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Abstract

The management of plankton production constitutes a major challenge for the development of aqua-
culture. To attend this objective, chlorophyll-a, a pigment present in all photosynthetic organisms, is
generally and historically used as an estimator of the biomass of planktonic organisms. In this work,
we use the data of chlorophyll-a and we choose two controls strategies to minimize the pollution mor-
tality rate. By using Sea-Das software we obtain raster maps. These maps show the distribution of
Chlorophyll-a in Moroccan maritime areas throughout the month of May 2019 and 2020. We notice
that we choose these two maps precisely because we noticed that, during the international lockdown
period (caused by Covid-19 pandemic), a significant number of marine resources have come to light. The
aim purpose of this article is to propose and analyze mathematically a bioeconomic model of plankton
organism taking into account the negative effect of pollution. We seek to control the mortality pollution
rate and to clarify the impact of the pollution in the reproduction of marine populations.

1 Introduction

Marine research has indicated that the products released into the seas and oceans results marine pollution
[1, 2, 3, 4, 5, 6]. This pollution is mainly related to human activity and arrives in the marine environment
through the vector of river routes, winds, low latitude air where it is directly discharged into the sea. Waste
injure and hinder the mobility of different marine populations, transport invasion species or even cause
asphyxiation of the seabed. In general, it threatens aquatic ecosystems. The pollution of the seas and
oceans has a profound impact on all aquatic life. So, once in the ocean, the waste has multiple impacts on
aquatic life and also on humans.
According to a recent study conducted by experts, in 2050 there will be more plastic than fish in the

seas and oceans. Actually, more than 817 marine and coastal species have been identified as victims of
marine litter pollution due to ingestion, strangulation or entanglement. This number of species threatened
by marine litter continues to increase.
For this reason, in this work we search to show mathematically the negative influence of pollution on the

evolution biomass of different marine species and to control the mortality pollution rates. We apply our study
for planktonic organisms. These microscopic plants constitute the basis of the marine food chain. According
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to a study by an international team of scientists, different types of pollution affect plankton. For example,
pollution by petroleum products, by creating a film on the surface of the water, prevents some of the light
from entering the marine environment, which can decrease the photosynthetic activities of phytoplankton,
and by preventing exchanges gas (oxygen, carbon dioxide) between the atmosphere and seawater, will disrupt
the metabolism of organisms, plants or animals.
This article is situated in this general context. In this work we present and study a bioeconomic model

for phytoplankton and zooplankton organisms in continues time and to make the study close to reality we
consider the spatiotemporal discrete bioeconomic model associated. The two planktons are in predation and
they are supposed to be exploited by fishing fleet.
In the literature, authors have already study biological and bioeconomic models of marine species in the

continues time but they have not included the negative effect of pollution in there studies.
We can cite for examples [7, 8, 9]. In these works, authors have studied bioeconomic models of harvesting

concerning marine populations fishery for the optimal management of renewable resources.
Other interesting examples are [10, 11]. In paper [10], author has discussed bioeconomic analysis and

different management strategies in fisheries and in paper [11] the authors have studied a combined harvesting
model associated to one predator and two prey marine populations. Further important examples in this
context are [12, 13].
In this context, we can also refer to [14, 15, 16, 17]. In paper [14], authors have proposed a bioeconomic

equilibrium system for many fishermen exploiting three competing species. In paper [15], authors have tacked
in consideration the fact that the price of fish populations depends on the quantity harvested and they have
modeled a bioeconomic model concerning competition-predation species.
In the same research field, it is worth mentioning the works [18, 19, 20, 21, 22, 23, 24, 25, 27, 28]. In

these works authors have proposed and analysed a different bioeconomic models. Also, they have discussed
the influence of biological and economic parameters on the fishing efforts, catches and profits. Concerning
optimal control harvesting bioeconomic models we can cite for example [29, 30, 31, 32, 33, 34, 35]. Let us
note that most of these models deals with single species or two species communities.
In the discrete-time prey-predator model proposed, the growth’s evolution of planktonic creatures accord-

ing to a spatial diffusion is described in a uniformly sized area of global interest. Based on the works [36, 37],
we define the area of subdomains of global interest by cells containing the two planktonic organisms. The
aim of this part is to consider an optimal control problem concerning the pollution rate of a prey-predator
bioeconomic model in Morocco’s fishing areas.
In this work, we focus on the management of plankton production, which constitutes a major challenge for

the development of aquaculture. To attend this objective, chlorophyll-a, a pigment present in all photosyn-
thetic organisms, is generally and historically used as an estimator of the biomass of planktonic organisms.
In oceanography, chlorophyll-a gives as an idea about the quantity of phytoplankton present in the ocean.
In other terms, a higher concentration of chlorophyll-a means a higher biomass of phytoplankton. Thanks to
satellites the concentration of chlorophyll-a in the surface layers of the ocean can be evaluated from space.
To achieve our objective, we use the data of chlorophyll-a and we choose two controls strategies. The

main purpose of these strategies is to minimize the level of pollution rates and maximize the biomasses of
phytoplankton and zooplankton creatures under their exploitation.
The paper is structured as follows. In Section 2, we propose and analyse the bioeconomic model of the

two planktons under the exploitation in the fishing zone. In section 3, we describe the discrete bioeconomic
model without and with control. In Section 4, we give the objective functional and we analyse the optimal
control. In section 5, we present numerical simulations and we discuss the results in both cases without and
with control. Finally, we close this paper with a conclusion.

2 Bioeconomic Model Construction and Analysis

In this section, we assume the existence of two marine planktonic species, namely phytoplankton and zoo-
plankton, denoted by x and y, respectively. We denoted that the abundance of plankton has a very strong
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relationship with the concentration of chlorophyll-a. We suppose that these two planktonic populations fol-
low logistic growth with an intrinsic growth rate. It is noted by r1 for phytoplanktonic organisms and r2
for zooplankton organisms. The carrying capacity of each population is noted by K1 and K2, respectively.
Phytoplankton populations are preys for zooplankton. Therefore, the parameter α12 represents the predation
rate coeffi cient of phytoplankton and the parameter α21 represents the conversion rates of phytoplankton
into zooplankton. The natural mortality of phytoplankton is designated by d1 and that of zooplankton by
d2. It should be mentioned that pollution negatively influences the reproduction of plankton, which leads to
their degradation and mortality. Let δ1 and δ2 the mortality rate from pollution associated to phytoplankton
and zooplankton, respectively. In order to make our model closer to reality, we add as a constraint the ex-
ploitation of these two plankton by fishing fleets. Therefore, we introduce this fishing activity by considering
the harvesting functions H1 = q1E1x linked to phytoplankton and H2 = q2E2y linked to zooplankton. Here
q1 and q2 are the catchability coeffi cients of phytoplankton and zooplankton, respectively. E1 and E2 are
fishing efforts linked to the exploitation of phytoplankton and zooplankton.
Mathematically, the bioeconomic model that represents the evolution of phytoplankton with these con-

siderations and hypothesis is given by the following system of differential equations
dx

dt
= r1x (1− x/K1)− (d1 + δ1)x− α12xy − q1E1x,

dy

dt
= r2y (1− y/K2)− (d2 + δ2) y + α21xy − q2E2y,

(1)

with positive initial conditions
The explanations of parameters are presented on this table

Parameters Explanations
x Biomass density of phytoplankton
y Biomass density of zooplankton
r1 Intrinsic growth rate of phytoplankton
r2 Intrinsic growth rate of zooplankton
K1 Carrying capacity of phytoplankton
K2 Carrying capacity of zooplankton
α12 Predation rate coeffi cients of phytoplankton
α21 Conversion rates of phytoplankton into zooplankton
d1 Natural mortality by degradation rate of phytoplankton
d2 Natural mortality by degradation rate of zooplankton
δ1 Mortality rate from pollution of phytoplankton
δ2 Mortality rate from pollution of zooplankton
q1 Catchability coeffi cients of phytoplankton
q2 Catchability coeffi cients of zooplankton
E1 Fishing efforts linked to the exploitation of phytoplankton
E2 Fishing efforts linked to the exploitation of zooplankton

2.1 Positivity and Boundedness of the Solutions

To prove the positivity and the uniform boundedness of the system we use the following theorem.

Theorem 1 All solutions (x (t) , y (t)) of the system (1) with positive initial conditions are positive for all
t ≥ 0, and the region of attraction for all solutions initiating in the interior of the positive octant is the
ensemble

E =

{
(x, y) ∈ R2+ : α21x+ α12y 6

Y

β

}
where β is a positive constant and Y =

[
α21K1(r1 + β)2/4r1

]
+
[
α12K2(r2 + β)2/4r2

]
.
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Proof. The differential equation system (1) can be given by the form
dx

dt
= x [r1 (1− x/K1)− (d1 + δ1)− α12y − q1E1] = xf1 (x, y) ,

dy

dt
= y [r2 (1− y/K2)− (d2 + δ2) + α21x− q2E2] = yf2 (x, y) ,

(2)

with the positive initial conditions.
The system (1) is defined on the set

{
(x, y) ∈ R2 : x ≥ 0, y ≥ 0

}
. The equations of the system (2) together

with the positive initial conditions gives x(t) = x(0) exp
(∫ t

0
f1 (x(s), y(s))

)
ds > 0,

y(t) = y(0) exp
(∫ t

0
f2(x(s), y(s))

)
ds > 0,

proving the positivity of the solutions.
To prove the boundedness of the solutions we pose X(t) = α21x (t) + α12y (t). Then, by introducing a

positive constant β we obtain

dX

dt
+ βX = α21r1x (1− x/K1) + α12r2y (1− y/K2)− α21q1E1x− α12q2E2y

−α21 (d1 + δ1)− α12 (d2 + δ2) + βα21x (t) + βα12y (t)

≤ α21K1(r1 + β)2/4r1 + α12K2(r2 + β)2/4r2 = Y.

Using the theory of inequality [20], we obtain

X <
Y

β
−
(
Y

β
− Y (0)

)
exp (−βt) .

Therefore, when t tends to infinity we have 0 < X ≤ Y

β
, proving the theorem.

2.2 Mathematical Analysis

The bioeconomic model (1) has four solutions. The trivial equilibrium point P0 = (0, 0). The axial equilibrium
points

P1 =

(
K1 (r1 − d1 − δ1 − q1E1)

r1
, 0

)
and P2 =

(
0,
K2 (r2 − d2 − δ2 − q2E2)

r2

)
.

The interior equilibrium point P ∗ = (x∗, y∗), where

x∗ =
α12K1K2 (r2 − d2 − δ2 − E2q2) +K1r2 (r1 − d1 − δ1 − E1q1)

r1r2 + α12α21K1K2

and

y∗ =
α21K1K2 (r1 − d1 − δ1 − E1q1) +K2r1 (r2 − δ2 − d2 − E2q2)

r1r2 + α12α21K1K2
.

The local stability of equilibrium points is presented in the following theorem.

Theorem 2 The local stability of the equilibrium points P0, P1, P2 and P ∗ of the bioeconomic model (1) is
given by

i) P0 is locally asymptotically stable if r1 < d1 + δ1 + q1E1 and r2 < d2 + δ2 + q2E2;

ii) P1 is locally asymptotically stable if r1 > d1 + δ1 + q1E1;
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iii) P2 is locally asymptotically stable if r2 > d2 + δ2 + q2E2;

iv) P ∗ is locally asymptotically stable if r1 > d1 + δ1 + q1E1 and r2 > d2 + δ2 + q2E2.

Proof. The Jacobian matrix of system (1) is[
r1 (1− 2x/K1)− d1 − δ1 − α12y − q1E1 −α12x

α21y r2 (1− 2y/K2)− d2 − δ2 + α21x− q2E2

]
.

i) Evaluating the Jacobian matrix at P0 gives[
r1 − d1 − δ1 − q1E1 0

0 r2 − d2 − δ2 − q2E2

]
.

The eigenvalues are r1 − d1 − δ1 − q1E1 and r2 − d2 − δ2 − q2E2. Clearly for this point to be locally
asymptotically stable we should have r1 < d1 + δ1 + q1E1 and r2 < d2 + δ2 + q2E2.

ii) Evaluating the Jacobian matrix at P1 and replacing

r1 (1− 2x/K1)− d1 − δ1 − α12y − q1E1 and r2 (1− 2y/K2)− d2 − δ2 + α21x− q2E2

by −r1x/K1 and −r2y/K2, respectively, gives[
d1 + δ1 + q1E1 − r1 α12K1 (d1 + δ1 + q1E1 − r1) /r1

0 0

]
.

this point is locally asymptotically stable if r1 > d1 + δ1 + q1E1.

iii) Evaluating the Jacobian matrix at P2 gives 0 0
α21K2 (r2 − d2 − δ2 − q2E2)

r2
d2 + δ2 + q2E2 − r2

 .
This point is locally asymptotically stable if r2 > d2 + δ2 + q2E2.

iv) Evaluating the Jacobian matrix at P ∗ gives[
−r1x∗/K1 −α12x∗
α21y

∗ −r2y∗/K2

]
.

The trace of the Jacobian matrix is trace (J) = −r1x∗/K1 − r2y∗/K2 and its determinant is

det (J) = (r1r2 + α12α21K1K2)x
∗y∗/K1K2.

Now, if r1 > d1 + δ1 + q1E1 and r2 > d2 + δ2 + q2E2 then P ∗ is locally asymptotically stable. Figure
1 illustrates the local stability of equilibrium point P ∗.

3 Discrete-Time Model Description

In this section we search to make our study closer to reality. We suggest the discrete-time (XY ) model (3)
associated to the bioeconomic one (1) that show the spatial-temporal evolution of planktonic organisms in
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Figure 1: Behaviors and phase portrait of system (1) at P ∗. We take as initial value the point (124.87, 350)
and the following values: r1 = 0.37, r2 = 0.5, K1 = 225, K2 = 700, α12 = 0.21, α21 = 0.19, d1 = 0.001,
d2 = 0.0015, δ1 = 0.2, δ2 = 0.3, q1 = 0.13, q2 = 0.18, E1 = 30, E2 = 50.

a global area of interest G with a uniform size. The global area of interest G is divided to R2 region and it

is expressed as the union of compartment G =
M⋃

i,j=1

Sij , with Sij a subdomain or region.


x
Sij
k+1 = r

Sij
1 x

Sij
k

(
1− x

Sij
k

K
Sij
1

)
−
(
d
Sij
1 + δ

Sij
1

)
x
Sij
k − αSij12 x

Sij
k y

Sij
k − qSij1 x

Sij
k E

Sij
1 ,

y
Sij
k+1 = r

Sij
2 y

Sij
k

(
1− y

Sij
k

K
Sij
2

)
−
(
d
Sij
2 + δ

Sij
2

)
y
Sij
k + α

Sij
21 x

Sij
k y

Sij
k − qSij2 y

Sij
k E

Sij
2 ,

(3)

with the initial conditions xSij0 and ySij0 the region Sij . All coeffi cients of system (3) are non-negative.
We keep the same descriptions of variables and parameters of system (1) to describe system (3), in the

last one we classify the planktonic organisms into two ranges in the region Sij . We suppose that there exist
interactions from time unit k to time k+ 1. We add that the unit of time k can correspond to days, months
or years, it depends on the frequency of data collection and statistics. In this paper, the collected data
concerning the concentration of chlorophyll-a and the biomasses of plankton organism are given in monthly
frequency.

3.1 Description of the Bioeconomic Model with Controls

In this section, we search to describe the spatial-temporal evolution of the proposed bioeconomic model (3)
with controls. The two controls uSijk and vSijk are introduced in the predefined model

x
Sij
k+1 = r

Sij
1 x

Sij
k

(
1− x

Sij
k

K
Sij
1

)
−
(
d
Sij
1 + u

Sij
k δ

Sij
1

)
x
Sij
k − αSij12 x

Sij
k y

Sij
k − ESij1 q

Sij
1 x

Sij
k ,

y
Sij
k+1 = r

Sij
2 y

Sij
k

(
1− y

Sij
k

K
Sij
2

)
−
(
d
Sij
2 + v

Sij
k δ

Sij
2

)
y
Sij
k + α

Sij
21 x

Sij
k y

Sij
k − ESij2 q

Sij
2 y

Sij
k .

(4)
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4 Optimal-Control Problem

In this section, we choose the following objective functional

J(uSij , vSij ) = Γ1x
Sij
N + Γ2y

Sij
N +

N−1∑
k=1

(
Γ1x

Sij
k + Γ2y

Sij
k − W1

2

(
u
Sij
k

)2
− W2

2

(
v
Sij
k

)2)
(5)

subject to system (4). We consider Γ1 and Γ2 positive constants to maintain a well-balanced level in the
size of xSijk and ySijk , respectively. The positive weight parameters associated to the controls uSijk and vSijk

are given, in the objective functional, by W1 and W2.
The main objective of this section is to maximize the biomass of planktons xSijk and fish populations

y
Sij
k , or, to maximize the objective functional (5). To achieve this objective, we must determine the optimal

controls
(
u
Sij
k

∗)
and

(
v
Sij
k

∗)
such that:

J
(
uSij∗, vSij∗

)
= max

{
Jij
(
uSij , vSij

)
, uSij ∈ U , vSij ∈ V

}
(6)

where U and V are the ensembles of admissible controls described by

U = {(u)|umin ≤ uk ≤ umax, k ∈ {0, . . . , N − 1}}

and
V = {(v)|vmin ≤ vk ≤ vmax, k ∈ {0. . . . , N − 1}},

where (umin, umax) and (vmin, vmax) are confined in (]0, 1[)2.
The existence of the predefined optimal control is given in the following theorem.

Theorem 3 (Suffi cient conditions) The optimal control problem (6) with the state equations of system

(4) admits the controls
(
u
Sij
k

∗)
and

(
v
Sij
k

∗)
such that

J
(
uSij∗, vSij∗

)
=
{

max Jij
(
uSij , vSij

)
/uSij ∈ U , uSij ∈ V

}
.

Proof. See Dabbs, K [38, Theorem 1].
The finite dimensional structure of this system ensure the existence of an optimal control. The discrete

version of the Pontryagin’s maximum principle [39] is used to characterize the necessary conditions that
an optimal control and corresponding states must assure. The adjoint variables are used to connect the
difference equations to our minimization problem. As in optimal control of ordinary differential equations,
we can obtain the necessary conditions from the Hamiltonian H. In the discrete case, at each time k < N ,
the Hamiltonian is formed from the terms in the objective functional (at time k ) and the adjoint variables
(at time k + 1) multiplying the corresponding right-hand side of the difference equations. Thus

H(Ψ) =

(
ζ
Sij
1,Nx

Sij
k + ζ

Sij
2,Ny

Sij
k − A1

2

(
u
Sij
k

)2
− A2

2

(
v
Sij
k

)2)
+ζ

Sij
1,i+1

[
r
Sij
1 x

Sij
k

(
1− x

Sij
k

K
Sij
1

)
−
(
d
Sij
1 + u

Sij
k δ

Sij
1

)
x
Sij
k − αSij12 x

Sij
k y

Sij
k − ESij1 q

Sij
1 x

Sij
k

]

+ζ
Sij
2,i+1

[
r
Sij
2 y

Sij
k

(
1− y

Sij
k

K
Sij
2

)
−
(
d
Sij
2 + v

Sij
k δ

Sij
2

)
y
Sij
k + α

Sij
21 x

Sij
k y

Sij
k − ESij2 q

Sij
2 y

Sij
k

]

where ζSijl,k , k = 1...N, l = 1, 2 represent the adjoint variables associated to xSijk and ySijk , respectively.
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Theorem 4 (Necessary Conditions) Given optimal controls
(
u
Sij
k

∗)
and

(
v
Sij
k

∗)
and solutions xSijk

∗

and ySijk

∗
, there exist ζSijl,k and ζ

Sij
l,k , k = 1...N, adjoint variables satisfying the following system:

∆ζ
Sij
1,k = −

[
ζ
Sij
1,N + ζ

Sij
1,k+1

(
r
Sij
1

(
1− x

Sij
k

K
Sij
1

)
− rSij1

x
Sij
k

K
Sij
1

− αSij12 y
Sij
k

)
−ζSij1,k+1

((
d
Sij
1 + u

Sij
k δ

Sij
1

)
x
Sij
k + E

Sij
1 q

Sij
1

)
+ ζ

Sij
2,k+1α

Sij
21 y

Sij
k

]
,

∆ζ
Sij
2,k = −

[
ζ
Sij
2,N + ζ

Sij
2,k+1

(
r
Sij
2

(
1− y

Sij
k

K
Sij
2

)
− rSij2

y
Sij
k

K
Sij
2

+ α
Sij
21 x

Sij
k

)
−ζSij1,k+1

((
d
Sij
2 + v

Sij
k δ

Sij
2

)
y
Sij
k + E

Sij
2 q

Sij
2

)
− ζSij1,k+1α

Sij
12 x

Sij
k

]
,

where

u
Sij
k

∗
= min

{
max

{
umin,

ζ
Sij
1,k+1δ

Sij
1 x

Sij
k

W1

}
, umax

}
, k = 1, ..., n,

v
Sij
k

∗
= min

{
max

{
vmin,

ζ
Sij
2,k+1δ

Sij
2 y

Sij
k

W2

}
, vmax

}
, k = 1, ..., n.

Proof. Let xSijk = x
Sij
k

∗
, ySijk = y

Sij
k

∗
, uSijk = u

Sij
k

∗
, v

Sij
k = v

Sij
k

∗
and denoting the transversality conditions

ζ
Sij
1,N and ζ

Sij
2,N by Γ1 and Γ2. Based on the Pontryagin’s Maximum Principle [36] we have the following adjoint

equations:

∆ζ
Sij
1,k =

−∂H
∂x

Sij
k

= −
[
Γ1 + ζ

Sij
1,k+1

(
r
Sij
1

(
1− x

Sij
k

K
Sij
1

)
− rSij1

x
Sij
k

K
Sij
1

− αSij12 y
Sij
k

)
−ζSij1,k+1

((
d
Sij
1 + u

Sij
k δ

Sij
1

)
x
Sij
k + E

Sij
1 q

Sij
1

)
+ ζ

Sij
2,k+1α

Sij
21 y

Sij
k

]
,

∆ζ
Sij
2,k =

−∂H
∂y

Sij
k

= −
[
Γ2 + ζ

Sij
2,k+1

(
r
Sij
2

(
1− y

Sij
k

K
Sij
2

)
− rSij2

y
Sij
k

K
Sij
2

+ α
Sij
21 x

Sij
k

)
−ζSij2,k+1

((
d
Sij
2 + v

Sij
k δ

Sij
2

)
y
Sij
k + E

Sij
2 q

Sij
2

)
− ζSij1,k+1α

Sij
12 x

Sij
k

]
.

Therefore 

ζ
Zij
1,k = Γ1 + ζ

Sij
1,k+1

(
1 + r

Sij
1

(
1− x

Sij
k

K
Sij
1

)
− rSij1

x
Sij
k

K
Sij
1

−
(
d
Sij
1 + u

Sij
k δ

Sij
1

)
x
Sij
k

−αSij12 y
Sij
k − ESij1 q

Sij
1

)
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Sij
2,k+1α

Sij
21 y

Sij
k ,

ζ
Zij
2,k = Γ2 + ζ

Sij
2,k+1

(
1 + r

Sij
2

(
1− y

Sij
k

K
Sij
2

)
− rSij2

y
Sij
k

K
Sij
2

−
(
d
Sij
2 + v

Sij
k δ

Sij
2

)
y
Sij
k

+α
Sij
21 x

Sij
k − ESij2 q

Sij
2

)
− ζSij1,k+1α

Sij
12 x

Sij
k .

Taking the variation with respect to controls uSijk and vSijk equal to zero we obtain the following optimally
conditions

∂H
∂u

Sij
k

= W1u
Sij
k − ζSij1,k+1δ

Sij
1 x

Sij
k = 0,

∂H
∂v

Sij
k

= W2v
Zij
k − ζSij2,k+1δ

Sij
2 y

Sij
k = 0.

Then, the optimal controls are given by

u
Sij
k =

ζ
Sij
1,k+1δ

Sij
1 x

Sij
k

W1
and vSijk =

ζ
Sij
2,k+1δ

Sij
2 y

Sij
k

W2
.



12 Optimal Control of Pollution Rate in a Spatiotemporal Bioeconomic Model

Figure 2: Distribution of the Chlorophyll a in Moroccan maritime areas throughout the month of May 2019
(a) and 2020 (b)

Following the boundedness of the controls, it is easy to obtain in U and V, the form of (u
Sij
k

∗
) and (v

Sij
k

∗
)

u
Sij
k

∗
= min

{
max

{
umin,

ζ
Sij
1,k+1δ

Sij
1 x

Sij
k

W1

}
, umax

}
, k = 1, ..., n,

v
Sij
k

∗
= min

{
max

{
vmin,

ζ
Sij
2,k+1δ

Sij
2 y

Sij
k

W2

}
, vmax

}
, k = 1, ..., n.

5 Numerical Simulation

In this section, we carry out some numerical simulations and we discuss the results. The raster maps (a) and
(b) of Figure 2 shows the distribution of the Chlorophyll-a in the different fishing zones of Morocco during the
month of May of last year (2019) and this year (2020). As we mention in the introduction the chlorophyll-a
provide the best index of phytoplankton biomass abundance which mean the existence of the other species.
These maps are obtained using the Sea-Das software. We have chosen these two maps precisely because
we have noticed that during the international lockdown period (caused by Covid-19 pandemic) a significant
number of marine resources have come to light. The appearance and abundance of this marine species are
due to the reduction in vessels level, which implies the reduction of the pollution rate caused by fishing
and pleasure boats. The main objective of this section is to show the influence of the optimal control of
the pollution coeffi cient on the biomass level of the two populations’kind, in other words, on the level of
chlorophyll-a. We note the value 4.92 of the pollution rates led to the death of 322 million tons of marine
populations, demonstrating the importance of controlling this rate.
The parameter values adopting in this section are listed in the Table (1). From an iterative discrete

schema, we formulate a code in Matlab that converges following an appropriate test identical to the one
related to the forward backward swept method. We add that the solution of the optimally system is given
based on an iterative method. In this method, the state system with an initial guess is solved forward in
time and then the adjoint system is solved backward in time because of the transversality conditions.
In the process described, after obtaining the values of the state and costate variables from the previous

steps, the next step is to update the values of the optimal controls. This involves adjusting the control inputs
or actions in order to optimize the desired outcome.
The process of updating the optimal controls is performed iteratively, repeatedly going through the steps

and adjusting the controls based on the current values of the state and costate variables. This iteration
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continues until a tolerance criterion is met, indicating that the desired level of accuracy or convergence has
been achieved.
Once the numerical calculations are completed, the results are presented in spatial space with three

dimensions. This spatial representation allows for a visual understanding and analysis of the optimized
system behavior. The two cases mentioned suggest that the results are presented for two different scenarios
or sets of conditions, providing a comparative analysis or exploration of the system’s performance under
different circumstances.
Overall, this iterative process of updating the optimal controls based on the values of the state and

costate variables aims to find the best possible controls that maximize the desired objective while satisfying
the given constraints. The presentation of numerical results in spatial space facilitates the interpretation
and evaluation of the system’s behavior in a visually meaningful way.

Table 1. Parameter values of marines species
x0 r

Sij
1 K

Sij
1 α

Sij
12 d

Sij
1 δ

Sij
1 E

Sij
1 q

Sij
1

125 0.37 225 0.21 0.001 0.2 30 0.13

y0 r
Sij
2 K

Sij
2 α

Sij
21 d

Sij
2 δ

Sij
2 E

Sij
2 q

Sij
2

350 0.5 700 0.19 0.0015 0.3 50 0.18

Case 1: without control of the pollution rate: Where the pollution rate is not controlled, the impact
on the ecosystem is evident. Specifically, the biomass level of planktonic organisms is observed to decrease.
This decline can be attributed to the uncontrolled pollution rate, which negatively affects the survival and
growth of these organisms. The decreasing trend in biomass is depicted in Figure 3.
Moreover, the uncontrolled pollution rate also has consequences for the predator population. As the prey

population diminishes due to the adverse effects of pollution, the predator population experiences a decline
in biomass as well. The availability of prey plays a crucial role in sustaining the predator population, and the
decrease in prey biomass leads to a reduction in the predator population’s biomass. This trend is illustrated
in Figure 4.
The results from Case 1 highlight the importance of controlling pollution rates in order to maintain a

healthy and balanced ecosystem. Uncontrolled pollution not only directly affects the target organisms but
also has cascading effects on other species within the ecosystem. By examining the decline in biomass for
both planktonic organisms and predators, it becomes evident that the uncontrolled pollution rate poses a
significant threat to the overall ecological stability.
These findings emphasize the need for effective pollution control measures and environmental management

practices to safeguard the health and sustainability of ecosystems. Implementing measures to reduce pollution
rates can help mitigate the adverse impacts on planktonic organisms and their predators, thereby promoting
a more stable and resilient ecosystem.
Case 2: with control of the pollution rate: A different scenario unfolds. By maximizing the optimal

controls associated with the evolution of the two marine species, notable improvements are observed.
Figure 5 illustrates the effect of controlling the pollution rate on the level of phytoplankton organism

biomass. The biomass shows a steady decrease, reaching a minimum value that ensures its abundance
over an extended period. This controlled decrease is justified by the presence of predation, as the predator
population relies on the phytoplankton organisms as a food source. By maintaining a minimum biomass
level, the phytoplankton organisms can sustain their population and promote their long-term abundance.
Figure 5 presents the impact of the optimal control value on the biomass of the predator population. The

optimal control strategy used in this case leads to the maximization and continuous increase of the predator
population’s biomass over time. This indicates that the controlled pollution rate, along with the predation
dynamics, promotes a favorable environment for the growth and sustainability of the predator population.
Through this study, we have discovered the optimal control values that ensure the long-term sustainability

of the marine populations. In this particular case, the optimal control values are determined to be 0, 52
and 0, 73. These values represent the effective pollution control measures needed to maintain a balanced
ecosystem and support the growth and survival of both phytoplankton organisms and predators.
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Figure 3: Evolution of xSij without controls along time

Figure 4: Evolution of ySij without controls along time.
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Overall, Case 2 demonstrates the positive outcomes of implementing pollution control measures. By
carefully managing the pollution rate, we can create conditions that favor the long-term abundance and
sustainability of marine populations. These findings emphasize the significance of responsible environmental
practices and highlight the potential for maintaining a thriving ecosystem through effective control strategies.

Evolution of xSij with controls along time.

Evolution of ySij with controls along time.

6 Conclusion

In this paper, we showed the impact of the proposed optimal control of pollution rates into the biomass levels
of planktonic organisms. We studied the dynamics of interaction between phytoplankton and zooplankton
in Moroccan maritime areas by analyzing a multi-areas prey-predator model associated in the continuous
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and discrete time. We proved the existence of the optimal controls and we determined the characterization
of controls in terms of states and adjoint functions. We solved the optimally system by using the forward-
backward sweep method (FBSM). In numerical simulations of the resulting optimality system we found, as
a principal result, that the optimal control of mortality pollution rate may help us to give more realistic
interpretations for ensuring the sustainability of marines resources.
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