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Abstract
In this paper, we establish sharp inequality related to the sum of the functions (1+ %)z and (1— %)71:

for x > 1, we have
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where the constants a = e and 8 = 2 are the best possible. Moreover, we present two conjectures related
to the inequality.

1 Introduction

In this paper, we present sharp inequalities related to the function (1 + é)"’” + (1 - %)*I The function
(1+ %)” is strictly increasing for > 1 and converges to e, also many results are known about the speed of
convergence to e, the fractional function approximation [1-4, 8, 9]. On the other hand, the function (1— %)‘x
is strictly decreasing for x > 1 and converges to e, and the sum of these functions is strictly decreasing for
x > 1 and converges to 2e. The study of inequalities involving sums of functions with different monotonicity
is interesting and Wilker’s inequality [7] is known as an example of such an inequality. Our main theorem is
a new result not known until now and we present two conjectures in the end of this paper.

Theorem 1 For x > 1, we have
22 — 1 " 1\ " 228 — 1
e —) (1) (o) oD ),
z® —1 T x P —1

where the constants o = e and 8 = 2 are the best possible.

2 Preliminaries

In this section, we will show some lemmas to prove Theorem 1.

Lemma 1 For x > 1, we have
7 1\° 6
[ — 14~ 1—— ).
e( 14m+12><< +m> <e( 12z+11>

e(5 + 14xz) 1+ 1 T e(12z 4 5)
2(6+7x) 12z 4+ 11 °
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That is,
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The Lemma 1 is proved by Xie and Zhong in [8].
1\ " -
1 - e(2x 1).
x 2(x—1)

B 1\ e(2z — 1)
f(z:)-ln(l—) —lnm
=—<zln(z—1)+2zlnz—1-In(2x—1)+1In(x — 1) +1n2.

Lemma 2 For x > 1, we have

Proof. We set

The derivatives of f(z) are
2

f(z)= —In(z—-1)+Inz

and 1
"(z) = — < 0.
(@) (x — D2z — 1)
Hence, f'(x) is strictly decreasing for > 1. By lim, . f/'(z) = 0, we have f'(z) > 0 for x > 1 and f(z) is
strictly increasing for > 1. From lim, . f(z) = 0, we obtain f(z) <0 forz > 1. m

Lemma 3 Forl <z < %, we have

<1_1)$< e(x—1)+1
e (1-Vz=1)(z—-1)
Proof. If t = v/z — 1, then the inequality to prove is

2
2o\ 241 1
< ) <if0r0<t<g.
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and the derivative of f(t) is
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The derivative of g(t) is
h(t)

(t—1)262 (3¢2 + 1)

q'(t) =
where

h(t) = —36t7 + 72t° — 48¢° + 6t* — 16t + 15t* — 6t + 1
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Since g(t) is strictly increasing for 0 < ¢ < 1 and g(3) = =182 + 2In2 + 4In5 = —1.77417 < 0, we
have f/(t) < 0 for 0 <t < 1 and f(t) is strictly decreasing for 0 < t < %. Since limy_g4otInt = 0 and

lim; 010 f(t) =0, we have f(t) <Ofor0<t<i. m
ex —e+1 ( 1)_3c
—_— < |1-= .
z—1 T

fa) =&ty (1_1>_””

x—1 T

Lemma 4 For x > 1, we have

Proof. We set

=ln(ex—e+1)—In(z—1)+zln(z—1) —zInz.

The derivatives of f(x) are

!/ _ € _ _
fl(z) = p——— +In(z—1)—Inz
and
() = e(2—e)x+e?—2e+1

z(x —1)(ex —e+1)2

From f"(z) >0forl <z < 1g(ii+2§2 >~ 1.51217 and f"(x) < 0 for x > 1;(36_232, f/(x) is strictly increasing for
2 2

1 < < 17255 and strictly decreasing for @ > 17255, By lim, 140 f/(2) = —o0 and lim, .o f'(z) =0,

there exists a unique real number ¢ such that f/'(z) < 0 for 1 < < z9 and f'(z) > 0 for z > (. Hence,

f(x) is strictly decreasing for 1 < = < z( and strictly increasing for © > xg. By lim, 140 f(z) = 0 and

lim, . f(z) =0, we obtain f(z) <Oforz>1. m
e(12z — 5) <(1_ 1 '
122 — 11 T

_e(12x—5) 1\
f@)—lnm_n‘l“@‘x)

=1+In(122 - 5) = In(122 — 11) + zln(x — 1) —zlnx.

Lemma 5 For x > 1, we have

Proof. We set

The derivatives of f(x) are

14422 — 264z + 127

"(z) = In(z—1)—1
P = G- —aze —p) T RE-D -z
and
) = —432022 4 72962 — 3025
~(z—1)22(122 — 11)2(122 — 5)2°
Since g(x) = —4320x2 + 72962 — 3025 is convex upwards and takes the maximum value at x = %, so we have

g(z) < —4320-1%2 47296 - 1 — 3025 = —49 < 0. Hence, we have f”(x) < 0 and f'(x) is strictly decreasing for
x> 1. By lim, . f'(z) = 0, we obtain f'(z) > 0 for z > 1 and f(x) is strictly increasing for z > 1. From
lim, o f(z) =0, we obtain f(z) <Oforz >1. m

Lemma 6 For 1l < x < 2, we have

ldex? + (14 — 9e)x — 5e + 12
(14 —Te)x + Te + 12
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Proof. We note that
l4ex? + (14 — 9e)z — 5e + 12 > 1de - 12 + (14 — 9e)2 — 5e + 12 = 40 — 9e > 0

and
(l4—Te)x+Te+12> (14 —T7e)2+Te+ 12 =40 — Te > 0.
Here, we set
ldex? 4 (14 — 9e)x — be + 12
=1 _
f@)=1n (14 = 7e)x + Te + 12
= In(14ex? + (14 — 9e)z — 5e + 12) — In((14 — Te)z + Te + 12) —elnx

In z°¢

and the derivative of f(z) is

f/(l‘) — 6(1‘ — 1)9('1:)
z((14 — Te)x + Te + 12) (14ex? 4+ (14 — 9e)z — He 4+ 12)°

where
g(x) = 98(e — 2)(e — 1)z? — 21(e — 2)(8 + 3e)x — 35¢* + 24e + 144.

From we have
g(1) =676 — 312e = —172.104 < 0,
g(2) = 1600 — 1236e + 231e% & —52.9244 < 0

and g(z) is convex downward, hence we have g(z) < 0 for 1 < x < 2. f(x) is strictly decreasing for 1 < x < 2.
From lim,_,; f(z) =0, we can get f(z) <Oforl <z <2 m

Lemma 7 For x > 2, we have
168z2 — 10z + 17 <

149

5
x2.

Proof. We set
f(x) = 16827 — 10z + 17 — 14923
and the derivative of f(z) is
() = % (~7450% + 6720 - 20) < 0

for x > 2. Since f(x) is strictly decreasing for > 2 and f(2) = 669 — 596v/2 = —173.871 < 0, we have
flz)<Oforxz>2. m

3 Proof of Theorem 1

Proof of Theorem 1. We consider the equation

6(2:L'1)_<1+1) +<11) ,
z¢—1 x x

then
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Here, we will show that 2 < F(x) < e for > 1, lim,_,140F (z) = e and lim, o F(x) = 2. We set

In(y —e) —In(y — 2e)
Inz

G(z,y) = for z > 1 and y > 2e.

Then the derivative of G(z,y) for y is

0G(z,y) e
dy (y—26)(y—e)1nfc<0'

Therefore, G(z,y) is strictly decreasing for y > 2e. First we will prove F(x) > 2 for > 1. From Lemmas 1

and 2, we have
1\"* 1\ " e(12z+5)  e(2z—1)
1+ — 1—— <
< +a:> +< x) 12z + 11 +2(a:—1)

and

F(z) =G (m (1 i als)m " (1 - alc) x) - ¢ (x egile? " 62((2;—_11))>

In (6(12I+5) + e(2z—1) 6) —In (6(12x+5) + e(2z—1) 26)

12z+11 2(z—1) 12z+11 2(z—1)
- Inz
e(242® —22+1 e
~In 2(171)(12%11)) —In 2(3071)2(3129:4»11) I (242% — 22+ 1) —In23
o Inz o Inz
In (ZQ + (1;31) )
=2 >
Inz

for z > 1. Hence, we obtain F'(z) > 2 for x > 1. Next we will prove F(z) < e for > 1. By Lemmas 1, 4

and 6, we have
e(5+14x)+e:c—e+1< 1+1 I+ 1_1 —z
2(6 + Tx) x—1 x

for x > 1 and

S

In (e(5+147;) + ex—e+1 6) —In (e(5+141;) + pfcm_jii_l . 26)

2(6+7x) z—1 2(6+7x)

Inz

11’1 14ea:279ea:+14z75e+12 _ hl —Tex+14x+Te+12
2(x—1)(Tz+6) 2(x—1)(7Tz+6)
Inz
] 14ex’+(14—9e)z—5e+12 .
N A1 7e)atret12 - Inz®
Inz Inz

for 1 < = < 2. Moreover, by Lemmas 1, 5 and 7, we have

e(5+14x)+e(12x75)< 1+l m+ 171 o
2(6 + Tx) 122 — 11 x
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for x > 1 and

F(z) =G (x (1 n i)gc n (1 N i) w) <G (w 62(5611;:;)) n 6$iw_‘§>)

In (e(5+14a:) n e(122—5) e) I (e(5+14w) i e(12c—5) 26)

2(6+7x) 12z2—11 2(6+7x) 122—11
B Inz
1 (16827 —105+17) 1 149¢
ey (1ze—11) 1 2(7at6)(120—11)
Inx

2_ 5
I 168z 141903:+17 Ings :§

Inz Inz 2

for x > 2. Hence, we obtain F'(z) < e for z > 1. Next we will prove lim,_,o, F(x) = 2 and lim,_,110 F'(z) = e.
From L’Hopital’s theorem [6], we have

In 1682% 102417 In (16822 — 102 + 17) — In 149
lim F(z) < lim S ¢ I [ n (1682 * ) —In
r—00 —00 Inx T—00 Inzx
33622 — 10z

= lim =
z—o0 16822 — 10z + 17

Thus, we obtain lim, ., F(z) = 2. By Lemmas 1 and 3, we have

<1 + ;)T ' <1 - i) < egile? G _65;%11))“;;_ 1)

and

=
S

e <x, (1 + i)m + (1 - ;) r) >G (x’ egix:l?) A _6\(2%11))42;_ 1))

e(12x245) e(x—1)+1 o _ e(12z+5) e(x—1)+1 .
1“( 2501 ¥ () e) 1“( 211 " (i=Vamn) e 26)

Inx

for 1 << %. If t = vz — 1, then we can get

e(126417) | 4211 e(1264+17) | 4211
hl( g T o —¢) —In| “ppgss +pop — 2
F(x) >
() ln(t2 + 1)
In (126t4+66t3+17et2+12t2+23) I (126t5+298t3768t2+12t2+23)
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In (12et* + 6et® + 17et? + 12t 4 23) — In (12et® + 29et® — 6et? + 12t* + 23)
In (¢2 + 1)
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for 0 < ¢ < 1. From L’Hopital’s theorem [6], we obtain

li F
i, F@)
- In (12et* + 6et® + 17et? + 12t + 23) — In (12et° + 29et® — Get? 4 12> + 23)
1m
= 5040 In(¢2+1)
48et®+18et?+34et+24t  60et*+87et?—12et+24t
_ 12etd46et3+17et>+ 1262423 12et54+29et3 —6et2+12t2+23
t—0+0 2t

t2+1
i e(t*+1)H()
= l1m
t=0+0 2 (12et? + 6et3 + 17et® + 12t2 + 23) (12et5 + 29et® — 6et? + 122 + 23)

_e-1-H(0) .
- 2.23.23 7
where
H(t) = —144et” — 144etS — 264et® — 432t° — 144et* + 288t* — 529¢t?

—1656t3 + 1104¢% — 1587¢ + 1058.

Therefore, we obtain lim,_.; 10 F(z) = e and the proof of Theorem 1 is complete. m

4 Conjectures

We present the following some conjectures related to the function (1 + 1) + (1 — 1)

Conjecture 1 For z > 1, we have

a 1\* 1\ 7 e(222-1) B
14— 1--) -
x21<<+m> +< m) z2 -1 <z2717

where the constants a = 2 — e = —0.718282 and = —15 = —0.226523 are the best possible.

Conjecture 2 For xz > 1, we have

a 1\"* 1\ % e(2z°—-1) B
<(1+= 1--) - < :
2 -1 <+z> +( w> ze —1 z2 -1

where the constants a =0 and § = % = 2.49176 are the best possible.

Conjecture 3 For 2 < p < e, there exists a unique number x, with x, > 1 such that

1\° 1\7" 2P — 1
(1+> +(1—> <M forl <z < mp,
X x

P —1

and

1\* 1\ 22P — 1
(1+$> +(1_m> >M for x > x,.

P —1

The conjecture 3 can be proved to be true if F(z) in the proof shows strictly decreasing for =z > 1.
Although not applicable to Conjecture 3, Malesevi¢ and Mihailovi¢ [5] is known work on the monotonicity
of such functions.
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