorems. The first lemma is due to Kumar and Milovanovíc [7].

Lemma 1 For any 0 ≤ r ≤ 1 and Rk ≥ K ≥ 1, 1 ≤ k ≤ n, then
n∏
k=1

r +Rk
1 +Rk

≥
(
K + r

K + 1

)n
+

1

Kn−1

(
R1R2...Rn −Kn

R1R2...Rn + 1

)(
1− r
K + 1

)n
. (7)

Lemma 2 The function

f(x) =
x− |an|Kn

x+ |an|
, x 6= −|an|,

is a non-decreasing function for K ≥ 1, an ∈ C and n is a positive integer.

Proof. The result follows by the first derivative test.

Lemma 3 If P (z) =
∑n
v=0 avz

v is a polynomial of degree n such that P (z) 6= 0 in |z| < K, K > 0, then

|P (z)| ≥ m for |z| ≤ K, (8)

where m = min|z|=K |P (z)|.

The above lemma is due to Gardner et al. [9, see Lemma 2.6].

Lemma 4 If P (z) =
∑n
ν=0 aνz

ν is a polynomial of degree n having no zero in |z| < K, K ≥ 1, then for any
complex number λ with |λ| < 1 and m = min|z|=K |P (z)|

Kn|an| ≤ |a0| − |λ|m.

Proof. By hypothesis, P (z) has no zero in |z| < K. So, P (z) has all its zeros in |z| ≥ K. Then, the
polynomial S(z) = e−i arg a0P (z) has the same zeros as P (z). Here,

S(z) = e−i arg a0
{
|a0|ei arg a0 + a1z + · · ·+ an−1zn−1 + anzn

}
= |a0|+ e−i arg a0

{
a1z + · · ·+ an−1zn−1 + anzn

}
.
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Now, on |z| = K for any complex number λ with |λ| < 1 and m = min|z|=K |P (z)| 6= 0, we have

|λ|m < m ≤ |S(z)|.

Then by Rouche’s theorem, T (z) = S(z)− |λ|m has all its zeros in |z| ≥ K and in case m = 0, T (z) = S(z).
Thus, in any case, T (z) has all its zeros in |z| ≥ K. Now, applying Vieta’s formula to T (z), we get

|a0| − |λ|m
|an|

≥ Kn,

i.e.
Kn|an| ≤ |a0| − |λ|m,

which completes the proof of Lemma 4.

3 Main Results

Our first result extends and generalizes inequality (6) which in turn sharpens and generalizes inequality (4)
due to Rivlin [5]. In fact, we prove the following result.

Theorem 1 If P (z) =
∑n
v=0 avz

v is a polynomial of degree n having no zero in |z| < K,K ≥ 1 and Rk,
k = 1, 2, ..., n, are the moduli of the zeros of P (z) + λm, where λ is some fixed complex number with |λ| < 1,
then for 0 ≤ r ≤ 1

max
|z|=r

|P (z)| ≥
{(

K + r

K + 1

)n
+

1

Kn−1

(
|a0| − |λ|m− |an|Kn

|a0| − |λ|m+ |an|

)(
1− r
K + 1

)n}
max
|z|=1

|P (z)|

+

{
1−

(
n∏
k=1

r +Rk
1 +Rk

)}
|λ|m,

where m = min|z|=K |P (z)|.

Proof. Here, m = min|z|=K |P (z)| and if P (z) =
∑n
v=0 avz

v has a zero on |z| = K, K ≥ 1, then m = 0.
Henceforth, we assume that P (z) has no zero on |z| = K. Therefore, for |z| = K

m ≤ |P (z)|. (9)

If λ is any real or complex number with |λ| < 1, we have on |z| = K

|λ|m < m ≤ |P (z)|.

By Rouche’s theorem, it follows that the polynomial F (z) = P (z) + λm does not vanish in |z| < K for
every real or complex number λ with |λ| < 1. If Rk, k = 1, 2, ..., n, are the moduli of the zeros of F (z), then
Rk ≥ K, K ≥ 1. Now, for any 0 ≤ r ≤ 1 and 0 ≤ φ < 2π,∣∣∣∣F (reiφ)F (eiφ)

∣∣∣∣ =

n∏
k=1

∣∣∣∣reiφ −Rkeiφkeiφ −Rkeiφk

∣∣∣∣
=

n∏
k=1

∣∣∣∣rei(φ−φk) −Rkei(φ−φk) −Rk

∣∣∣∣
=

n∏
k=1

{
r2 +R2k − 2rRkcos(φ− φk)
1 +R2k − 2Rkcos(φ− φk)

}1/2
≥

n∏
k=1

r +Rk
1 +Rk

,
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which is equivalent to ∣∣F (reiφ)∣∣ ≥ n∏
k=1

r +Rk
1 +Rk

|F (eiφ)|,

which gives ∣∣P (reiφ) + λm∣∣ ≥ n∏
k=1

r +Rk
1 +Rk

|P (eiφ) + λm|. (10)

By Lemma 3, we have
|P (eiφ) + λm| ≥ |P (eiφ)| − |λ|m. (11)

Using inequality (11) on the right hand side of inequality (10), we get

|P (reiφ) + λm| ≥
n∏
k=1

r +Rk
1 +Rk

{
|P (eiφ)| − |λ|m

}
≥ 0. (12)

Let φ0 be such that max0≤φ<2π |P (eiφ)| = |P (eiφ0)|. Then, in particular, inequality (12) becomes

|P (reiφ0) + λm| ≥
n∏
k=1

r +Rk
1 +Rk

{
|P (eiφ0)| − |λ|m

}
. (13)

We choose the argument of λ suitably on the left hand side of inequality (13) such that

|P (reiφ0) + λm| = |P (reiφ0)| − |λ|m. (14)

Using (14), inequality (13) becomes

|P (reiφ0)| − |λ|m ≥
n∏
k=1

r +Rk
1 +Rk

{
|P (eiφ0)| − |λ|m

}
,

or equivalently

|P (reiφ0)| ≥
(

n∏
k=1

r +Rk
1 +Rk

)
|P (eiφ0)|+

(
1−

n∏
k=1

r +Rk
1 +Rk

)
|λ|m. (15)

Using inequality (7) to the first term in the right hand side of inequality (15), we get

|P (reiφ0)| ≥
{(

K + r

K + 1

)n
+

1

Kn−1

(
R1R2...Rn −Kn

R1R2...Rn + 1

)(
1− r
K + 1

)n}
|P (eiφ0)|

+

(
1−

n∏
k=1

r +Rk
1 +Rk

)
|λ|m,

which is also equivalent to

|P (reiφ0)| ≥
{(

K + r

K + 1

)n
+

1

Kn−1

(
|a0 + λm| − |an|Kn

|a0 + λm|+ |an|

)(
1− r
K + 1

)n}
|P (eiφ0)|

+

(
1−

n∏
k=1

r +Rk
1 +Rk

)
|λ|m. (16)

By Lemma 3, we have for |z| ≤ K,K ≥ 1 and |λ| < 1

|P (z)| ≥ m > |λ|m. (17)
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If we put z = 0 in inequality (17), then
|P (0)| > |λ|m,

which gives
|a0| > |λ|m. (18)

By inequality (18), we have
|a0 + λm| ≥ |a0| − |λ|m. (19)

Therefore by Lemma 2, we have

|a0 + λm| − |an|Kn

|a0 + λm|+ |an|
≥ |a0| − |λ|m− |an|K

n

|a0| − |λ|m+ |an|
. (20)

It is worth to note from Lemma 4 that the right hand side of inequality (20) is always non-negative.
Using inequality (20), inequality (16) gives

|P (reiφ0)| ≥
{(

K + r

K + 1

)n
+

1

Kn−1

(
|a0| − |λ|m− |an|Kn

|a0| − |λ|m+ |an|

)(
1− r
K + 1

)n}
|P (eiφ0)|

+

(
1−

n∏
k=1

r +Rk
1 +Rk

)
|λ|m. (21)

Since
max
|z|=r

|P (reiφ)| ≥ |P (reiφ0)| and max
|z|=1

|P (eiφ)| = |P (eiφ0)|,

we get the desired result from inequality (21).

Remark 1 When λ = 0, Theorem 1 reduces to inequality (6).

Remark 2 When λ = 0 and K = 1, Theorem 1 reduces to the following improvement of Rivlin’s inequality
due to Kumar [8].

Corollary 1 If P (z) =
∑n
v=0 avz

v is a polynomial of degree n having no zero in |z| < 1, then for 0 ≤ r ≤ 1,

max
|z|=r

|P (z)| ≥
{(

1 + r

2

)n
+

(
|a0| − |an|
|a0|+ |an|

)(
1− r
2

)n}
max
|z|=1

|P (z)|. (22)

Equality holds in inequality (22) if P (z) = (z+ a)n whenever |a| = 1 and also for P (z) = z+ a for any a
with |a| ≥ 1. As an interesting consequence of Theorem 1, we get an inequality for the class of polynomials
having all its zeros in |z| ≤ K, K ≤ 1. To elaborate it, if P (z) =

∑n
v=0 avz

v is a polynomial of degree
n having all its zeros in |z| ≤ K, K ≤ 1, then its reciprocal polynomial Q(z) = znP (1/z) has no zero in
|z| < 1/K, 1/K ≥ 1. If Rk, k = 1, 2, ..., n, are the moduli of the zeros of P (z) + znλm/Kn, then 1/Rk,
k = 1, 2, ..., n, are the moduli of the zeros of Q(z)+λm0, where m0 = min|z|=1/K |Q(z)|. Applying Theorem
1 to the polynomial Q(z) with r = 1/R, R ≥ 1, we get

max
|z|=1/R

|Q(z)| ≥
{(

1/K + 1/R

1/K + 1

)n
+Kn−1

(
|an| − |λ|m0 − |a0|/Kn

|an| − |λ|m0 + |a0|

)(
1− 1/R
1/K + 1

)n}
×max
|z|=1

|Q(z)|+
(
1−

n∏
k=1

r + 1/Rk
1 + 1/Rk

)
|λ|m0. (23)

Now,

m0 = min
|z|=1/K

|Q(z)| = 1

Kn
max
|z|=K

|P (z)| = m

Kn
. (24)

Using equality (24) in inequality (23) and simplifying, the following corollary is obtained.
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Corollary 2 If P (z) =
∑n
v=0 avz

v is a polynomial of degree n having all its zeros in |z| ≤ K, K ≤ 1 and
Rk, k = 1, 2, ..., n, are the moduli of the zeros of P (z) + znλm/Kn, where λ is some fixed complex number
with |λ| < 1, then for r = 1/R, R ≥ 1,

max
|z|=R

|P (z)| ≥
{(

K +R

K + 1

)n
+Kn−1

(
|an|Kn − |λ|m− |a0|
|an| − |λ|m/Kn + |a0|

)(
R− 1
K + 1

)n}
max
|z|=1

|P (z)|

+

(
R

K

)n(
1−

n∏
k=1

rRk + 1

Rk + 1

)
|λ|m,

where m = min|z|=K |P (z)|.

Govil [10] generalized inequality (4) by studying the relative growth of a polynomial P (z) having no zero
in the open disk, with respect to two circles |z| = r and |z| = R whenever 0 ≤ r < R ≤ 1. In particular, he
proved that if P (z) is a polynomial of degree n having no zero in |z| < 1, then for 0 ≤ r < R ≤ 1

max
|z|=r

|P (z)| ≥
(
1 + r

1 +R

)n
max
|z|=R

|P (z)|. (25)

Our next result sharpens inequality (25) and it also extends and generalizes some results as special cases.

Theorem 2 If P (z) =
∑n
v=0 avz

v has no zero in |z| < K, K > 0 and Rk, k = 1, 2, ..., n, are the moduli of
the zeros of P (z) + λm, where λ is some fixed complex number with |λ| < 1, then for 0 ≤ r < R ≤ K,

max
|z|=r

|P (z)| ≥
{(

K + r

K +R

)n
+

(
R

K

)n−1( |a0| − |λ|m− |an|Kn

|a0| − |λ|m+ |an|Rn

)(
R− r
K +R

)n}
max
|z|=R

|P (z)|

+

(
1−

n∏
k=1

r +Rk
R+Rk

)
|λ|m, (26)

where m = min|z|=K |P (z)|.

Proof. If P (z) has no zero in |z| < K, then the polynomial P (Rz) has no zero in |z| < K/R, where
K/R ≥ 1. Then the polynomial P (Rz) satisfies the hypothesis of Theorem 1 and applying Theorem 1 to
P (Rz), we have

max
|z|=r/R

|P (Rz)| ≥
{(

K/R+ r/R

K/R+ 1

)n
+

(
R

K

)n−1( |a0| − |λ|m′ − |anRn| (K/R)n
|a0| − |λ|m′ + |anRn|

)

×
(
1− r/R
K/R+ 1

)n}
max
|z|=1

|P (Rz)|+
(
1−

n∏
k=1

r/R+Rk/R

1 +Rk/R

)
|λ|m′, (27)

where m′ = min|z|=K/R |P (Rz)|. Now,

m′ = min
|z|=K/R

|P (Rz)| = min
|z|=K

|P (z)| = m.

Using this equality in inequality (27) and simplifying, we get

max
|z|=r

|P (z)| ≥
{(

K + r

K +R

)n
+

(
R

K

)n−1( |a0| − |λ|m− |an|Kn

|a0| − |λ|m+ |an|Rn

)(
R− r
K +R

)n}
max
|z|=R

|P (z)|

+

(
1−

n∏
k=1

r +Rk
R+Rk

)
|λ|m.

This completes the proof of the theorem.
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Remark 3 When λ = 0 and K = 1, Theorem 2 reduces to the following result due to Kumar and Milovanovíc
[7] which is an improvement and generalization of inequality (25).

Corollary 3 If P (z) =
∑n
v=0 avz

v has no zero in |z| < 1, then for 0 ≤ r < R ≤ 1,

max
|z|=r

|P (z)| ≥
{(

1 + r

1 +R

)n
+Rn−1

(
|a0| − |an|
|a0|+ |an|Rn

)(
R− r
1 +R

)n}
max
|z|=R

|P (z)|. (28)

The result is best possible and equality holds in inequality (28) if P (z) = (z+ a)n where |a| = 1 and also
for P (z) = z + a for any a with |a| ≥ 1.

Remark 4 When λ = 0, K = 1 and R = 1, Theorem 2 reduces to Corollary 1, which is an improved version
of Rivlin’s inequality.

If P (z) =
∑n
v=0 avz

v is a polynomial of degree n having all its zeros in |z| ≤ K, K ≥ 1, then the reciprocal
polynomial Q(z) = znP (1/z) has all its zeros in |z| ≥ 1/K. Now if Rk, k = 1, 2, ..., n, are the moduli of
the zeros of P (z) + znλm/Kn, then 1/Rk, k = 1, 2, ..., n, are the moduli of the zeros of Q(z) + λm0 where
m0 = min|z|=1/K |Q(z)|. Also if 1 ≤ K ≤ R < r, then 0 ≤ 1/r < 1/R ≤ 1/K. Applying Theorem 2 to the
polynomial Q(z), we get for some fixed complex number λ with |λ| < 1

max
|z|=1/r

|Q(z)| ≥
{(

1/K + 1/r

1/K + 1/R

)n
+

(
K

R

)n−1( |an| − |λ|m0 − |a0|/Kn

|an| − |λ|m0 + |a0|/Rn

)(
1/R− 1/r
1/R+ 1/K

)n}

× max
|z|=1/R

|Q(z)|+
(
1−

n∏
k=1

1/r + 1/Rk
1/R+ 1/Rk

)
|λ|m0. (29)

Using equality (24) in inequality (29) and simplifying, the following corollary is obtained.

Corollary 4 If P (z) =
∑n
v=0 avz

v is a polynomial of degree n having all its zeros in |z| ≤ K, K ≥ 1 and
Rk, k = 1, 2, ..., n, are the moduli of the zeros of P (z) + znλm/Kn, where λ is some fixed complex number
with |λ| < 1, then for 1 ≤ K ≤ R < r,

max
|z|=r

|P (z)| ≥
{(

K + r

K +R

)n
+

(
K

R

)n−1( |an|Kn − |λ|m− |a0|
|an|Rn − |λ|m (R/K)n + |a0|

)(
r −R
K +R

)n}

× max
|z|=R

|P (z)|+ 1

Kn

(
rn −Rn

n∏
k=1

r +Rk
R+Rk

)
|λ|m, (30)

where m = min|z|=K |P (z)|.
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