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Abstract

Under eigenvalue criteria, we establish in this article existence and nonexistence results for positive
solutions to the third-order boundary value problem{

−u′′′(t) + k2u′(t) = f(t, u(t)), t > 0
u(0) = u′(0) = u′(+∞) = 0,

where k is a positive constant and the function f : R+ × R → R+ is continuous. The boundedness and
the unboundedness of the solution are also discussed.

1 Introduction and Main Results

Because third order ordinary differential equations arise in modeling various physical phenomena, the study
of existence of solutions to boundary value problems (bvp for short) related to these, is a rapidly growing
branch of applied mathematics. As examples, we start by Danziger and Elemergreen who proposed in [15]
(see p. 133) the following third-order linear differential equations

α3y
′′′ + α2y

′′ + α1y
′ + (1 + k) y = kc, θ < c, and

α3y
′′′ + α2y

′′ + α1y
′ + y = 0, θ > c,

(1)

to describe the variation of thyroid hormone with time. Notice that the unown y = y(t) in Equation (1)
represents the concentration of thyroid hormone at time t and α3, α2, α2, k and c are constants.
Motivated by the asymptotic behavior of the solutions of Volterra integro-differential equations having

the form {
y′(t) = γy(t) +

∫ 1
0

(λ+ µt+ ϑs) y(s)ds, t ≥ 0,
y(0) = 1,

Jackiewicz et al. have investigated in [20] the third-order differential equations of the type

u′′′ = γu′′ + (λ+ (µ+ ϑ) t)u′ + (2µ+ ϑ)u, (2)

where λ, γ, µ and ϑ are real parameters and µ+ ϑ = 0.
As a simple model exhibiting many of the features of the Hodgkin—Huxley equations, Nagumo proposed

(see [27]) third-order differential equation

y′′′ − cy′′ + f ′(y)y′ − b

c
y = 0, (3)
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where f is a regular function.
The partial differential equation

yt + yxxxx + yxx +
1

2
y2 = 0

arises in a large variety of physical phenomena. Commonly known as the Kuramoto-Sivashinsky equation,
it was introduced to describe pattern formulation in reaction diffusion systems as well as to model the
instability of flame front propagation (see Y. Kuramoto and T. Yamada [23] and D. Michelson [28]). Its
traveling wave solutions (i.e. y(x, t) = y(x − ct)) are the solutions of the nonlinear third-order differential
equation

θy′′′(x) + y′(x) + g(y) = 0, (4)

where the parameter θ depends on the constant c and g is an even function.
A three-layer beam is formed by parallel layers of different materials. For an equally loaded beam of this

type, Krajcinovic in [22] proved that the deflection u is governed by the third order differential equation

− y′′′ + k2y′ = a, (5)

where the parameters k and a depend on the elasticity of the layers.
Moreover, study of existence of positive solutions for third-order bvps has received a great deal of attention

and was the subject of many articles, see, for instance, [13, 14, 16, 17, 18, 26, 30, 32, 33, 34, 35, 36], for
third-order bvps posed on finite intervals and [1, 2, 3, 4, 7, 9, 10, 11, 12, 19, 21, 24, 25, 29, 31] for such bvps
posed on the half-line.
In this article, we establish under eigenvalue criteria, nonexistence and existence results for positive

solutions to the third-order bvp: {
−u′′′(t) + k2u′(t) = f(t, u(t)), t > 0
u(0) = u′(0) = u′(+∞) = 0,

(6)

where k ∈ (0,+∞), f : R+ × R → R+ is a continuous function (R+ := [0,+∞)) and observe that the form
of the differential equation in (6) is more general to those of (1)—(5). The physical constant k will play a
crucial role in building an appropriate functional framework for a fixed point formulation to the bvp (6).
In this work we mean by a positive solution to the bvp (6), a function u in C3 (R+,R+) satisfying

u(t∗) > 0 for some t∗ > 0 and all equations in the bvp (6).
When looking for positive solutions by using the fixed point theory in cones, authors often make use of

the compression and expansion of a cone principle in a Banach space. This principle states that if P is a
cone in a Banach space (B, ‖·‖), T : Pr,R → P is a compact mapping where Pr,R = {u ∈ P : r ≤ ‖u‖ ≤ R}
and one of the following situations a) and b) holds:

a) ‖Tu‖ ≥ ‖u‖ for all u ∈ P , ‖u‖ = r and ‖Tu‖ ≤ ‖u‖ for all u ∈ P , ‖u‖ = R,

b) ‖Tu‖ ≤ ‖u‖ for all u ∈ P , ‖u‖ = r and ‖Tu‖ ≥ ‖u‖ for all u ∈ P , ‖u‖ = R,

then T has a fixed point w such that r ≤ ‖w‖ ≤ R.
This principle has advantage to be applicable on any region of the cone P and it has the flaw that the

realization of the inequality ‖Tu‖ ≥ ‖u‖ requires a specific cone, see, for instance [14, 16, 26, 34, 35].
The main tool in this work consists in the fixed point theory in cones. The operator of our fixed

point formulation associated to bvp (6) is defined on the Banach space of continuous functions u satisfying
limt→+∞

u(t)
t = 0. Notice that this space is imposed by the boundary condition in (6) limt→+∞ u′(t) = 0,

since by the L’Hopital’s rule limt→+∞
u(t)
t = limt→+∞ u′(t) = 0. Unfortunately, the cone of nonnegative

function lying in the above space does not offer the possibility to realize the inequality ‖Tu‖ ≥ ‖u‖ . To
overcome this diffi culty we use the approach exposed in Section 3. This approach gives a necessary condition
for existence of positive solution (see Proposition 3), and has the advantage to be applicable in any cone.
However, it has the disadvantage that the radii r and R must be taken near 0 and +∞ respectively. In other
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words we lose the localization established in the compression and expansion of a cone principal in a Banach
space, r ≤ ‖w‖ ≤ R.
Since a function u satisfying limt→+∞

u(t)
t = 0 may be bounded or unbounded (e.g. u(t) = ln(1 + t)),

we provide in each existence result established in this paper suffi cient conditions for the boundedness or
unboundedness of the obtained positive solution. In this paper, we let

Γ =
{
q ∈ C(R+,R+) : q(s) > 0 a.e. s > 0

}
,

Γ0 =

{
q ∈ Γ : sup

s≥0
q(s) <∞

}
,

Γ1 =

{
q ∈ Γ : lim

s→+∞
q(s) = 0

}
,

Γ2 =

{
q ∈ Γ : lim

s→+∞
q(s) = 0 and

∫ +∞

0

q(s)ds <∞
}
,

∆i = {q ∈ Γ : qpi ∈ Γi} for i = 0, 1, 2,

∆3 = {q ∈ Γ : qp3 ∈ Γ1} ,

∆ = ∆1 ∪∆2,

where
p1(t) = 1 + t, p0(t) = p2(t) = 1, p3(t) = ekt.

Notice that Γ2 ⊂ Γ1 ⊂ Γ0, ∆2 = Γ2, ∆3 ⊂ ∆1 ∩∆2, ∆1 r∆2 6= ∅ and ∆2 r∆1 6= ∅. Indeed, for

q1(s) =
1

(1 + s) ln (4 + s)
, q2(s) =

m(s)

1 + s
,

where

m(s) =

 2n4s− n(2n4 − 1) if s ∈
[
n− 1

2n3 , n
]
,

−2n4s+ n(2n4 + 1) if s ∈
[
n, n+ 1

2n3

]
,

0 otherwise,

we have q1 ∈ ∆1\∆2 and q2 ∈ ∆2\∆1.
A continuous mapping g : R+ × R→ R is said to be

• a Γi-Caratheodory function for i = 0, 1, 2, if for all r > 0 there exists a function ψr ∈ Γi such that

|g(t, pi(t)u)| ≤ ψr (t) for all t ≥ 0 and u ∈ [−r, r] .

• a Γ2+i-Caratheodory function for i = 1, 2, if for all r > 0 there exists a function ψr ∈ Γi such that

|g(t, p3(t)u)| ≤ ψr (t) for all t ≥ 0 and u ∈ [−r, r] .

Consider for q ∈ ∆, the linear eigenvalue problem associated with the bvp (6){
−u′′′(t) + k2u′(t) = µq(t)u(t), t > 0
u(0) = u′(0) = u′(+∞) = 0,

(7)

where µ is a real parameter.
A positive real number µ0 is said to be a positive eigenvalue of the bvp (7), if there exists a function

φ ∈ C3 (R+,R+) such that φ(t0) > 0 for some t0 > 0 and the pair (µ0, φ) satisfies all equations in the bvp
(7).
The first result of this paper concerns existence of the positive eigenvalue of the bvp (7).
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Proposition 1 For all q ∈ ∆, the eigenvalue problem (7) admits a unique positive eigenvalue µ(q) > 0

associated with an eigenfunction φ. Moreover, if q ∈ ∆2 then φ is bounded and if not (i.e.
∫ +∞
0

q(s)ds =
+∞), then φ is unbounded, i.e. limt→+∞ φ(t) = +∞.

Theorem 1 Assume for i = 1 or 2, the nonlinearity f is a Γi-Caratheodory function and there exists a
function q in ∆i such that either

inf

{
f(t, pi(t)u)

pi(t)q(t)u
: t, u > 0

}
> µ(q) (8)

or

sup

{
f(t, pi(t)u)

pi(t)q(t)u
: t, u > 0

}
< µ(q). (9)

Then the bvp (6) admits no positive solution.

The statements of the following existence results need additional notations. For any Γi-Caratheodory
function g : R+ × R→ R and q ∈ ∆i with i ∈ {0, 1, 2, 3} and ν = 0,+∞, we set

g+i,ν(q) = lim sup
u→ν

(
max
t≥0

g(t, pi(t)u)

pi(t)q(t)u

)
and

g−i,ν(q) = lim inf
u→ν

(
min
t≥0

g(t, pi(t)u)

pi(t)q(t)u

)
.

Theorem 2 Suppose for i = 1 or 2, the function f is Γi-Caratheodory and there are two functions q0 and
q∞ in ∆i such that either

f+i,∞(q∞)

µ(q∞)
< 1 <

f−i,0(q0)

µ(q0)
≤
f+i,0(q0)

µ(q0)
<∞ (10)

or
f+i,0(q0)

µ(q0)
< 1 <

f−i,+∞(q∞)

µ(q∞)
≤
f+i,∞(q∞)

µ(q∞)
<∞. (11)

Then the bvp (6) admits a solution u in Ki. Moreover, if i = 2 then u is bounded and if i = 1 and

lim
t→+∞

∫ t

1

f(s, p1(s)λ)ds = +∞ uniformly for λ in compact intervals of (0,+∞) , (12)

then u is unbounded.

In Theorem 2, conditions (10) and (11) impose the nonlinearity f to be sublinear at +∞, that is there is
a positive constants d and a function c ∈ Γi such that f(t, u) ≤ c (t)u for all u ≥ d and t ≥ 0. To avoid such
a condition, we have been led to look for positive solutions in the largest Banach space. We have obtained
then the following result.

Theorem 3 Suppose that the function f is Γ3-Caratheodory and there are two functions q0 and q∞ in ∆3

such that either
f+3,∞(q∞)

µ(q∞)
< 1 <

f−3,0(q0)

µ(q0)
, (13)

or
f+3,0(q0)

µ(q0)
< 1 <

f−3,∞(q∞)

µ(q∞)
. (14)

Then the bvp (6) admits a positive solution u. Moreover, if the nonlinearity f is a Γ4-Caratheodory function
then the solution u is bounded, and if

lim
t→+∞

∫ t

1

f(s, p3(s)λ)ds = +∞ uniformly for λ in compact intervals of (0,+∞) , (15)

then u is unbounded.
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Consider now, the particular version of the bvp (6) where the nonlinearity f takes the form f(t, u) =
q∗(t)h(t, u); namely, we consider the bvp{

−u′′′(t) + k2u′(t) = q∗(t)h(t, u(t)), t > 0,
u(0) = u′(0) = u′(+∞) = 0,

(16)

where q∗ ∈ Γ and h : R+ × R→ R+ is a continuous function.
If h/pi is a Γ0-Caratheodory function for i = 1, 2 or 3, then we set for ν = 0, +∞,

h+i,ν = h+i,ν(1), h−i,ν = h−i,ν(1).

We obtain respectively from Theorems 1, 2 and 3 the following corollaries:

Corollary 1 Assume for i = 1 or 2 that q∗ ∈ ∆i, the function h/pi is Γ0-Caratheodory and either

inf

{
h(t, pi(t)u)

pi(t)u
: t, u > 0

}
> µ(q),

or

sup

{
f(t, pi(t)u)

pi(t)u
: t, u > 0

}
< µ(q).

Then the bvp (16) has no positive solution.

Corollary 2 Assume for i = 1 or 2 that q∗ ∈ ∆i, the function h/pi is Γ0-Caratheodory and either

h+i,∞ < µ(q∗) < h−i,0 ≤ h
+
i,0 <∞,

or

h+i,0 < µ(q∗) < h−i,∞ ≤ h
+
i,∞ <∞.

Then the bvp (16) admits a positive solution. Moreover, if i = 2 then u is bounded and if i = 1 and

lim
t→+∞

∫ t

1

q∗(s)h(s, p1(s)λ)ds = +∞ uniformly for λ in compact intervals of (0,+∞) ,

then u is unbounded.

Corollary 3 Suppose that q∗ ∈ ∆3, the function h/p3 is Γ0-Caratheodory and either

h+3,∞ < µ(q∗) < h−3,0,

or

h+3,0 < µ(q∗) < h−3,∞.

Then the bvp (16) admits a positive solution. Moreover, if q∗ ∈ ∆2 then u is bounded and if

lim
t→+∞

∫ t

1

q∗(s)h(s, p3(s)λ)ds = +∞ uniformly for λ in compact intervals of (0,+∞) ,

then u is unbounded.
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2 Example

Consider for i = 1, 2, 3 the bvp (6) with

f(t, u) = Fi(t, u) = Aq0(t)
pi(t)u

(pi(t))
2

+ u2
+Bq∞(t)

u2

pi(t) + u
,

where A and B are positive real numbers and q0, q∞ ∈ ∆i.
It is easy to see that Fi is a Γi-Caratheodory function and if

0 < inf
t≥0

q∞(t)

q0(t)
≤ sup

t≥0

q∞(t)

q0(t)
<∞,

then
f−i,0(q0) = f+i,0(q0) = A and f−i,∞(q∞) = f+i,∞(q∞) = B.

We deduce from Theorems 2 and 3 that for such a nonlinearity f, the bvp (6) admits a solution if either

A < µ(q0) and B > µ(q∞)

or
A > µ(q0) and B < µ(q∞).

Evidently for i = 2, the obtained solution u is bounded and for i = 1, if
∫ +∞
0

q0p1ds = +∞ then u is
unbounded. Indeed, for any interval [a, b] ⊂ (0,+∞) we have∫ t

1

f(s, p2(s)λ)ds ≥ A

∫ t

1

q0(s)p1(s)
λ

1 + λ2
ds

≥ Aa

1 + a2

∫ t

1

q0(s)p1(s)ds→ +∞ as t→ +∞.

For instance if q0(t) = q∞(t) = (1 + t)
−2 the obtained solution is unbounded.

In the case i = 3, if
∫ +∞
1

q0(s)p3(s)ds < +∞ then the solution is bounded and if
∫ +∞
1

q0(s)p3(s)ds = +∞,
the same computations as above lead us to u is unbounded. For example, if q0(t) = q∞(t) = (1 + t)

−1
e−kt,

then the obtained solution is unbounded.

3 Abstract Background

In this section we let (Z, ‖·‖) be a real Banach space and by L (Z) and r(L) we refer respectively to the set
of all linear bounded self-mapping defined on Z and the spectral radius of an operator L in L (Z) . We let
also C be a cone in Z, that is C is a nonempty closed convex subset of Z such that C ∩ (−C) = {0Z} and
tC ⊂ C for all t ≥ 0. In the reminder of this section, the notation � refers to the partial order induced by
the cone C on the Banach space Z. We write for all u, v ∈ Z : u � v (or v � u) if v − u ∈ C and u ≺ v (or
v � u) if v − u ∈ C r {0Z}.

Definition 1 A compact operator L in L (Z) is said to be

i) positive, if L(C) ⊂ C,

ii) strongly positive, if int(C) 6= ∅ and L(C r {0Z}) ⊂ int(C),

iii) lower bounded on the cone C, if

inf {‖Lu‖ : u ∈ C ∩ ∂B(0Z , 1)} > 0.
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Hereafter we denote by LC (Z) the subset of all positive compact operators in L (Z) and for any operator L
in LC (Z) we define the sets:

ΛL = {θ ≥ 0 : ∃u � 0Z such that Lu � θu} and
ΓL = {θ ≥ 0 : ∃u � 0Z such that Lu � θu} .

It is proved in [5] that for all L in LC (Z)

sup ΛL ≥ inf ΓL. (17)

Definition 2 An operator L in LC (Z) is said to have the strongly index-jump property (SIJP for short) at
µ, where µ is a positive real number, if

µ = sup ΛL = inf ΓL.

Proposition 2 (Proposition 3.16 in [5]) Suppose that L is an operator in LC (Z) . If L is strongly posi-
tive then L has the SIJP at r(L).

Theorem 4 (Theorem 3.23 in [5]) Assume that L ∈ LC (Z) and (Ln) ⊂ LC (Z) are such that (Ln) is
increasing, for all integers n ≥ 1, Ln has the SIJP at µn and Ln → L in operator norm. Then L has the
SIJP at µ = limµn = supµn.

Remark 1 From Proposition 3.14 and Proposition 3.15 in [6] we conclude that if L ∈ LC (Z) has the SIJP
at µ then µ is the unique positive eigenvalue of L.

Remark 2 Observe that if L ∈ LC (Z) has the SIJP at µ and L (C) ⊂ P ⊂ C where P is a cone in Z, then
L ∈ LP (Z) has the SIJP at µ.

Our approach in this work is based on a fixed point formulation of the bvp (6). More exactly, we will
show that the problem of existence and nonexistence of positive solutions to the bvp (6) is equivalent to that
of existence and nonexistence of fixed point for a completely continuous mapping defined on some cone in an
appropriate functional space. The following proposition and theorems will be used to prove the main results
of this paper.
Let T : C → C be a completely continuous mapping. We start by the proposition below which provide

provide under an eigenvalue criteria a nonexistence result of fixed point to the mapping T.

Proposition 3 Suppose that there is an operator L in LC(Z) having the SIJP at µ such that either

µ > 1 and Tu � Lu for all u ∈ C, (18)

or
µ < 1 and Tu � Lu for all u ∈ C (19)

holds. Then T has no fixed point.

Proof. We prove the proposition in the case where (18) holds, the other case is checked in the same way.
To the contrary, suppose that there is w � 0Z such that Tw = w. Then we have that w = Tw � Lw, that
is 1 ∈ ΓL and µ = inf ΓL ≤ 1. This contradicts the condition µ > 1 of Hypothesis (18).

The following two theorems are respectively adapted versions of Theorem 3.24 and Theorem 3.25 in [5].
They provide solvability results to the equation u = Tu under eigenvalue criteria.

Theorem 5 Suppose that C is normal and for i = 1, 2, 3 there exists Li ∈ LC (Z) and Fi : C → C such that
L2 has the SIJP at r(L2),
0 < r (L2) < 1 < r (L1) and
Tv � L1v + F1v,
L2v − F2v � Tv � L3v + F3v for all v ∈ C.
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If either
F1v = ◦ (‖v‖) as v → 0 and Fiv = ◦ (‖v‖) as v →∞ for i = 2, 3 (20)

or
F1v = ◦ (‖v‖) as v →∞ and Fiv = ◦ (‖v‖) as v → 0 for i = 2, 3, (21)

then T has a fixed point.

Theorem 6 Suppose that for i = 1, 2 that there is Li ∈ LC (Z) and Fi : C → C such that
L1 has the SIJP at r (L1)
L1 is lower bounded on C,
r (L2) < 1 < r (L1) and
L1v − F1v � Tv � L2v + F2v for all v ∈ C.

If either
F1v = ◦ (‖v‖) as v →∞ and F2v = ◦ (‖v‖) as v → 0 (22)

or
F1v = ◦ (‖v‖) as v → 0 and F2v = ◦ (‖v‖) as v →∞, (23)

then T has a positive fixed point.

4 Fixed Point Formulation

In the reminder of this paper we let

E0 = {u ∈ C(R+,R) : lim
t→+∞

u(t) = 0},

E1 = {u ∈ C(R+,R) : lim
t→+∞

u(t)

1 + t
= 0},

E2 = {u ∈ C(R+,R) : lim
t→+∞

u(t) = l ∈ R},

E3 = {u ∈ C(R+,R) : lim
t→+∞

e−ktu(t) = 0}.

Endowed respectively with the norms

‖u‖1 = sup
t≥0

|u(t)|
1 + t

, ‖u‖2 = sup
t≥0
|u(t)| and ‖u‖3 = sup

t≥0
e−kt |u(t)| ,

E1, E2 and E3 become Banach spaces.
We let also, K1,K2 and K3 be respectively the cones in E1, E2 and E3 defined by

K1 = {u ∈ E1 : u(t) ≥ 0 for all t ≥ 0 and u is nondecreasing},

K2 = {u ∈ E2 : u(t) ≥ 0 for all t ≥ 0},

K3 = {u ∈ E3 : u(t) ≥ γ(t)||u||3 for all t ≥ 0},

where
γ(t) =

1

3k

(
e−3kt − 3e−kt + 2

)
.

Let G : R+ × R+ → R be the function given by

G(t, s) =
1

k2

{
e−ks (cosh(kt)− 1) , if t ≤ s,
−e−kt sinh(ks) + (1− e−ks), if s ≤ t.
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The functions G and
∂G

∂t
are continuous and they have the following properties:

G(t, s) > 0 for all t, s > 0, (24)

∂G

∂t
(t, s) > 0 for all t, s > 0, (25)

G(0, s) =
∂G

∂t
(0, s) = 0 for all s ∈ R+, (26)

lim
t→+∞

G(t, s) =
1

k2
(1− e−ks) for all s ∈ R+, (27)∫ +∞

0

G(t, s)ds =
1

k2
t− 1

k3
(1− e−kt) for all t ≥ 0, (28)

sup
t≥0

1

1 + t

∫ +∞

0

G(t, s)ds =
1

k2
, (29)

∫ +∞

0

|G(t2, s)−G(t1, s)| ds ≤
2

k2
|t2 − t1| for all t2, t1 ≥ 0. (30)

Properties (24)—(28) and (29) are obvious and Property (30) is obtained from Property (28) for each of
the cases t2 ≥ t1 and t2 ≤ t1.

Lemma 1 For all functions v in E0, u(t) =
∫ +∞
0

G(t, s)v(s)ds is the unique solution of the bvp{
−u′′′(t) + k2u′ = v, in (0,+∞) ,
u(0) = u′(0) = u′(+∞) = 0.

(31)

Moreover u belongs to E1.

Proof. Let v ∈ E0. For any t ≥ 0 we have by Property (28),

|u(t)| =
∣∣∣∣∫ +∞

0

G(t, s)v(s)ds

∣∣∣∣ ≤ ‖v‖2 ∫ +∞

0

G(t, s)ds <∞.

Furthermore, for any t1, t2 ≥ 0, we have by Property (30),

|u(t2)− u(t1)| =

∣∣∣∣∫ +∞

0

G(t2, s)v(s)ds−
∫ +∞

0

G(t1, s)v(s)ds

∣∣∣∣
≤

∫ +∞

0

|G(t2, s)−G(t1, s)| ds ‖v‖2

≤ 2 ‖v‖2
k2

|t2 − t1| .

The above estimates show that u is well defined and u is continuous on R+.
Differentiating three times in the identity

u(t) = −e
−kt

k2

∫ t

0

sinh(ks)v (s) ds+
1

k2

∫ t

0

(1− e−ks)v (s) ds+
cosh(kt)− 1

k2

∫ +∞

t

e−ksv (s) ds,

we find

u′(t) =
1

k

(
e−kt

∫ t

0

sinh(ks)v (s) ds+ sinh(kt)

∫ +∞

t

e−ksv (s) ds

)
,

u′′(t) = −e−kt
∫ t

0

sinh(ks)v (s) ds+ cosh(kt)

∫ +∞

t

e−ksv (s) ds,
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u′′′(t) = k

(
e−kt

∫ t

0

sinh(ks)v (s) ds+ sinh(kt)

∫ +∞

t

e−ksv (s) ds

)
− v(t) = k2u′(t)− v(t).

Hence, u satisfies −u′′′(t) + k2u′ = v. Since (26) gives u(0) = u′(0) = 0, it remains to prove that
limt→+∞ u′(t) = limt→+∞

u(t)
1+t = 0. We have

u′(t) =

∫ +∞

0

∂G

∂t
(t, s)v(s)ds =

1

k
e−kt

∫ t

0

sinh(ks)v(s)ds+
1

k
sinh(kt)

∫ +∞

t

e−ksv(s)ds.

Using L’Hopital’s formula, we obtain

lim
t→+∞

e−kt
∫ t

0

sinh(ks)v(s)ds = lim
t→+∞

∫ t
0

sinh(ks)v(s)ds

ekt
= lim
t→+∞

sinh (kt)

kekt
v(t) = 0

and

lim
t→+∞

(
sinh(kt)

∫ +∞

t

e−ksv(s)ds

)
= lim

t→+∞

sinh(kt)

ekt

∫ +∞
t

e−ksv(s)ds

e−kt

= lim
t→+∞

∫ +∞
t

e−ksv(s)ds

e−kt
= lim
t→+∞

v(t)

k
= 0.

This completes the proof.

Lemma 2 Assume for i = 1 or 2 the function g : R+ × R → R is a Γi-Caratheodory. Then the operator
T ig : Ei → Ei where for u ∈ Ei,

T igu(t) =

∫ +∞

0

G(t, s)g(s, u(s))ds,

is well defined and if g(t, x) ≥ 0 for all t, x ≥ 0 then T ig (Ki) ⊂ Ki. Moreover, if u ∈ Ei is a fixed point of
T ig then u is a solution to the bvp{

−u′′′(t) + k2u′ = g(t, u), in (0,+∞) ,
u(0) = u′(0) = u′(+∞) = 0.

(32)

Proof. Since Γ2 ⊂ Γ1, in both the cases i = 1 or 2, g is a Γ1-Caratheodory function. Hence for any u ∈ Ei,
g(t, u) belongs to E0 and T igu belongs to E1 and satisfies the bvp (31) within v = g(t, u). In the case i = 2,

for u ∈ E2 we have g(t, u) belongs to Γ2 (i.e.
∫ +∞
0

g(s, u(s))ds < ∞). Therefore, Lebesgue convergence
theorem and Property (27) lead to

lim
t→+∞

T 2g u(t) =
1

k2

∫ +∞

0

(
1− e−ks

)
g(s, u(s))ds ≤ 1

k2

∫ +∞

0

g(s, u(s))ds <∞.

This shows that T 2g is well defined.
At the end, we conclude by Lemma 1 that any fixed point of T ig in Ei is a solution to the bvp (32) and

it is easy to see that if g is nonnegative then T ig(Ki) ⊂ Ki for i = 1, 2.

Lemma 3 Assume for i = 1 or 2 the function g : R+ × R → R is a Γ3-Caratheodory. Then the operator
T 3g : E3 → E3 where for u ∈ E3,

T 3g u(t) =

∫ +∞

0

G(t, s)g(s, u(s))ds,

is well defined and if g(t, x) ≥ 0 for all t, x ≥ 0 then T 3g (K3) ⊂ K3. Moreover, if u ∈ E3 is a fixed point of
T 3g then u is a solution to the bvp (32).
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Proof. Since g is a Γ3-Caratheodory function, for any u ∈ E3 we have |g(t, u)| belongs to Γ1 (i.e.
lims→+∞ g(s, u(s)) = 0). Hence Lemma 1 guarantees that T 3g u ∈ E1 and and satisfies the bvp (31) within
v = g(t, u). Furthermore, for any u ∈ E3 we have

e−kt
∣∣T 3g u(t)

∣∣ ≤ sup
s≥0
|g(s, u(s))|

(
e−kt

∫ +∞

0

G(t, s)ds

)
→ 0 as t→ +∞.

This shows that T 3g is well defined.
Clearly, if u ∈ E3 is a fixed point of T 3g then u is a solution to the bvp (32). So let us prove that if g is

nonnegative then T 3g (K3) ⊂ K3.
Let u ∈ E3, taking in consideration Lemma 2.3 in [12], we obtain

T 3g u(t) =

∫ t

0

dT 3g u

dt
(ξ)dξ =

∫ t

0

∫ +∞

0

∂G

∂t
(ξ, s)g(s, u(s)dsdξ

=

∫ t

0

ekξ
∫ +∞

0

e−kξ
∂G

∂t
(ξ, s)g(s, u(s)dsdξ

≥
∫ t

0

∫ +∞

0

ekξγ̃(ξ)e−kτ
∂G

∂t
(τ , s)g(s, u(s)dsdξ

≥
(∫ t

0

ekξγ̃(ξ)dξ

)(
e−kτ

∫ +∞

0

∂G

∂t
(τ , s)g(s, u(s)ds

)
,

where γ̃(ξ) =
(
e2kξ − 1

)
e−4kξ. This leads to

T 3g u(t) ≥
(∫ t

0

ekξγ̃(ξ)dξ

)∥∥∥∥∥dT 3g udt

∥∥∥∥∥
3

. (33)

Because
dT 3g u

dt ∈ E3, we have

T 3g u(t) =

∫ t

0

dT 3g u

dt
(ξ)dξ =

∫ t

0

ekξ

(
e−kξ

dT 3g u

dt
(ξ)

)
dξ ≤

∫ t

0

ekξdξ

∥∥∥∥∥dT 3g udt

∥∥∥∥∥
3

≤
(
ekt − 1

)
k

∥∥∥∥∥dT 3g udt

∥∥∥∥∥
3

≤ ekt

k

∥∥∥∥∥dT 3g udt

∥∥∥∥∥
3

,

which yields ∥∥∥∥∥dT 3g udt

∥∥∥∥∥
3

≥ k
∥∥T 3g u∥∥3 . (34)

Combining (33) with (34), we obtain
T 3g u(t) ≥ γ (t)

∥∥T 3g u∥∥3 .
Ending the proof.

As usual, the use of the fixed point approach needs a compactness criterion. The following result provides
a compactness criterion for a subset in the Banach space Ei, i = 1, 2 or 3. In fact this result is just is a
version of Corduneanu’s compactness criterion ([8], p. 62) adapted to the space Ei. It will be used in this
work to prove that the operator associated with the fixed point formulation of the bvp (6) is completely
continuous.

Lemma 4 Let M be a nonempty subset of Ei, i = 1, 2, 3. If the following conditions hold:

(a) M is bounded in Ei,
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(b) the set
{
u : u(t) = x(t)

pi(t)
, x ∈M

}
is locally equicontinuous on [0,+∞), and

(c) the set
{
u : u(t) = x(t)

pi(t)
, x ∈M

}
is equiconvergent at +∞,

then the subset M is relatively compact in Ei.

Lemma 5 Assume that the function g : R+×R→ R is Γ1-Caratheodory. Then the operator T 1g is completely
continuous.

Proof. First we prove that the operator T 1g is continuous. To this aim let (un) be a sequence in E1 with
limun = u in E1, and let R > 0 and ψR ∈ Γ2 ⊂ Γ0 be such that ‖un‖1 ≤ R for all n ≥ 1 and∣∣∣∣g(t, p1(t)( u

p1(t)

))∣∣∣∣ ≤ ψR(t) for all t ≥ 0 and u ∈ [−R,R] .

We have then ∥∥T 1g un − T 1g u∥∥1 = sup
t≥0

∣∣T 1g un (t)− T 1g u (t)
∣∣

p1(t)
≤ sup

t≥0
Φn(t),

where

Φn(t) =
1

p1(t)

∫ +∞

0

G(t, s) |g(s, un(s))− g(s, u(s))| ds

=
1

1 + t

∫ +∞

0

G(t, s)

∣∣∣∣g(s, p1(s)(un (s)

p1(s)

))
− g

(
s, p1(s)

(
u (s)

p1(s)

))∣∣∣∣ ds
≤ 2

p1(t)

∫ +∞

0

G(t, s)ψR(s)ds

≤ ‖ψR‖2 sup
t≥0

(
2

p1(t)

∫ +∞

0

G(t, s)ds

)
=

2 ‖ψR‖2
k2

.

Let (tn) be such that Φn(tn) = supt≥0 Φn(t) and let (tnl) be such that lim Φnl(tnl) = lim sup Φn(tn) .
Therefore, we have to prove that lim Φnl(tnl) = 0. We distinguish then two cases:

i) (tnl) is bounded by c > 0: In this case we have

Φnl(tnl) =

(
1

p1(tnl)

∫ +∞

0

G(tnl , s) |g(s, unl(s))− g(s, u(s))| ds
)

≤
∫ +∞

0

G(c, s) |g(s, unl(s))− g(s, u(s))| ds,

lim
n→+∞

G(c, s) |g(s, un(s))− g(s, u(s))| = 0,

|g(s, un(s))− g(s, u(s))| =
∣∣∣∣g(t, p1(s)(un (s)

p1(s)

))
− g

(
t, p1(s)

(
u (s)

p1(s)

))∣∣∣∣ ≤ 2ψR(s),

for all s > 0 and by (28)
∫ +∞
0

G(c, s)ψR(s)ds < ∞. Hence the dominated convergence theorem leads to
lim Φnl(tnl) = lim sup Φn(tn) = 0.

ii) lim tnl = +∞ (up to a subsequence): In this case we have from Lemma 2,

Φnl(tnl) =

(
1

p1(tnl)

∫ +∞

0

G(tnl , s) |g(s, unl(s))− g(s, u(s))| ds
)

≤ 2

p1(tnl)

∫ +∞

0

G(tnl , s)ψR(s)ds→ 0 as l→∞.
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Thus, we have proved that limT 1g unl = T 1g u in E1 and T
1
g is continuous.

Now we prove by means of Lemma 4 that T 1g maps bounded sets of E1 into relatively compact sets of
E1. To this aim, let Ω be a subset of E1 bounded by R > 0 and let ψR ∈ Γ1 be such that

|g(s, p1(s)u)| ≤ ψR(s) for all s ≥ 0 and all u ∈ [−R,R] .

For any u ∈ Ω we have by Property (29),

∥∥T 1g u∥∥1 = sup
t≥0

∣∣∣∣∣T 1g u (t)

p1(t)

∣∣∣∣∣ = sup
t≥0

(
1

p1(t)

∫ +∞

0

G(t, s)

∣∣∣∣g(s, p1(s)( u(s)

p1(s)

))∣∣∣∣ ds)
≤ sup

t≥0

(
1

p1(t)

∫ +∞

0

G(t, s)ψR(s)ds

)
≤ sup

t≥0

(
1

p1(t)

∫ +∞

0

G(t, s)ds

)
‖ψR‖1 =

1

k2
‖ψR‖1 .

Hence T 1g (Ω) is bounded in E1.
Let t1, t2 ∈ [η, ζ] ⊂ R+ with t1 ≤ t2. For all u ∈ Ω we have∣∣∣∣∣T 1g u (t2)

p1(t2)
−
T 1g u (t1)

p1(t1)

∣∣∣∣∣ ≤
∫ t1

0

∣∣∣∣G (t2, s)

p1(t2)
− G (t1, s)

p1(t1)

∣∣∣∣ψR(s)ds+

∫ t2

t1

∣∣∣∣G (t2, s)

p1(t2)
− G (t1, s)

p1(t1)

∣∣∣∣ψR(s)ds

+

∫ +∞

t2

∣∣∣∣G (t2, s)

p1(t2)
− G (t1, s)

p1(t1)

∣∣∣∣ψR(s)ds,

∫ t1

0

∣∣∣∣G (t2, s)

p1(t2)
− G (t1, s)

p1(t1)

∣∣∣∣ψR(s)ds ≤ 1

k2

(
e−kt1

p1(t1)
− e−kt2

p1(t2)

)∫ ζ

0

sinh(ks)ψR(s)ds

+
1

k2

(
1

p1(t1)
− 1

p1(t2)

)∫ ζ

0

(1− e−ks)ψR(s)ds

≤ C1(k)

k2

(∫ ζ

0

ψR(s)ds

)
(t2 − t1) ,

∫ t2

t1

∣∣∣∣G (t2, s)

p1(t2)
− G (t1, s)

p1(t1)

∣∣∣∣ψR(s)ds ≤ 1

k2

∫ t2

t1

(
e−kt2

p1(t2)
sinh(ks) +

1− e−ks
p1(t2)

+
cosh (kt1)− 1

p1(t1)
e−ks

)
ψR(s)ds

≤ C2(k)

k2
(t2 − t1)

and∫ +∞

t2

∣∣∣∣G (t2, s)

p1(t2)
− G (t1, s)

p1(t1)

∣∣∣∣ψR(s)ds ≤ 1

k2

∣∣∣∣cosh (kt2)− 1

p1(t2)
− cosh (kt1)− 1

p1(t1)

∣∣∣∣ ∫ +∞

η

e−ksψR(s)e−ksds

≤ C3(k)

k2
(t2 − t1) ,

where
C1(k) = (k + 1) sinh(kζ) + 1,

C2(k) =

(
sinh(kζ)e−kη

1 + η
+ 1 +

cosh (kζ)− 1

1 + ζ

)
sup
s∈[η,ζ]

ψR(s),

C3(k) = sup
t∈[η,ζ]

(
cosh (kt)− 1

1 + t

)′
.
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We obtain from the above computations that∣∣∣∣∣T 1g u (t2)

p1(t2)
−
T 1g u (t1)

p1(t1)

∣∣∣∣∣ ≤ C1(k) + C2(k) + C3(k)

k2
(t2 − t1) .

Hence T 1g (Ω) is equicontinuous on compact intervals of R+.
We have for all u ∈ Ω and t ≥ 0∣∣T 1g u(t)

∣∣
1 + t

≤
∫ +∞

0

G(t, s)

1 + t
|g(s, u(s))| ds ≤ 1

1 + t

∫ +∞

0

G(t, s)ψR(s)ds := H̃(t).

Since Lemma 2 guarantees that limt→+∞ H̃(t) = 0, we conclude that T 1g (Ω) is equiconvergent at +∞. This
ends the proof.

Lemma 6 Let g : R+ × R→ R be a Γ2-Caratheodory function. Then the operator T 2g is completely contin-
uous.

Proof. First, let us prove that T 2g is continuous. To this aim let (un) be a sequence in E2 with limun = u
in E2, and let R > 0 and ψR be such that ‖un‖2 ≤ R for all n ≥ 1 and |g(t, p2(t)u)| ≤ ψR(t) for all t ≥ 0
and u ∈ [−R,R] . Hence we have

∥∥T 2g un − T 2g u∥∥2 = sup
t≥0

∣∣T 2g un (t)− T 2g u (t)
∣∣ ≤ ∫ +∞

0

G(∞, s) |g(s, un(s))− g(s, u(s))| ds

with
lim

n→+∞
|g(s, un(s))− g(s, u(s))| = 0

and
|g(s, un(s))− g(s, u(s))| = |g(s, p2(s)un(s))− g(s, p2(s)u(s))| ≤ 2ψR(s).

for all s > 0. Since ψR ∈ L1(R+), we conclude by means of the dominated convergence theorem that
limT 2g un = T 2g u in E2, proving the continuity of T

2
g .

Now we prove by means of Lemma 4 that T 2g maps bounded sets of E2 into relatively compact sets of
E2. To this aim, let Ω be a subset of E2 bounded by a constant R > 0 and let ψR ∈ Γ2 be such that

|g(s, p2(s)u)| ≤ ψR(s) for all s ≥ 0 and all u ∈ [−R,R] .

Hence for all u ∈ Ω, we have by Property (25) and (27)

∥∥T 2g u∥∥2 ≤ sup
t≥0

∫ +∞

0

G(t, s) |g(s, u(s))| ds = sup
t≥0

∫ +∞

0

G(t, s) |g(s, p2(s)u(s))| ds

≤
∫ +∞

0

G(∞, s)ψR(s)ds <∞.

This estimate proves that T 2g (Ω) is bounded in E2.
Let t1, t2 ∈ [η, ζ] ⊂ R+ and u ∈ Ω. By Property (30) of the function G, we obtain

∣∣T 2g u (t2)− T 2g u (t1)
∣∣ ≤ ∫ +∞

0

|G(t2, s)−G(t1, s)| ds ‖ψR‖1 ≤
2 ‖ψR‖1
k2

|t2 − t1| .

Proving that T 2g (Ω) is equicontinuous on compact intervals of R+.
We have for all u ∈ Ω and t ≥ 0∣∣T 2g u(∞)− T 2g u(t)

∣∣ ≤ ∫ +∞

0

(G(∞, s)−G(t, s))ψR(s)ds := H(t).
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Taking in account Property (27) and the fact that

(G(∞, s)−G(t, s))ψR(s) ≤ 1

k2
ψR(s) for all s > 0,

where ψR ∈ L1 (R+), we obtain by the dominated convergence theorem that limt→+∞H(t) = 0. Thus
T 2g (Ω) is equiconvergent at +∞ and the proof is complete.

Lemma 7 Assume the function g : R+ ×R→ R is Γ3-Caratheodory with i = 1 or 2. Then the operator T 3g
is completely continuous.

Proof. Observe that since g is Γ3-Caratheodory, for all u ∈ E3 we have T 3g u ∈ E1. Therefore considering
the operator T 1,3g : E3 → E1 with T 1,3g u(t) = T 3g u(t) and arguing as in the proofs of Lemmas 5, we obtain
that T 1,3g is completely continuous. Since T 3g = I1 ◦ T 1,3g , where I1 is the continuous embedding of E1 in E3,
we have that T 3g is completely continuous.

We obtain from Lemmas 5, 6 and 7 the following fixed point formulation for the bvp (6).

Corollary 4 Suppose that the function f is Γi-Caratheodory for some i ∈ {1, 2, 3}. Then ui ∈ Ei is a
positive solution to the bvp (6) if and only if ui is a fixed point of T if where T

i
f : Ki → Ki is completely

continuous.

5 Proofs of Main Results

5.1 Auxiliary Results

Let for q ∈ ∆i with i = 1, 2, 3, Liq : Ei → Ei be the linear operator defined by

Liqu(t) =

∫ +∞

0

G(t, s)q(s)u(s)ds for u ∈ Ei.

We have from Lemmas 5, 6 and 7 that for i = 1, 2, 3, the linear operator Liq is compact. The main goal of
this subsection is to prove that for i = 1, 2, 3, the operator Liq has the SIJP at its spectral radius r(L

i
q) and

in particular, L3q is lower bounded on K3. These results are requirement of Proposition 3, Theorem 5 and
Theorem 6, and so are needed for the proofs of the main results of this article. We start by introducing some
notations.
Let for T > 0, GT : R+ × R+ → R be the function defined by

GT (t, s) =

{
G(t, s), if t ≤ T,
G(T, s), if t ≥ T.

and for i = 1, 2,
ET =

{
u ∈ C

(
R+
)

: u(0) = 0 and u(t) = u(T ) for t ≥ T
}
,

XT =
{
u ∈ ET ∩ C2[0, T ] : u′(0) = 0

}
,

YT = XT ∩ C3[0, T ].

Equipped respectively with the norms

‖u‖T = sup
t∈[0,T ]

|u(t)| for all u ∈ ET ,

‖u‖X = max(‖u‖T , ‖u
′‖T , ‖u

′′‖T ) for all u ∈ XT

and
‖u‖Y = max(‖u‖X , ‖u

′′′‖T ) for all u ∈ YT ,
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ET , XT and YT become Banach spaces.
In what follows E+T and X

+
T denote respectively the cones of nonnegative functions in the Banach spaces

ET and XT . For q ∈ ∆ and T > 0, let Liq,T : Ei → Ei, Lq,T : ET → ET , Aq,T : XT → XT , L̃q,T : ET → YT ,

and Ãq,T : XT → YT be the linear bounded operators defined by

Liq,Tu(t) =

∫ +∞

0

GT (t, s)q(s)u(s)ds for u ∈ Ei,

L̃q,Tu = Lq,Tu = Liq,Tu for u ∈ ET
and

Aq,Tu(t) = Ãq,Tu = Lq,Tu for u ∈ XT .

Let I, J be respectively the compact embedding of YT into ET and YT into XT . Since Lq,T = I ◦ L̃q,T and
Aq,T = J ◦ Ãq,T , we have that Lq,T and Aq,T are compact operators. Moreover, arguing as in the proofs of
Lemmas 5 and 6, we obtain that for i = 1, 2, Liq,T is a compact operator.

Lemma 8 The set OT defined by

OT = {u ∈ XT : u′ > 0 in (0, T ] and u′′(0) > 0} ,

is open in the Banach space XT .

Proof. We have OcT = F1 ∪ F2 where

F1 = {u ∈ XT : u′(t0) ≤ 0 for some t0 ∈ (0, T ]},

F2 = {u ∈ XT : u′′(0) ≤ 0}.
Since F2 is a closed set in XT , we have to show that F1 ⊂ F1 ∪ F2. To this aim, let (un) ⊂ F1 with

limun = u and let (xn) ⊂ (0, T ] be such u′(xn) ≤ 0 and limxn = x. We distinguish the following two cases:
Case 1. x ∈ (0, T ]: In this case we have

u′(x) = limu′n(xn) ≤ 0,

proving that u ∈ F1.
Case 2. x = 0: In this case we have

u′′(0) = lim
n→∞

u′n(xn)

xn
≤ 0,

proving that u ∈ F2.

Lemma 9 For i = 1 or 2, q in ∆i and T > 0, the operator Liq,T has the SIJP at its spectral radius r(L
i
q,T ).

Proof. First, we show that the linear mapping Aq,T is strongly positive. Let u ∈ X+
T r {0} and v = Aq,Tu,

we have from Property (25) of the function G that

v′(t) =

∫ T

0

∂GT
∂t

(t, s)q(s)u(s)ds > 0 for all t ∈ (0, T ). (35)

Moreover, we have

v′′(0) =

∫ T

0

∂2GT
∂t2

(t, s)q(s)u(s)ds > 0. (36)

Clearly, (35) and (36) show that v = Aq,Tu ∈ OT ⊂ int
(
X+
T

)
, proving that

Aq,T
(
X+
T r {0}

)
⊂ OT ⊂ int

(
X+
T

)
and Aq,T is strongly positive.
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Therefore, we conclude from Proposition 2 that the operator Aq,T has the SIJP at r(Aq,T ).
Now, we are able to prove that the operator Lq,T has the SIJP at r(Lq,T ). Let µ0 > 0 and u ∈ E+T r {0}

such that Lq,Tu ≥ µ0u, then U = Lq,Tu ∈ X+
T r {0} and satisfies Lq,TU = Aq,TU ≥ µ0U. Hence, we have

that µ0 ∈ ΛAq,T
and µ0 ≤ sup ΛAq,T

= r(Aq,T ).

Similarly if η0 ≥ 0 and v ∈ E+T r{0} are such that Lq,T v ≤ η0v, then V = Lq,T v ∈ X+
T r{0} and satisfies

Lq,TV = Aq,TV ≤ η0V. Therefore, we have that

η0 ∈ Γ
Aq,T

and η0 ≥ inf ΓAq,T
= r(Aq,T ).

Therefore, we have proved that

sup ΛLq,T ≤ r (Aq,T ) = inf ΓAq,T
= sup ΛAq,T

≤ inf ΓLq,T

and this combined with (17) leads to inf ΓLq,T = sup ΛLq,T = r(Aq,T ) and Lq,T has the SIJP at r(Aq,T ).

Since the cone E+T is total in the Banach space ET , we have that r (Lq,T ) is a positive eigenvalue. Hence
taking in consideration Remark 1, we obtain that r (Lq,T ) = r (Aq,T ) and Lq,T has the SIJP at r(Lq,T ).

Noticing that for all u ∈ Ki r {0} ,

U = Liq,Tu ∈ E+T r {0} and Liq,TU = Lq,TU,

then arguing as above we obtain that Liq,T has the SIJP at r(L
i
q,T ). Ending the proof.

Theorem 7 For i = 1 or 2 and q in ∆i the operator Liq has the SIJP at its spectral radius r(L
i
q).

Proof. In order to make use of Theorem 4 we prove that for a function q in ∆i, T → Liq,T is increasing and
limT→+∞ Liq,T = Liq. Let q in ∆i and T1, T2 be such that 0 < T1 < T2 <∞. For u ∈ Ki we have

Liq,T2u(t)− L1q,T1u(t) =


∫ +∞
0

(G(t, s)−G(t, s)) q(s)u(s)ds = 0, if t ≤ T1,∫ T1
0

(G(t, s)−G(T1, s)) q(s)u(s)ds ≥ 0, if T1 < t ≤ T2,∫ T1
0

(G(T2, s)−GT1(T1, s)) q(s)u(s)ds ≥ 0, if T2 < t,

proving that Liq,T2u− L
i
q,T1

u ∈ Ki and Liq,T1 ≤ L
i
q,T2

.
If i = 1, for u ∈ E1 with ‖u‖1 = 1, we have∣∣∣L1qu(t)−L1q,Tu(t)p1(t)

∣∣∣ ≤ 1
1+t

∫ +∞

0

(G(t, s)−GT (t, s)) q(s)ds

=

{
0, if t ≤ T,
1
1+t

∫ +∞
0

(G(t, s)−G(T, s)) q(s)ds, if t ≥ T.

Therefore,

sup
t≥0

∣∣∣∣∣L1qu(t)− L1q,Tu(t)

1 + t

∣∣∣∣∣ = sup
t≥T

(
1

1 + t

∫ +∞

0

(G(t, s)−G(T, s)) q(s)ds

)
≤ sup

t≥T

(
1

1 + t

∫ +∞

0

G(t, s)q(s)ds

)
.

Since

lim
t→+∞

(
1
1+t

∫ +∞

0

G(t, s)q(s)ds

)
= 0,

we have

lim
T→+∞

(
sup
‖u‖2=1

∥∥L1qu− L1q,Tu∥∥1
)

= lim
T→+∞

(
sup
‖u‖1=1

(
sup
t≥0

∣∣∣L1qu(t)−L1q,Tu(t)1+t

∣∣∣))

≤ lim
T→+∞

(
sup
t≥T

(
1
1+t

∫ +∞

0

G(t, s)q(s)ds

))
= 0.
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Hence we obtain by Theorem 4 that the operator L1q has the SIJP at its spectral radius r(L
1
q).

If i = 2, for u ∈ E2 with ‖u‖2 = 1 we have

∣∣L2qu(t)− L2q,Tu(t)
∣∣ ≤ ∫ +∞

0

(G(t, s)−GT (t, s)) q(s)ds

=

{
0, if t ≤ T,∫ +∞
0

(G(t, s)−G(T, s)) q(s)ds, if t ≥ T.

Hence we have ∥∥L2q − L2q,T∥∥ = sup
‖u‖2=1

∥∥L2qu− L2q,Tu∥∥2 ≤ ∫ +∞

0

(G(t, s)−G(T, s)) q(s)ds,

then by Lebesgue dominated convergence theorem we conclude that L2q,T → L2q as T → +∞. By Theorem
4, we obtain that the operator L2q has the SIJP at its spectral radius r(L

2
q).

Theorem 8 For i = 1 or 2 and q in ∆3 the operator L3q has the SIJP at its spectral radius r(L
3
q) and L

3
q is

bounded on the cone K3 from below.

Proof. Notice first that for all u ∈ K3, L
3
qu ∈ K1. Indeed, we have for u ∈ K3 and for all t > 0

L3qu(t)

1 + t
≤ ||u||3

1 + t

∫ +∞

0

G(t, s)
(
eksq(s)

)
ds→ 0 as t→ +∞,

since lims→+∞ eksq(s) = 0, and

(
L3qu

)′
(t) =

∫ +∞

0

∂G

∂t
(t, s)q(s)u(s)ds > 0.

Let now, λ0 > 0 and u ∈ K3 r {0} be such that L3qu ≤ λ0u. Then U = L3qu satisfies L
1
qU = L3qU ≤ λ0U

and we have λ0 ≥ inf ΓL1q = r(L1q). Similarly if θ0 > 0 and u ∈ K3 r {0} are such that L3qu ≥ θ0u then
U = L3qu ∈ K1 r {0} and satisfies L1qU = L3qU ≥ θ0U and we have θ0 ≤ sup ΛL1q = r(L1q).

The above leads to r(L1q) = inf ΓL1q = sup ΛL1qand the operator L
3
q has the SIJP at r(L

1
q). Since the cone

K3 is total in the Banach space E3 and Remark 1 claims that r
(
L1q
)
is the unique positive eigenvalue of the

positive operator L3q, we have that r
(
L3q
)

= r
(
L1q
)
and L3q has the SIJP at r(L

3
q).

It remains to show that L3q is lower bounded on K3. Let u ∈ K3, with ‖u‖3 = 1, we have then for all
t ≥ 0,

L3qu(t) =

∫ +∞

0

G(t, s)q(s)u(s)ds ≥
∫ +∞

0

G(t, s)q(s)γ(s)ds,

leading to

inf
{∥∥L3qu∥∥3 : u ∈ K3 ∩ ∂B(0E3 , 1)

}
≥ sup

t≥0
e−kt

∫ +∞

0

G(t, s)q(s)γ(s)ds > 0

and the operator L3q is lower bounded on the cone K3 from below. This ends the proof.

5.2 Proof of Proposition 1

Let q ∈ ∆, we have from Lemma 2 that µ is a positive eigenvalue of the linear eigenvalue problem (7) if
and only if µ−1 is a positive eigenvalue of the compact operator Liq for i = 1 or 2. Since Theorem 7 claims
that Liq has the SIJP at r(L

i
q), we have from Remark 1 that r(Liq) is the unique positive eigenvalue of L

i
q.

Therefore, we have that µ(q) = 1/r(Liq) is the unique positive eigenvalue of the linear eigenvalue problem
(7).
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Now, let φ be the eigenfunction associated with µ(q). Clearly if q ∈ ∆2 then φ is bounded and if not then
φ satisfies

φ(t) =

∫ +∞

0

G(t, s)q(s)φ(s)ds ≥ 1

k2

∫ t

1

(
−e−kt sinh(ks) + (1− e−ks)

)
q(s)φ(s)ds

≥
(
1− e−k

)2
2k2

∫ t

1

q(s)φ(s)ds

≥
(
1− e−k

)2
2k2

φ(1)

∫ t

1

q(s)ds. (37)

Thus, suppose to the contrary that φ is bounded, then passing to the limits in (37), we obtain the contra-
diction

+∞ > lim
t→+∞

φ(t) = lim
t→+∞

(
1− e−k

)2
2k2

φ(1)

∫ t

1

q(s)ds = +∞.

Ending the proof.

5.3 Proof of Theorem 1

Assume that Hypothesis (8) holds true (the case where (9) holds is checked similarly). Let ε > 0 be so small
such that for i = 1, 2,

inf

{
f(t, pi(t)u)

pi(t)q(t)u
: t, u > 0

}
≥ (µ(q) + ε) .

Hence for all u ∈ Ki, we have

T ifu(t) =

∫ +∞

0

G(t, s)f(s, u(s))ds

=

∫ +∞

0

G(t, s)f(s, pi(s)
u(s)

pi(s)
)ds

≥ (µ(q) + ε)

∫ +∞

0

G(t, s)q(s)u(s)ds

= (µ(q) + ε)Liqu(t) := L̂iqu(t)

and

r(L̂iq) =
µ(q) + ε

µ (q)
> 1.

Since Theorems 7 and 8 state that the operator L̂iq has the SIJP at r(L̂iq), Hypothesis (18) holds and
Proposition 3 guarantees that the operator T if has no fixed point in Ki. Thus, we conclude by Corollary 4
that the bvp (6) has no positive solution.

5.4 Proof of Theorem 2

Step 1. Existence in the case where (10) is satisfied
Let ε ∈

(
0, µ(q∞)− f+i,+∞(q∞)

)
there is R such that

f(t, pi(t)u) ≤ (µ (q∞)− ε) pi(t)q∞(t)u for all t ≥ 0 and u ≥ R.

Since the function f is Γi-Caratheodory, there is ψR ∈ Γi such that

f(t, pi(t)u) ≤ (µ (q∞)− ε) pi(t)q∞(t)u+ ψR (t) for all t, u ≥ 0,



Benmezaï et al. 443

and this leads to
f(t, u) ≤ (µ (q∞)− ε) q∞(t)u+ ψR (t) for all t, u ≥ 0. (38)

Let ε ∈
(
0, f−i,0(q0)− µ(q∞)

)
there is r > 0 such that for all t ≥ 0 and u ∈ [0, r](

f−i,0(q0) + ε
)
pi(t)q0(t)u ≥ f(t, pi(t)u) ≥ (µ (q∞) + ε) p1i(t)q0(t)u,

leading to (
f−i,0(q0) + ε

)
q0(t)u ≥ f(t, u) ≥ (µ (q∞) + ε) q0(t)u for all t ≥ 0 and u ∈ [0, r] .

Therefore, for all t, u ≥ 0 we have(
f−i,0(q0) + ε

)
q0(t)u+ f̂(t, u) ≥ f(t, u) ≥ (µ (q0) + ε) q0(t)u− f̃(t, u), (39)

where
f̃(t, u) = sup (0, (µ (q∞) + ε) q0(t)u− f(t, u)) ,

f̂(t, u) = sup
(
0, f(t, u)−

(
f−i,0(q0) + ε

)
q0(t)u

)
.

Therefore, we obtain from (38) and (39) that

T ifu ≤ Liq∞u+ F∞u for all u ∈ Ki,

and
Liq0u− F0u ≤ T

i
fu ≤ Liq0u+ F̂0u for all u ∈ Ki

where

F0u(t) =

∫ +∞

0

G(t, s)f̃(t, u (s))ds,

F̂0u(t) =

∫ +∞

0

G(t, s)f̂(t, u (s))ds,

F∞u(t) =

∫ +∞

0

G(t, s)ψR (s) ds,

r
(
Liq∞

)
=

(µ (q∞)− ε)
µ (q∞)

< 1 < r
(
Liq0
)

=
(µ (q0) + ε)

µ (q0)
.

We conclude from Theorem 7, Theorem 5 and Corollary 4 that the bvp (6) admits a positive solution u ∈ Ki.

Step 2. Existence in the case where (11) is satisfied
Let ε ∈

(
0, µi(q0)− f+i,0(q0)

)
there is r > 0 small such that

f(t, pi(t)u) ≤ (µ (q∞)− ε) pi(t)q∞(t)u for all t ≥ 0 and u ≤ r,

leading to
f(t, u) ≤ (µ (q0)− ε) q0(t)u for all t ≥ 0 and u ≤ r.

Therefore, for all t, u ≥ 0 we have

f(t, u) ≤ (µ (q0)− ε) q0(t)u+ f̂(t, u), (40)

with
f̂(t, u) = sup (0, f(t, u)− (µ (q0)− ε) q0(t)u) .

Let ε ∈
(
0, f−i,∞(q∞)− µi(q∞)

)
there is R > 0 such that for all t ≥ 0 and u ≥ R,

(µ (q∞) + ε) pi(t)q∞(t)u ≤ f(t, pi(t)u) ≤
(
f+i,∞(q∞) + ε

)
pi(t)q∞(t)u,
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Since the nonlinearity f is a Γi-Caratheodory function, there is ψR ∈ Γi such that

f(t, u) ≤
(
f+i,∞(q∞) + ε

)
q∞(t)pi(t)u+ ψR (t) for all t, u ≥ 0 .

Therefore, for all t, u ≥ 0 we have

(µi (q∞) + ε) q∞(t)u− f̃(t, u) ≤ f(t, u) ≤
(
f+i,∞(q∞) + ε

)
q∞(t)u+ ψR (t) , (41)

where
f̃(t, u) = sup (0, (µ (q∞) + ε) q∞(t)u− f(t, u)) .

Therefore, we obtain from (40) and (41) that

T ifu ≤ Liq0u+ F0u for all u ∈ Ki

and
Liq∞u− F∞u ≤ T

i
fu ≤ Liq∞u+ F̂∞u for all u ∈ Ki,

where

F0u(t) =

∫ +∞

0

G(t, s)f̂(t, u (s))ds,

F̂∞u(t) =

∫ +∞

0

G(t, s)ψR (s) ds,

F∞u(t) =

∫ +∞

0

G(t, s)f̃(t, u (s))ds,

r
(
Liq0
)

=
(µ (q∞)− ε)
µ (q∞)

< 1 < r
(
Liq∞

)
=

(µ (q0) + ε)

µ (q0)
.

We conclude from Theorem 7, Theorem 5 and Corollary 4 that the bvp (6) admits a positive solution u ∈ Ki.

Step 3. Boundedness and unboundedness of the solution
Evidently, if i = 1 the solution u is bounded. If i = 2 and Hypothesis (12) is fulfilled, then the solution

u satisfies

u(t) =

∫ +∞

0

G(t, s)f(s, u(s))ds ≥
(
1− e−k

)2
2k2

∫ t

1

f(s, u(s))ds =

(
1− e−k

)2
2k2

∫ t

1

f(s, p1(s)

(
u(s)

p1(s)

)
)ds.

(42)
Thus, suppose to the contrary that the solution u is bounded, then passing to the limits in (42), we obtain
the contradiction

+∞ > lim
t→+∞

u(t) = lim
t→+∞

(
1− e−k

)2
2k2

∫ t

1

f(s, p1(s)

(
u(s)

p1(s)

)
)ds = +∞.

Ending the proof.

5.5 Proof of Theorem 3

Step 1. Existence in the case where (13) is satisfied
Let ε ∈

(
0, µ(q∞)− f+i,3,∞(q∞)

)
, there is R such that

f(t, p3(t)u) ≤ (µ1 (q∞)− ε) p3(t)q∞(t)u for all t ≥ 0 and u ≥ R.

Since the nonlinearity f is a Γ3-Caratheodory function, there is ψR ∈ Γ1 such that

f(t, p3(t)u) ≤ (µ (q∞)− ε) p3(t)q∞(t)u+ ψR (t) for all t, u ≥ 0,
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and this leads to
f(t, u) ≤ (µ (q∞)− ε) q∞(t)u+ ψR (t) for all t, u ≥ 0. (43)

Also, we have from f−3,0(q0) > µ(q0) that for ε ∈
(
0, f−3,0(q0)− µ(q∞)

)
there is r > 0 such that

f(t, p3(t)u) ≥ (µ (q∞) + ε) p3(t)q0(t)u for all t ≥ 0 and u ∈ [0, r] ,

leading to
f(t, u) ≥ (µ (q∞) + ε) q0(t)u for all t ≥ 0 and u ∈ [0, r] .

Therefore we have
f(t, u) ≥ (µ (q0) + ε) q0(t)u− f̃(t, u) for all t, u ≥ 0, (44)

where
f̃(t, u) = sup (0, (µ (q∞) + ε) q0(t)u− f(t, u)) .

Hence, we obtain from (43) and (44) that

L3q0u− F0u ≤ T
3
f u ≤ L3q∞u+ F∞u for all u ∈ K3,

where

F0u(t) =

∫ +∞

0

G(t, s)f̃(t, u (s))ds,

F∞u(t) =

∫ +∞

0

G(t, s)ψR (s) ds,

r
(
L3q∞

)
=

(µ (q∞)− ε)
µ (q∞)

< 1 < r
(
L3q0
)

=
(µ (q0) + ε)

µ (q0)
.

We conclude from Theorem 8, Theorem 6 and Corollary 4 that the bvp (6) admits a positive solution.

Step 2. Existence in the case where (14) is satisfied
Let ε ∈

(
0, µ(q0)− f+3,0(q0)

)
, there is r > 0 such that

f(t, p3(t)u) ≤ (µ (q0)− ε) p3(t)q0(t)u for all t ≥ 0 and u ≤ r.

Hence for all t, u ≥ 0 we have
f(t, u) ≤ (µ (q0)− ε) q0(t)u+ f̃(t, u), (45)

where
f̃(t, u) = sup (0, (f(t, u)− (µ (q0)− ε) q0(t)u) .

Let ε ∈
(
0, f−3,∞(q0)− µ(q∞)

)
there is R > 0 such that

f(t, p3(t)u) ≥ (µ (q∞) + ε) p3(t)q∞(t)u for all t ≥ 0 and u ≥ R,

leading to
f(t, u) ≥ (µ (q∞) + ε) q∞(t)u for all t ≥ 0 and u ≥ R.

Therefore, we have
f(t, u) ≥ (µ (q∞) + ε) q∞(t)u− f̂(t, u) for all t, u ≥ 0, (46)

where
f̂(t, u) = sup(0, (µ (q∞) + ε) q∞(t)u− f(t, u)).

Hence, we obtain from (45) and (46) that

L3q∞u− F∞u ≤ T
3
f u ≤ L3q0u+ F0u for all u ∈ K3,
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where

F0u(t) =

∫ +∞

0

G(t, s)f̃(t, u (s))ds,

F∞u(t) =

∫ +∞

0

G(t, s)f̂(t, u (s))ds,

r
(
L3q0
)

=
(µ (q0)− ε)
µ (q0)

< 1 < r
(
L3q∞

)
=

(µ (q∞) + ε)

µ (q∞)
.

We conclude from Theorem 8, Theorem 6 and Corollary 4 that the bvp (6) admits a positive solution.

Step 3. Boundedness and unboundedness of the solution
Evidently, if f is a Γ4-Caratheodory function the solution u is bounded. If Hypothesis (15) is fulfilled,

then the solution u satisfies

u(t) =

∫ +∞

0

G(t, s)f(s, u(s))ds ≥
(
1− e−k

)2
2k2

∫ t

1

f(s, u(s)d =

(
1− e−k

)2
2k2

∫ t

1

f(s, p3(s)

(
u(s)

p3(s)

)
)ds. (47)

Thus, by the contrary if the solution u is bounded then passing to the limits in (47) we obtain the contra-
diction

lim
t→+∞

u(t) = lim
t→+∞

(
1− e−k

)2
2k2

∫ t

1

f(s, p3(s)

(
u(s)

p3(s)

)
)ds = +∞.

Ending the proof.
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