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Abstract
In this paper, we establish sharp inequality related to the sum of the functions (1+ 1

x
)x and (1− 1

x
)−x:

for x > 1, we have

e(2xα − 1)
xα − 1 <

(
1 +

1

x

)x
+

(
1− 1

x

)−x
<
e(2xβ − 1)
xβ − 1 ,

where the constants α = e and β = 2 are the best possible. Moreover, we present two conjectures related
to the inequality.

1 Introduction

In this paper, we present sharp inequalities related to the function (1 + 1
x )
x + (1 − 1

x )
−x. The function

(1 + 1
x )
x is strictly increasing for x > 1 and converges to e, also many results are known about the speed of

convergence to e, the fractional function approximation [1—4, 8, 9]. On the other hand, the function (1− 1
x )
−x

is strictly decreasing for x > 1 and converges to e, and the sum of these functions is strictly decreasing for
x > 1 and converges to 2e. The study of inequalities involving sums of functions with different monotonicity
is interesting and Wilker’s inequality [7] is known as an example of such an inequality. Our main theorem is
a new result not known until now and we present two conjectures in the end of this paper.

Theorem 1 For x > 1, we have

e(2xα − 1)
xα − 1 <

(
1 +

1

x

)x
+

(
1− 1

x

)−x
<
e(2xβ − 1)
xβ − 1 ,

where the constants α = e and β = 2 are the best possible.

2 Preliminaries

In this section, we will show some lemmas to prove Theorem 1.

Lemma 1 For x ≥ 1, we have

e

(
1− 7

14x+ 12

)
<

(
1 +

1

x

)x
< e

(
1− 6

12x+ 11

)
.

That is,
e(5 + 14x)

2(6 + 7x)
<

(
1 +

1

x

)x
<
e(12x+ 5)

12x+ 11
.
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20 Fractional Approximations Converging to e

The Lemma 1 is proved by Xie and Zhong in [8].

Lemma 2 For x > 1, we have (
1− 1

x

)−x
<
e(2x− 1)
2(x− 1) .

Proof. We set

f(x) = ln

(
1− 1

x

)−x
− ln e(2x− 1)

2(x− 1)
= −x ln(x− 1) + x lnx− 1− ln(2x− 1) + ln(x− 1) + ln 2 .

The derivatives of f(x) are

f ′(x) =
2

1− 2x − ln(x− 1) + lnx

and
f ′′(x) = − 1

(x− 1)x(2x− 1)2 < 0.

Hence, f ′(x) is strictly decreasing for x > 1. By limx→∞ f ′(x) = 0, we have f ′(x) > 0 for x > 1 and f(x) is
strictly increasing for x > 1. From limx→∞ f(x) = 0, we obtain f(x) < 0 for x > 1.

Lemma 3 For 1 < x < 26
25 , we have(

1− 1
x

)−x
<

e(x− 1) + 1(
1−
√
x− 1

)
(x− 1)

.

Proof. If t =
√
x− 1, then the inequality to prove is(

t2

t2 + 1

)−t2−1
<

et2 + 1

t2(1− t) for 0 < t <
1

5
.

We set

f(t) = ln

(
t2

t2 + 1

)−t2−1
− ln et2 + 1

t2(1− t)
= −2t2 ln t+ t2 ln

(
t2 + 1

)
+ ln

(
t2 + 1

)
− ln

(
et2 + 1

)
+ ln(1− t)

and the derivative of f(t) is

f ′(t) = t

(
et(t− 2)− 1

(1− t)t (et2 + 1) + 2 ln
(
t2 + 1

)
− 4 ln t

)
< t

(
2t(t− 2)− 1

(1− t)t (3t2 + 1) + 2 ln
(
12 + 1

)
− 4 ln t

)
= tg(t).

The derivative of g(t) is

g′(t) =
h(t)

(t− 1)2t2 (3t2 + 1)2
,

where

h(t) = −36t7 + 72t6 − 48t5 + 6t4 − 16t3 + 15t2 − 6t+ 1

> −36
(
1

5

)
t6 + 72t6 − 48

(
1

5

)
t4 + 6t4 − 16

(
1

5

)
t2 + 15t2 − 6t+ 1

=
324

5
t6 − 18

5
t4 +

59

5
t2 − 6t+ 1 > 324

5
t6 − 18

5

(
1

5

)2
t2 +

59

5
t2 − 6t+ 1

>
1457

125
t2 − 6t+ 1 = 1457

125

(
t− 375

1457

)2
+
332

1457
> 0.
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Since g(t) is strictly increasing for 0 < t < 1
5 and g( 15 ) = −

1075
112 + 2 ln 2 + 4 ln 5

∼= −1.77417 < 0, we
have f ′(t) < 0 for 0 < t < 1

5 and f(t) is strictly decreasing for 0 < t < 1
5 . Since limt→0+0 t ln t = 0 and

limt→0+0 f(t) = 0, we have f(t) < 0 for 0 < t < 1
5 .

Lemma 4 For x > 1, we have
ex− e+ 1
x− 1 <

(
1− 1

x

)−x
.

Proof. We set

f(x) = ln
ex− e+ 1
x− 1 − ln

(
1− 1

x

)−x
= ln(ex− e+ 1)− ln(x− 1) + x ln(x− 1)− x lnx.

The derivatives of f(x) are

f ′(x) =
e

ex− e+ 1 + ln(x− 1)− lnx

and

f ′′(x) =
e(2− e)x+ e2 − 2e+ 1
x(x− 1)(ex− e+ 1)2 .

From f ′′(x) > 0 for 1 < x < 1−2e+e2
e(e−2)

∼= 1.51217 and f ′′(x) < 0 for x > 1−2e+e2
e(e−2) , f

′(x) is strictly increasing for

1 < x < 1−2e+e2
e(e−2) and strictly decreasing for x > 1−2e+e2

e(e−2) . By limx→1+0 f
′(x) = −∞ and limx→∞ f ′(x) = 0,

there exists a unique real number x0 such that f ′(x) < 0 for 1 < x < x0 and f ′(x) > 0 for x > x0. Hence,
f(x) is strictly decreasing for 1 < x < x0 and strictly increasing for x > x0. By limx→1+0 f(x) = 0 and
limx→∞ f(x) = 0, we obtain f(x) < 0 for x > 1.

Lemma 5 For x > 1, we have
e(12x− 5)
12x− 11 <

(
1− 1

x

)−x
.

Proof. We set

f(x) = ln
e(12x− 5)
12x− 11 − ln

(
1− 1

x

)−x
= 1 + ln(12x− 5)− ln(12x− 11) + x ln(x− 1)− x lnx.

The derivatives of f(x) are

f ′(x) =
144x2 − 264x+ 127

(x− 1)(12x− 11)(12x− 5) + ln(x− 1)− lnx

and

f ′′(x) =
−4320x2 + 7296x− 3025

(x− 1)2x(12x− 11)2(12x− 5)2 .

Since g(x) = −4320x2+7296x−3025 is convex upwards and takes the maximum value at x = 38
45 , so we have

g(x) < −4320 · 12+7296 · 1− 3025 = −49 < 0. Hence, we have f ′′(x) < 0 and f ′(x) is strictly decreasing for
x > 1. By limx→∞ f ′(x) = 0, we obtain f ′(x) > 0 for x > 1 and f(x) is strictly increasing for x > 1. From
limx→∞ f(x) = 0, we obtain f(x) < 0 for x > 1.

Lemma 6 For 1 < x < 2, we have

14ex2 + (14− 9e)x− 5e+ 12
(14− 7e)x+ 7e+ 12 < xe.
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Proof. We note that

14ex2 + (14− 9e)x− 5e+ 12 > 14e · 12 + (14− 9e)2− 5e+ 12 = 40− 9e > 0

and
(14− 7e)x+ 7e+ 12 > (14− 7e)2 + 7e+ 12 = 40− 7e > 0.

Here, we set

f(x) = ln
14ex2 + (14− 9e)x− 5e+ 12

(14− 7e)x+ 7e+ 12 − lnxe

= ln(14ex2 + (14− 9e)x− 5e+ 12)− ln((14− 7e)x+ 7e+ 12)− e lnx

and the derivative of f(x) is

f ′(x) =
e(x− 1)g(x)

x ((14− 7e)x+ 7e+ 12) (14ex2 + (14− 9e)x− 5e+ 12) ,

where
g(x) = 98(e− 2)(e− 1)x2 − 21(e− 2)(8 + 3e)x− 35e2 + 24e+ 144.

From we have
g(1) = 676− 312e ∼= −172.104 < 0,

g(2) = 1600− 1236e+ 231e2 ∼= −52.9244 < 0

and g(x) is convex downward, hence we have g(x) < 0 for 1 < x < 2. f(x) is strictly decreasing for 1 < x < 2.
From limx→1 f(x) = 0, we can get f(x) < 0 for 1 < x < 2.

Lemma 7 For x ≥ 2, we have
168x2 − 10x+ 17

149
< x

5
2 .

Proof. We set

f(x) = 168x2 − 10x+ 17− 149x 5
2

and the derivative of f(x) is

f ′(x) =
1

2

(
−745x 3

2 + 672x− 20
)
< 0

for x ≥ 2. Since f(x) is strictly decreasing for x > 2 and f(2) = 669 − 596
√
2 ∼= −173.871 < 0, we have

f(x) < 0 for x ≥ 2.

3 Proof of Theorem 1

Proof of Theorem 1. We consider the equation

e(2xc − 1)
xc − 1 =

(
1 +

1

x

)x
+

(
1− 1

x

)−x
,

then

c =
ln
((
1 + 1

x

)x
+
(
1− 1

x

)−x − e)− ln((1 + 1
x

)x
+
(
1− 1

x

)−x − 2e)
lnx

= F (x).
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Here, we will show that 2 < F (x) < e for x > 1, limx→1+0F (x) = e and limx→∞F (x) = 2. We set

G(x, y) =
ln (y − e)− ln (y − 2e)

lnx
for x > 1 and y > 2e.

Then the derivative of G(x, y) for y is

∂G(x, y)

∂y
= − e

(y − 2e)(y − e) lnx < 0.

Therefore, G(x, y) is strictly decreasing for y > 2e. First we will prove F (x) > 2 for x > 1. From Lemmas 1
and 2, we have (

1 +
1

x

)x
+

(
1− 1

x

)−x
<
e(12x+ 5)

12x+ 11
+
e(2x− 1)
2(x− 1)

and

F (x) = G

(
x,

(
1 +

1

x

)x
+

(
1− 1

x

)−x)
> G

(
x,
e(12x+ 5)

12x+ 11
+
e(2x− 1)
2(x− 1)

)

=
ln
(
e(12x+5)
12x+11 +

e(2x−1)
2(x−1) − e

)
− ln

(
e(12x+5)
12x+11 +

e(2x−1)
2(x−1) − 2e

)
lnx

=
ln

e(24x2−2x+1)
2(x−1)(12x+11) − ln

23e
2(x−1)(12x+11)

lnx
=
ln
(
24x2 − 2x+ 1

)
− ln 23

lnx

=
ln
(
x2 + (x−1)2

23

)
lnx

> 2

for x > 1. Hence, we obtain F (x) > 2 for x > 1. Next we will prove F (x) < e for x > 1. By Lemmas 1, 4
and 6, we have

e(5 + 14x)

2(6 + 7x)
+
ex− e+ 1
x− 1 <

(
1 +

1

x

)x
+

(
1− 1

x

)−x
for x > 1 and

F (x) = G

(
x,

(
1 +

1

x

)x
+

(
1− 1

x

)−x)
< G

(
x,
e(5 + 14x)

2(6 + 7x)
+
ex− e+ 1
x− 1

)

=
ln
(
e(5+14x)
2(6+7x) +

ex−e+1
x−1 − e

)
− ln

(
e(5+14x)
2(6+7x) +

ex−e+1
x−1 − 2e

)
lnx

=
ln 14ex

2−9ex+14x−5e+12
2(x−1)(7x+6) − ln −7ex+14x+7e+122(x−1)(7x+6)

lnx

=
ln 14ex

2+(14−9e)x−5e+12
(14−7e)x+7e+12

lnx
<
lnxe

lnx
= e

for 1 < x < 2. Moreover, by Lemmas 1, 5 and 7, we have

e(5 + 14x)

2(6 + 7x)
+
e(12x− 5)
12x− 11 <

(
1 +

1

x

)x
+

(
1− 1

x

)−x
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for x > 1 and

F (x) =G

(
x,

(
1 +

1

x

)x
+

(
1− 1

x

)−x)
< G

(
x,
e(5 + 14x)

2(6 + 7x)
+
e(12x− 5)
12x− 11

)

=
ln
(
e(5+14x)
2(6+7x) +

e(12x−5)
12x−11 − e

)
− ln

(
e(5+14x)
2(6+7x) +

e(12x−5)
12x−11 − 2e

)
lnx

=
ln

e(168x2−10x+17)
2(7x+6)(12x−11) − ln

149e
2(7x+6)(12x−11)

lnx

=
ln 168x

2−10x+17
149

lnx
<
lnx

5
2

lnx
=
5

2

for x ≥ 2. Hence, we obtain F (x) < e for x > 1. Next we will prove limx→∞ F (x) = 2 and limx→1+0 F (x) = e.
From L’Hopital’s theorem [6], we have

lim
x→∞

F (x) ≤ lim
x→∞

ln 168x
2−10x+17
149

lnx
= lim
x→∞

ln
(
168x2 − 10x+ 17

)
− ln 149

lnx

= lim
x→∞

336x2 − 10x
168x2 − 10x+ 17 = 2 .

Thus, we obtain limx→∞ F (x) = 2. By Lemmas 1 and 3, we have

(
1 +

1

x

)x
+

(
1− 1

x

)−x
<
e(12x+ 5)

12x+ 11
+

e(x− 1) + 1(
1−
√
x− 1

)
(x− 1)

and

F (x) = G

(
x,

(
1 +

1

x

)x
+

(
1− 1

x

)−x)
> G

(
x,
e(12x+ 5)

12x+ 11
+

e(x− 1) + 1(
1−
√
x− 1

)
(x− 1)

)

=

ln

(
e(12x+5)
12x+11 +

e(x−1)+1
(1−
√
x−1)(x−1)

− e
)
− ln

(
e(12x+5)
12x+11 +

e(x−1)+1
(1−
√
x−1)(x−1)

− 2e
)

lnx

for 1 < x < 26
25 . If t =

√
x− 1, then we can get

F (x) >

ln

(
e(12t2+17)
12t2+23 + et2+1

t2−t3 − e
)
− ln

(
e(12t2+17)
12t2+23 + et2+1

t2−t3 − 2e
)

ln(t2 + 1)

=
ln
(
12et4+6et3+17et2+12t2+23

(1−t)t2(12t2+23)

)
− ln

(
12et5+29et3−6et2+12t2+23

(1−t)t2(12t2+23)

)
ln (t2 + 1)

=
ln
(
12et4 + 6et3 + 17et2 + 12t2 + 23

)
− ln

(
12et5 + 29et3 − 6et2 + 12t2 + 23

)
ln (t2 + 1)
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for 0 < t < 1
5 . From L’Hopital’s theorem [6], we obtain

lim
x→1+0

F (x)

≥ lim
t→0+0

ln
(
12et4 + 6et3 + 17et2 + 12t2 + 23

)
− ln

(
12et5 + 29et3 − 6et2 + 12t2 + 23

)
ln (t2 + 1)

= lim
t→0+0

48et3+18et2+34et+24t
12et4+6et3+17et2+12t2+23 −

60et4+87et2−12et+24t
12et5+29et3−6et2+12t2+23

2t
t2+1

= lim
t→0+0

e
(
t2 + 1

)
H(t)

2 (12et4 + 6et3 + 17et2 + 12t2 + 23) (12et5 + 29et3 − 6et2 + 12t2 + 23)

=
e · 1 ·H(0)
2 · 23 · 23 = e,

where

H(t) = −144et7 − 144et6 − 264et5 − 432t5 − 144et4 + 288t4 − 529et3

−1656t3 + 1104t2 − 1587t+ 1058.

Therefore, we obtain limx→1+0 F (x) = e and the proof of Theorem 1 is complete.

4 Conjectures

We present the following some conjectures related to the function (1 + 1
x )
x + (1− 1

x )
−x.

Conjecture 1 For x > 1, we have

α

x2 − 1 <
(
1 +

1

x

)x
+

(
1− 1

x

)−x
− e(2x2 − 1)

x2 − 1 <
β

x2 − 1 ,

where the constants α = 2− e ∼= −0.718282 and β = − e
12
∼= −0.226523 are the best possible.

Conjecture 2 For x > 1, we have

α

x2 − 1 <
(
1 +

1

x

)x
+

(
1− 1

x

)−x
− e(2xe − 1)

xe − 1 <
β

x2 − 1 ,

where the constants α = 0 and β = 11e
12
∼= 2.49176 are the best possible.

Conjecture 3 For 2 < p < e, there exists a unique number xp with xp > 1 such that(
1 +

1

x

)x
+

(
1− 1

x

)−x
<
e(2xp − 1)
xp − 1 for 1 < x < xp,

and (
1 +

1

x

)x
+

(
1− 1

x

)−x
>
e(2xp − 1)
xp − 1 for x > xp.

The conjecture 3 can be proved to be true if F (x) in the proof shows strictly decreasing for x > 1.
Although not applicable to Conjecture 3, Maleševíc and Mihailovíc [5] is known work on the monotonicity
of such functions.
Acknowledgment. The authors would like to thank the referee for his/her comments that helped us

improve this article.
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