Approximations By The Fractional Function Of The Sum Of Two Functions Converging To e^*

Misuzu Aoki[†], Yusuke Nishizawa[‡], Rukiya Suzuki[§], Gohki Takamori[¶]

Received 1 February 2023

Abstract

In this paper, we establish sharp inequality related to the sum of the functions $(1+\frac{1}{x})^x$ and $(1-\frac{1}{x})^{-x}$: for x > 1, we have

$$\frac{e(2x^{\alpha}-1)}{x^{\alpha}-1} < \left(1+\frac{1}{x}\right)^{x} + \left(1-\frac{1}{x}\right)^{-x} < \frac{e(2x^{\beta}-1)}{x^{\beta}-1},$$

where the constants $\alpha = e$ and $\beta = 2$ are the best possible. Moreover, we present two conjectures related to the inequality.

1 Introduction

In this paper, we present sharp inequalities related to the function $(1 + \frac{1}{x})^x + (1 - \frac{1}{x})^{-x}$. The function $(1 + \frac{1}{x})^x$ is strictly increasing for x > 1 and converges to e, also many results are known about the speed of convergence to e, the fractional function approximation [1-4, 8, 9]. On the other hand, the function $(1 - \frac{1}{x})^{-x}$ is strictly decreasing for x > 1 and converges to e, and the sum of these functions is strictly decreasing for x > 1 and converges to e, and the sum of functions with different monotonicity is interesting and Wilker's inequality [7] is known as an example of such an inequality. Our main theorem is a new result not known until now and we present two conjectures in the end of this paper.

Theorem 1 For x > 1, we have

$$\frac{e(2x^{\alpha}-1)}{x^{\alpha}-1} < \left(1+\frac{1}{x}\right)^{x} + \left(1-\frac{1}{x}\right)^{-x} < \frac{e(2x^{\beta}-1)}{x^{\beta}-1},$$

where the constants $\alpha = e$ and $\beta = 2$ are the best possible.

2 Preliminaries

In this section, we will show some lemmas to prove Theorem 1.

Lemma 1 For $x \ge 1$, we have

$$e\left(1 - \frac{7}{14x + 12}\right) < \left(1 + \frac{1}{x}\right)^x < e\left(1 - \frac{6}{12x + 11}\right).$$

That is,

$$\frac{e(5+14x)}{2(6+7x)} < \left(1+\frac{1}{x}\right)^x < \frac{e(12x+5)}{12x+11}.$$

^{*}Mathematics Subject Classifications: 26A09, 26D20, 33B99.

[†]Faculty of Education, Saitama University, Shimo-okubo 255, Sakura-ku, Saitama-city, Saitama, Japan

[‡]Faculty of Education, Saitama University, Shimo-okubo 255, Sakura-ku, Saitama-city, Saitama, Japan

[§]Faculty of Education, Saitama University, Shimo-okubo 255, Sakura-ku, Saitama-city, Saitama, Japan

[¶]Faculty of Education, Saitama University, Shimo-okubo 255, Sakura-ku, Saitama-city, Saitama, Japan

The Lemma 1 is proved by Xie and Zhong in [8].

Lemma 2 For x > 1, we have

$$\left(1 - \frac{1}{x}\right)^{-x} < \frac{e(2x - 1)}{2(x - 1)}$$

Proof. We set

$$f(x) = \ln\left(1 - \frac{1}{x}\right)^{-x} - \ln\frac{e(2x-1)}{2(x-1)}$$

= $-x\ln(x-1) + x\ln x - 1 - \ln(2x-1) + \ln(x-1) + \ln 2$.

The derivatives of f(x) are

$$f'(x) = \frac{2}{1 - 2x} - \ln(x - 1) + \ln x$$

and

$$f''(x) = -\frac{1}{(x-1)x(2x-1)^2} < 0.$$

Hence, f'(x) is strictly decreasing for x > 1. By $\lim_{x\to\infty} f'(x) = 0$, we have f'(x) > 0 for x > 1 and f(x) is strictly increasing for x > 1. From $\lim_{x\to\infty} f(x) = 0$, we obtain f(x) < 0 for x > 1.

Lemma 3 For $1 < x < \frac{26}{25}$, we have

$$\left(1 - \frac{1}{x}\right)^{-x} < \frac{e(x-1) + 1}{\left(1 - \sqrt{x-1}\right)(x-1)}.$$

Proof. If $t = \sqrt{x-1}$, then the inequality to prove is

$$\left(\frac{t^2}{t^2+1}\right)^{-t^*-1} < \frac{et^2+1}{t^2(1-t)} \text{ for } 0 < t < \frac{1}{5}$$

We set

$$f(t) = \ln\left(\frac{t^2}{t^2+1}\right)^{-t^2-1} - \ln\frac{et^2+1}{t^2(1-t)}$$

= $-2t^2\ln t + t^2\ln(t^2+1) + \ln(t^2+1) - \ln(et^2+1) + \ln(1-t)$

and the derivative of f(t) is

$$f'(t) = t \left(\frac{et(t-2) - 1}{(1-t)t (et^2 + 1)} + 2\ln(t^2 + 1) - 4\ln t \right)$$

< $t \left(\frac{2t(t-2) - 1}{(1-t)t (3t^2 + 1)} + 2\ln(1^2 + 1) - 4\ln t \right) = tg(t).$

The derivative of g(t) is

$$g'(t) = \frac{h(t)}{(t-1)^2 t^2 \left(3t^2+1\right)^2},$$

where

$$\begin{split} h(t) &= -36t^7 + 72t^6 - 48t^5 + 6t^4 - 16t^3 + 15t^2 - 6t + 1\\ &> -36\left(\frac{1}{5}\right)t^6 + 72t^6 - 48\left(\frac{1}{5}\right)t^4 + 6t^4 - 16\left(\frac{1}{5}\right)t^2 + 15t^2 - 6t + 1\\ &= \frac{324}{5}t^6 - \frac{18}{5}t^4 + \frac{59}{5}t^2 - 6t + 1 > \frac{324}{5}t^6 - \frac{18}{5}\left(\frac{1}{5}\right)^2 t^2 + \frac{59}{5}t^2 - 6t + 1\\ &> \frac{1457}{125}t^2 - 6t + 1 = \frac{1457}{125}\left(t - \frac{375}{1457}\right)^2 + \frac{332}{1457} > 0. \end{split}$$

Aoki et al.

Since g(t) is strictly increasing for $0 < t < \frac{1}{5}$ and $g(\frac{1}{5}) = -\frac{1075}{112} + 2\ln 2 + 4\ln 5 \cong -1.77417 < 0$, we have f'(t) < 0 for $0 < t < \frac{1}{5}$ and f(t) is strictly decreasing for $0 < t < \frac{1}{5}$. Since $\lim_{t \to 0+0} t \ln t = 0$ and $\lim_{t \to 0+0} f(t) = 0$, we have f(t) < 0 for $0 < t < \frac{1}{5}$.

Lemma 4 For x > 1, we have

$$\frac{ex-e+1}{x-1} < \left(1-\frac{1}{x}\right)^{-x}.$$

Proof. We set

$$f(x) = \ln \frac{ex - e + 1}{x - 1} - \ln \left(1 - \frac{1}{x} \right)^{-x}$$
$$= \ln(ex - e + 1) - \ln(x - 1) + x \ln(x - 1) - x \ln x$$

The derivatives of f(x) are

$$f'(x) = \frac{e}{ex - e + 1} + \ln(x - 1) - \ln x$$

and

$$f''(x) = \frac{e(2-e)x + e^2 - 2e + 1}{x(x-1)(ex - e + 1)^2}.$$

From f''(x) > 0 for $1 < x < \frac{1-2e+e^2}{e(e-2)} \cong 1.51217$ and f''(x) < 0 for $x > \frac{1-2e+e^2}{e(e-2)}$, f'(x) is strictly increasing for $1 < x < \frac{1-2e+e^2}{e(e-2)}$ and strictly decreasing for $x > \frac{1-2e+e^2}{e(e-2)}$. By $\lim_{x\to 1+0} f'(x) = -\infty$ and $\lim_{x\to\infty} f'(x) = 0$, there exists a unique real number x_0 such that f'(x) < 0 for $1 < x < x_0$ and f'(x) > 0 for $x > x_0$. Hence, f(x) is strictly decreasing for $1 < x < x_0$ and strictly increasing for $x > x_0$. Hence, f(x) is strictly decreasing for $1 < x < x_0$ and strictly increasing for $x > x_0$. By $\lim_{x\to 1+0} f(x) = 0$ and $\lim_{x\to\infty} f(x) = 0$, we obtain f(x) < 0 for x > 1.

Lemma 5 For x > 1, we have

$$\frac{e(12x-5)}{12x-11} < \left(1-\frac{1}{x}\right)^{-x}.$$

Proof. We set

$$f(x) = \ln \frac{e(12x-5)}{12x-11} - \ln \left(1 - \frac{1}{x}\right)^{-x}$$

= 1 + \ln(12x-5) - \ln(12x-11) + x \ln(x-1) - x \ln x.

The derivatives of f(x) are

$$f'(x) = \frac{144x^2 - 264x + 127}{(x-1)(12x-11)(12x-5)} + \ln(x-1) - \ln x$$

and

$$f''(x) = \frac{-4320x^2 + 7296x - 3025}{(x-1)^2x(12x-11)^2(12x-5)^2}$$

Since $g(x) = -4320x^2 + 7296x - 3025$ is convex upwards and takes the maximum value at $x = \frac{38}{45}$, so we have $g(x) < -4320 \cdot 1^2 + 7296 \cdot 1 - 3025 = -49 < 0$. Hence, we have f''(x) < 0 and f'(x) is strictly decreasing for x > 1. By $\lim_{x\to\infty} f'(x) = 0$, we obtain f'(x) > 0 for x > 1 and f(x) is strictly increasing for x > 1. From $\lim_{x\to\infty} f(x) = 0$, we obtain f(x) < 0 for x > 1.

Lemma 6 For 1 < x < 2, we have

$$\frac{14ex^2 + (14 - 9e)x - 5e + 12}{(14 - 7e)x + 7e + 12} < x^e.$$

Proof. We note that

$$14ex^{2} + (14 - 9e)x - 5e + 12 > 14e \cdot 1^{2} + (14 - 9e)2 - 5e + 12 = 40 - 9e > 0$$

and

$$(14 - 7e)x + 7e + 12 > (14 - 7e)2 + 7e + 12 = 40 - 7e > 0.$$

Here, we set

$$f(x) = \ln \frac{14ex^2 + (14 - 9e)x - 5e + 12}{(14 - 7e)x + 7e + 12} - \ln x^e$$

= $\ln(14ex^2 + (14 - 9e)x - 5e + 12) - \ln((14 - 7e)x + 7e + 12) - e\ln x$

and the derivative of f(x) is

$$f'(x) = \frac{e(x-1)g(x)}{x\left((14-7e)x+7e+12\right)\left(14ex^2+(14-9e)x-5e+12\right)},$$

where

$$g(x) = 98(e-2)(e-1)x^2 - 21(e-2)(8+3e)x - 35e^2 + 24e + 144.$$

From we have

$$g(1) = 676 - 312e \cong -172.104 < 0,$$

$$g(2) = 1600 - 1236e + 231e^2 \cong -52.9244 < 0$$

and g(x) is convex downward, hence we have g(x) < 0 for 1 < x < 2. f(x) is strictly decreasing for 1 < x < 2. From $\lim_{x \to 1} f(x) = 0$, we can get f(x) < 0 for 1 < x < 2.

Lemma 7 For $x \ge 2$, we have

$$\frac{168x^2 - 10x + 17}{149} < x^{\frac{5}{2}}.$$

Proof. We set

$$f(x) = 168x^2 - 10x + 17 - 149x^{\frac{5}{2}}$$

and the derivative of f(x) is

$$f'(x) = \frac{1}{2} \left(-745x^{\frac{3}{2}} + 672x - 20 \right) < 0$$

for $x \ge 2$. Since f(x) is strictly decreasing for x > 2 and $f(2) = 669 - 596\sqrt{2} \approx -173.871 < 0$, we have f(x) < 0 for $x \ge 2$.

3 Proof of Theorem 1

Proof of Theorem 1. We consider the equation

$$\frac{e(2x^{c}-1)}{x^{c}-1} = \left(1+\frac{1}{x}\right)^{x} + \left(1-\frac{1}{x}\right)^{-x},$$

then

$$c = \frac{\ln\left(\left(1 + \frac{1}{x}\right)^{x} + \left(1 - \frac{1}{x}\right)^{-x} - e\right) - \ln\left(\left(1 + \frac{1}{x}\right)^{x} + \left(1 - \frac{1}{x}\right)^{-x} - 2e\right)}{\ln x} = F(x).$$

Aoki et al.

Here, we will show that 2 < F(x) < e for x > 1, $\lim_{x \to 1+0} F(x) = e$ and $\lim_{x \to \infty} F(x) = 2$. We set

$$G(x,y) = \frac{\ln(y-e) - \ln(y-2e)}{\ln x}$$
 for $x > 1$ and $y > 2e$.

Then the derivative of G(x, y) for y is

$$\frac{\partial G(x,y)}{\partial y} = -\frac{e}{(y-2e)(y-e)\ln x} < 0.$$

Therefore, G(x, y) is strictly decreasing for y > 2e. First we will prove F(x) > 2 for x > 1. From Lemmas 1 and 2, we have

$$\left(1+\frac{1}{x}\right)^x + \left(1-\frac{1}{x}\right)^{-x} < \frac{e(12x+5)}{12x+11} + \frac{e(2x-1)}{2(x-1)}$$

and

$$F(x) = G\left(x, \left(1 + \frac{1}{x}\right)^x + \left(1 - \frac{1}{x}\right)^{-x}\right) > G\left(x, \frac{e(12x+5)}{12x+11} + \frac{e(2x-1)}{2(x-1)}\right)$$
$$= \frac{\ln\left(\frac{e(12x+5)}{12x+11} + \frac{e(2x-1)}{2(x-1)} - e\right) - \ln\left(\frac{e(12x+5)}{12x+11} + \frac{e(2x-1)}{2(x-1)} - 2e\right)}{\ln x}$$
$$= \frac{\ln\frac{e(24x^2-2x+1)}{2(x-1)(12x+11)} - \ln\frac{23e}{2(x-1)(12x+11)}}{\ln x} = \frac{\ln\left(24x^2 - 2x + 1\right) - \ln 23}{\ln x}$$
$$= \frac{\ln\left(x^2 + \frac{(x-1)^2}{23}\right)}{\ln x} > 2$$

for x > 1. Hence, we obtain F(x) > 2 for x > 1. Next we will prove F(x) < e for x > 1. By Lemmas 1, 4 and 6, we have

$$\frac{e(5+14x)}{2(6+7x)} + \frac{ex-e+1}{x-1} < \left(1+\frac{1}{x}\right)^x + \left(1-\frac{1}{x}\right)^{-x}$$

for x > 1 and

$$\begin{split} F(x) &= G\left(x, \left(1+\frac{1}{x}\right)^x + \left(1-\frac{1}{x}\right)^{-x}\right) < G\left(x, \frac{e(5+14x)}{2(6+7x)} + \frac{ex-e+1}{x-1}\right) \\ &= \frac{\ln\left(\frac{e(5+14x)}{2(6+7x)} + \frac{ex-e+1}{x-1} - e\right) - \ln\left(\frac{e(5+14x)}{2(6+7x)} + \frac{ex-e+1}{x-1} - 2e\right)}{\ln x} \\ &= \frac{\ln\frac{14ex^2 - 9ex+14x - 5e+12}{2(x-1)(7x+6)} - \ln\frac{-7ex+14x + 7e+12}{2(x-1)(7x+6)}}{\ln x} \\ &= \frac{\ln\frac{14ex^2 + (14-9e)x - 5e+12}{(14-7e)x + 7e+12}}{\ln x} < \frac{\ln x^e}{\ln x} = e \end{split}$$

for 1 < x < 2. Moreover, by Lemmas 1, 5 and 7, we have

$$\frac{e(5+14x)}{2(6+7x)} + \frac{e(12x-5)}{12x-11} < \left(1+\frac{1}{x}\right)^x + \left(1-\frac{1}{x}\right)^{-x}$$

for x > 1 and

$$\begin{split} F(x) = &G\left(x, \left(1 + \frac{1}{x}\right)^x + \left(1 - \frac{1}{x}\right)^{-x}\right) < G\left(x, \frac{e(5 + 14x)}{2(6 + 7x)} + \frac{e(12x - 5)}{12x - 11}\right) \\ = &\frac{\ln\left(\frac{e(5 + 14x)}{2(6 + 7x)} + \frac{e(12x - 5)}{12x - 11} - e\right) - \ln\left(\frac{e(5 + 14x)}{2(6 + 7x)} + \frac{e(12x - 5)}{12x - 11} - 2e\right)}{\ln x} \\ = &\frac{\ln\frac{e(168x^2 - 10x + 17)}{2(7x + 6)(12x - 11)} - \ln\frac{149e}{2(7x + 6)(12x - 11)}}{\ln x} \\ = &\frac{\ln\frac{168x^2 - 10x + 17}{149}}{\ln x} < \frac{\ln x^{\frac{5}{2}}}{\ln x} = \frac{5}{2} \end{split}$$

for $x \ge 2$. Hence, we obtain F(x) < e for x > 1. Next we will prove $\lim_{x\to\infty} F(x) = 2$ and $\lim_{x\to 1+0} F(x) = e$. From L'Hopital's theorem [6], we have

$$\lim_{x \to \infty} F(x) \le \lim_{x \to \infty} \frac{\ln \frac{168x^2 - 10x + 17}{149}}{\ln x} = \lim_{x \to \infty} \frac{\ln (168x^2 - 10x + 17) - \ln 149}{\ln x}$$
$$= \lim_{x \to \infty} \frac{336x^2 - 10x}{168x^2 - 10x + 17} = 2.$$

Thus, we obtain $\lim_{x\to\infty} F(x) = 2$. By Lemmas 1 and 3, we have

$$\left(1+\frac{1}{x}\right)^{x} + \left(1-\frac{1}{x}\right)^{-x} < \frac{e(12x+5)}{12x+11} + \frac{e(x-1)+1}{\left(1-\sqrt{x-1}\right)(x-1)}$$

and

$$F(x) = G\left(x, \left(1 + \frac{1}{x}\right)^x + \left(1 - \frac{1}{x}\right)^{-x}\right) > G\left(x, \frac{e(12x+5)}{12x+11} + \frac{e(x-1)+1}{\left(1 - \sqrt{x-1}\right)(x-1)}\right)$$
$$= \frac{\ln\left(\frac{e(12x+5)}{12x+11} + \frac{e(x-1)+1}{(1 - \sqrt{x-1})(x-1)} - e\right) - \ln\left(\frac{e(12x+5)}{12x+11} + \frac{e(x-1)+1}{(1 - \sqrt{x-1})(x-1)} - 2e\right)}{\ln x}$$

for $1 < x < \frac{26}{25}$. If $t = \sqrt{x-1}$, then we can get

$$F(x) > \frac{\ln\left(\frac{e(12t^2+17)}{12t^2+23} + \frac{et^2+1}{t^2-t^3} - e\right) - \ln\left(\frac{e(12t^2+17)}{12t^2+23} + \frac{et^2+1}{t^2-t^3} - 2e\right)}{\ln(t^2+1)}$$

$$= \frac{\ln\left(\frac{12et^4+6et^3+17et^2+12t^2+23}{(1-t)t^2(12t^2+23)}\right) - \ln\left(\frac{12et^5+29et^3-6et^2+12t^2+23}{(1-t)t^2(12t^2+23)}\right)}{\ln(t^2+1)}$$

$$= \frac{\ln\left(12et^4+6et^3+17et^2+12t^2+23\right) - \ln\left(12et^5+29et^3-6et^2+12t^2+23\right)}{\ln(t^2+1)}$$

for $0 < t < \frac{1}{5}$. From L'Hopital's theorem [6], we obtain

$$\begin{split} &\lim_{x \to 1+0} F(x) \\ &\geq \lim_{t \to 0+0} \frac{\ln\left(12et^4 + 6et^3 + 17et^2 + 12t^2 + 23\right) - \ln\left(12et^5 + 29et^3 - 6et^2 + 12t^2 + 23\right)}{\ln\left(t^2 + 1\right)} \\ &= \lim_{t \to 0+0} \frac{\frac{48et^3 + 18et^2 + 34et + 24t}{12et^4 + 6et^3 + 17et^2 + 12t^2 + 23} - \frac{60et^4 + 87et^2 - 12et + 24t}{12et^5 + 29et^3 - 6et^2 + 12t^2 + 23}}{\frac{2t}{t^2 + 1}} \\ &= \lim_{t \to 0+0} \frac{e\left(t^2 + 1\right) H(t)}{2\left(12et^4 + 6et^3 + 17et^2 + 12t^2 + 23\right)\left(12et^5 + 29et^3 - 6et^2 + 12t^2 + 23\right)} \\ &= \frac{e \cdot 1 \cdot H(0)}{2 \cdot 23 \cdot 23} = e, \end{split}$$

where

$$H(t) = -144et^7 - 144et^6 - 264et^5 - 432t^5 - 144et^4 + 288t^4 - 529et^3 - 1656t^3 + 1104t^2 - 1587t + 1058.$$

Therefore, we obtain $\lim_{x\to 1+0} F(x) = e$ and the proof of Theorem 1 is complete.

4 Conjectures

We present the following some conjectures related to the function $(1 + \frac{1}{x})^x + (1 - \frac{1}{x})^{-x}$.

Conjecture 1 For x > 1, we have

$$\frac{\alpha}{x^2 - 1} < \left(1 + \frac{1}{x}\right)^x + \left(1 - \frac{1}{x}\right)^{-x} - \frac{e(2x^2 - 1)}{x^2 - 1} < \frac{\beta}{x^2 - 1},$$

where the constants $\alpha = 2 - e \cong -0.718282$ and $\beta = -\frac{e}{12} \cong -0.226523$ are the best possible.

Conjecture 2 For x > 1, we have

$$\frac{\alpha}{x^2 - 1} < \left(1 + \frac{1}{x}\right)^x + \left(1 - \frac{1}{x}\right)^{-x} - \frac{e(2x^e - 1)}{x^e - 1} < \frac{\beta}{x^2 - 1},$$

where the constants $\alpha = 0$ and $\beta = \frac{11e}{12} \cong 2.49176$ are the best possible.

Conjecture 3 For $2 , there exists a unique number <math>x_p$ with $x_p > 1$ such that

$$\left(1 + \frac{1}{x}\right)^x + \left(1 - \frac{1}{x}\right)^{-x} < \frac{e(2x^p - 1)}{x^p - 1} \quad \text{for } 1 < x < x_p,$$

and

$$\left(1+\frac{1}{x}\right)^x + \left(1-\frac{1}{x}\right)^{-x} > \frac{e(2x^p-1)}{x^p-1} \text{ for } x > x_p.$$

The conjecture 3 can be proved to be true if F(x) in the proof shows strictly decreasing for x > 1. Although not applicable to Conjecture 3, Malešević and Mihailović [5] is known work on the monotonicity of such functions.

Acknowledgment. The authors would like to thank the referee for his/her comments that helped us improve this article.

References

- C. P. Chen and R. B. Paris, An inequality involving the constant e and a generalized Carleman-type inequality, Math. Inequal. Appl., 23(2020), 1197–1203.
- [2] C. P. Chen and R. B. Paris, Approximation formulas for the constant e and an improvement to a Carleman-type inequality, J. Math. Anal. Appl., 466(2018), 711–725.
- [3] C. P. Chen and C. Mortici, Sharp form of inequality for the constant e, Carpathian J. Math., 27(2011), 185–191.
- [4] C. Mortici and Y. Hu, On some convergences to the constant e and improvements of Carleman's inequality, Carpathian J. Math., 31(2015), 249–254.
- [5] B. Malešević and B. Mihailović, A minimax approximant in the theory of analytical inequalities, Appl. Anal. Discrete Math., 15(2021), 486–509.
- [6] W. Rudin, Walter Principles of Mathematical Analysis, Third edition. International Series in Pure and Applied Mathematics. McGraw-Hill Book Co., New York-Auckland-Dusseldorf, 1976.
- [7] J. B. Wilker, Problem E3306, The American Mathematical Monthly, 96(1989), 55.
- [8] Z. Xie and Y. Zhong, A best approximation for constant e and an improvement to Hardy's inequality, J. Math. Anal. Appl., 252(2000), 994–998.
- [9] B. Yang and L. Debnath, Some inequalities involving the constant e, and an application to Carleman's inequality, J. Math. Anal. Appl., 223(1998), 347–353.