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Abstract

In the present manuscript, we introduced α−ψ type contractive mapping in C∗-algebra valued partial
metric space for unital C∗-algebra A, and proved some fixed point theorems. To discuss the usability of
the proved results, we established the existence and uniqueness of a solution of an integral equations. .

1 Introduction

The Banach contraction principle [12] is the cornerstone of the development of fixed point theory. The
theory has numerous applications not only in the different branches of mathematics but also in economics,
chemistry, biology, computer science, engineering and others. Fixed point and common fixed point results
for different types of contractions in various spaces have been investigated extensively by various researchers
(see [1], [11], [13], [18], [19]).
Matthews [14] introduced the notion of partial metric space, which is a generalization of metric space.

Ma et al. [18] introduced the notion of C∗-algebra valued metric space by replacing the set of real numbers
with the positive elements of C∗-algebra. Various researchers discussed number of fixed point results in
C∗-algebra valued metric space by using different approaches and definitions (see [5], [6], [7], [8], [9], [10],
[15], [16]).
Recently, Chandok et al. [13] generalized the class of C∗-algebra valued metric space with the notion

of C∗-algebra valued partial metric space by combining partial metric space and C∗-algebra valued metric
space and proved some fixed point results. Later, Tomar et al. [2] introduced the concepts of contractiveness
and expansiveness in a C∗-algebra valued partial metric space and proved the existence of a fixed point for
self-mappings. Samet [3, 4] introduced the concept of α− ψ contractive mapping in b-metric space. Omran
et al. [17] gave (α−ψ) type contractive mapping in C∗-algebra valued b-metric space and proved the Banach
version of fixed point theorem.
In the present manuscript, we introduce α − ψ type contractive mapping in C∗-algebra valued partial

metric space for unital C∗-algebra A, and prove some fixed point results. Our results generalize well-known
results in the literature. Also, we provide an example and an application to illustrate our results.

2 Preliminaries

We begin the section by providing some basic concepts of C∗-algebra followed by some lemmas and definitions
given in [19]. Throughout the paper, by A, we denote an unital C∗-algebra with the unity element IA.

Lemma 1 ([17]) Suppose A be unital C∗- algebra with unity IA. Then, the following hold:

(i) If a ∈ A with ||a|| ≤ 1/2, then (IA − a) is invertible and ||a(1− a)−1|| ≤ 1.
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(ii) For any x ∈ A and a, b ∈ A+ such that a � b, we have x∗ax and x∗bx are positive element and
x∗ax � x∗bx.

(iii) If θ � a � b then ||a|| ≤ ||b||.

(iv) If a, b ∈ A+ and ab = ba, then a.b � θA.

(v) Let A′ denote the set {a ∈ A : ab = ba ∀ b ∈ A} and let a ∈ A′. If b, c ∈ A with b � c � θ and
(IA − a) ∈ (A′)+ is an invertible element, then (IA − a)−1b � (IA − a)−1c.

Definition 1 ([13]) Let X be a nonempty set and pA : X ×X → A satisfying:

(i) θA � pA(x, y) and pA(x, x) = pA(y, y) = pA(x, y) if and only if x = y;

(ii) pA(x, x) � pA(x, y);

(iii) pA(x, y) = pA(y, x);

(iv) pA(x, y) � pA(x, z) + pA(z, y)− pA(z, z),

for any x, y, z ∈ X. Then, pA is called a C∗-algebra valued partial metric and (X,A, pA) is called a unital
C∗-algebra valued partial metric space.

Definition 2 ([13]) Let (X,A, pA) be a C∗-algebra valued partial metric space, x ∈ X and {xn} a sequence
in X. Then

(i) {xn} converges to x with respect to A, whenever for every ε > 0 there is a natural number N such that
||pA(xn, x)− pA(x, x)|| ≤ ε for all n ≥ N . We denote it by

lim
n→∞

(
pA(xn, x)− pA(x, x)

)
= θA.

(ii) {xn} is a partial Cauchy sequence with respect to A whenever for every ε > 0 there is a natural number
N such that (

pA(xn, xm)− 1

2
pA(xn, xn)− 1

2
pA(xm, xm)

)(
pA(xn, xm)

−1

2
pA(xn, xn)− 1

2
pA(xm, xm)

)∗
� ε2.

for all m,n ≥ N .

(iii) (X,A, pA) is said to be complete with respect to A if every partial Cauchy sequence converges to a point
x ∈ X with respect to A such that

lim
n→∞

(
pA(xn, x)− 1

2
pA(xn, xn)− 1

2
pA(x, x)

)
= θA.

Example 1 Let X = [0, 1) and x ∈ A = C be a non zero element. Define pA(q, r) = max{1 − q, 1 − r}xx∗
Then, we can easily show that pA : X × X → A is a complete C∗-algebra valued partial metric space. But
pA : X ×X → A is not a C∗-algebra valued metric space, since pA(q, q) = (1− q)xx∗ 6= θA.

Example 2 Let X = R and A = M2(C) be a set of all 2 × 2 matrices with entries in C and M2(C) is a
C∗-algebra with the matrix norm. Define

pA(s, t) =

(
γ1|x11 − y11| 0

0 γ1|x11 − y11|

)
,

where s = (xij)
2
i,j=1 and t = (yij)

2
i,j=1 are 2 × 2-matrices entry from C for all i, j = 1, 2 and γ1, γ2 > 0.

One can define the partial ordering (�) on M2(C) as s � t if and only if |xij | � |yij |. Then, (X,M2(C), pA)
is a C∗-algebra valued partial metric space.
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Example 3 Let S(X) be the collection of all convergent sequences such that

Fε(fn) = {f : d(fn, f) ≤ ε, ε > 0 and fn, f ∈ X}

for all n ∈ N and A = M2(C) be C∗-algebra complex matrices. If A = [aij ] ∈ A, then A∗ = [aji] is non zero
element of A.
Norm is defined as

‖A‖ = sup{||Aγ||p : γ ∈ Cn, ||γ||p ≤ 1},

where ||.||p norm is usual lp-norm on Cn. Define pA : S(X)× S(X)→ A such that

pA(Fε1fn, Fε2fm) = |f1 − f2|AA∗ + max{ε1, ε2}IA.

Then, pA is a complete C∗-algebra valued partial metric space which is not a C∗-algebra valued metric space,
since pA(Fε1fn, Fε1fn) = ε 6= θA and

pA(Fε1fn, Fε2fm) = |f1 − f2|AA∗ + max{ε1, ε2}IA
≤ [|f1 − f3|+ |f3 − f2|]AA∗ + [max{ε1, ε3}

+ max{ε3, ε2} − ε3]IA
= pA(Fε1fn, Fε3fr) + pA(Fε3fr, Fε2fm)− pA(Fε3fr, Fε3fr).

Definition 3 ([17]) If ψ : A→ B is a linear mapping in C∗-algebra, it is said to be positive if ψ(A+) ⊆ B+.
In this case, ψ(Ah) ⊆ Bh and the restriction map: ψ : Ah → Bh is increasing.

Definition 4 ([17]) Suppose A and B are two C∗-algebras. A mapping ψ : A → B is said to be a C∗-
homomorphism if

(i) ψ(ax+ by) = aψ(x) + bψ(y) for all a, b ∈ C and x, y ∈ A;

(ii) ψ(xy) = ψ(x)ψ(y) for all x, y ∈ A;

(iii) ψ(x∗) = ψ(x)∗ for all x ∈ A;

(iv) ψ maps unit in A to unit in B.

Corollary 1 ([17]) Every C∗-homomorphism is contractive and hence bounded.

Lemma 2 ([17]) Every ∗ homomorphism is positive.

Definition 5 ([17]) Let ΨA be the set of positive functions, ψA : A+ → A+ satisfying the following condi-
tions :

(i) ψA(a) is continuous and nondecreasing;

(ii) ψA(a) = θA if and only if a = θA;

(iii)
∑∞
n=1 ψ

n
A(a) <∞, limn→∞ ψnA(a) = θA for each a � θA, where ψnA is nth iterate of ψA;

(iv) the series
∑∞
k=0 ψA(a) <∞ for each a � θA is increasing and continuous at θA.
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3 Main Results

In this section, we prove some fixed point theorems using α − ψA-type contractive mapping in C∗-algebra
valued partial metric space.

Definition 6 ([3]) Let T : X → X be a self map and α : X ×X → A+. Then, T is called α-admissible if
for x, y ∈ X with α(x, y) � IA, then α(Tx, Ty) � IA.

Definition 7 ([17]) Let X be non-empty set and αA : X×X → (A′)+ be a function, we say that a self map
T on X is αA-admissible if

(x, y) ∈ X ×X,αA(x, y) � IA ⇒ αA(Tx, Ty) � IA,

where IA is the unit of A.

Definition 8 Let (X,A, pA) be a C∗-algebra valued partial metric space and T : X → X be a self mapping,
we say that T is αA − ψA type contractive mapping if there exist two functions αA : X × X → A+ and
ψA ∈ ΨA such that

αA(x, y)pA(Tx, Ty) � ψA(pA(x, y)) for all x, y ∈ X. (1)

Theorem 1 Let (X,A, pA) be a complete C∗-algebra valued partial metric space and T : X → X be an
αA − ψA-contractive mapping satisfying the following conditions

(i) T is αA-admissible;

(ii) there exists x0 ∈ X such that αA(x0, Tx0) � IA;

(iii) T is continuous.

Then, T has a unique fixed point.

Proof. Let x0 ∈ X such that αA(x0, Tx0) � IA. We construct a sequence {xn} in X by xn+1 = Txn for all
n ∈ N. If xn = xn+1 for some n ∈ N, then xn is a fixed point of T . Now, suppose that xn 6= xn+1 for all
n ∈ N. Since T is αA-admissible, therefore we get

αA(x0, x1) = αA(x0, Tx0) � IA ⇒ αA(Tx0, T
2x0) = αA(x1, x2) � IA. (2)

By mathematical induction, we have

αA(xn, xn+1) � IA for all n ∈ N. (3)

Using (1) and (3), we get

pA(xn, xn+1) = pA(Txn−1, Txn)

� αA(xn−1, xn)pA(Txn−1, Txn)

� ψA(pA(xn−1, xn)).

By mathematical induction, we get

pA(xn, xn+1) � ψnA(pA(x0, x1)) for all n ∈ N. (4)
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For m ≥ 1 and n ≥ 1, we have

pA(xm, xm+n) � pA(xm, xm+1) + pA(xm+1, xm+n)− pA(xm+1, xm+1)

� pA(xm, xm+1) + pA(xm+1, xm+2) + pA(xm+2, xm+3)

+ · · ·+ pA(xm+n−1, xm+n)− pA(xm+1, xm+1)

−pA(xm+2, xm+2)− · · · − pA(xm+n−1, xm+n−1)

� ψmA (pA(x0, x1)) + ψm+1A (pA(x0, x1)) + · · ·

+ψm+n−1A (pA(x0, x1))−
m+n−1∑
i=m+1

pA(xi, xi)

=

m+n−1∑
i=m

ψiA(pA(x0, x1))−
m+n−1∑
i=m+1

pA(xi, xi). (5)

Using θA � pA(xn, xn) � pA(xn, xn+1) and (4), we get

θA � pA(xn, xn) � pA(xn, xn+1) � ψnA(pA(x0, x1)). (6)

Taking limit as n→∞ and using Definition 5, we get

lim
n→∞

pA(xn, xn) = θA. (7)

Using (7) in (5) and Definition 5, we get

pA(xm, xm+n) �
m+n−1∑
i=m

ψiA(pA(x0, x1))−
m+n−1∑
i=m+1

pA(xi, xi)→ θA as n→∞. (8)

Thus, {xn} is a Cauchy sequence in a complete C∗-algebra valued partial metric space (X,A, pA). Thus
there exists x ∈ X such that xn → x as n→∞. Therefore, we have

lim
n→∞

pA(xn, xm) = lim
n→∞

pA(xn, x) = pA(x, x). (9)

By using (8), we have
lim
n→∞

pA(xn, x) = pA(x, x) = θA. (10)

Now, we shall show that x is a fixed point of T . For any n ∈ N, we have

pA(Tx, x) = lim
n→∞

pA(Tx, xn+1)

� lim
n→∞

(
pA(Tx, xn) + pA(xn, xn+1)− pA(xn+1, xn+1)

)
= lim

n→∞

(
pA(Tx, Txn−1) + pA(xn, xn+1)− pA(xn+1, xn+1)

)
� lim

n→∞

(
αA(x, xn−1)pA(Tx, Txn−1) + pA(xn, xn+1)

−pA(xn+1, xn+1)

)
� lim

n→∞

(
ψA(pA(x, xn−1)) + pA(xn, xn+1)− pA(xn+1, xn+1)

)
= ψA(pA(x, x)) + pA(x, x)− pA(x, x)→ θA.

Hence Tx = x, i.e. x is a fixed point of T .
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To prove the uniqueness, we will consider the following condition : for all x, y ∈ X, there exist z ∈ X
such that αA(x, z) � IA and αA(y, z) � IA. Consider,

pA(x, Tnz) = pA(Tx, T (Tn−1z))

� αA(x, Tn−1z)pA(Tx, T (Tn−1z))

� ψnA(pA(x, z))→ θA as n→∞.

Thus, Tnz = x. Similarly, Tnz = y as n → ∞. So, the uniqueness of the limit gives x = y. This completes
the proof.

Theorem 2 Let (X,A, pA) be a complete C∗-algebra valued partial metric space and T : X → X be a
mapping satisfying

αA(x, y)pA(Tx, Ty) � ψA(pA(x, Tx) + pA(y, Ty)) for all x, y ∈ X; (11)

where αA : X ×X → A+, ψA ∈ ΨA and the following conditions hold:

(i) T is αA-admissible;

(ii) there exists x0 ∈ X such that αA(x0, Tx0) � IA;

(iii) T is continuous.

Then, T has a unique fixed point.

Proof. On the similar lines of Theorem 1, we get

αA(xn, xn+1) � IA for all n ∈ N. (12)

Using (11) and (12), we get

pA(xn, xn+1) = pA(Txn−1, Txn)

� αA(xn−1, xn)pA(Txn−1, Txn)

� ψA(pA(Txn−1, xn−1) + pA(Txn.xn))

= ψA(pA(xn, xn−1) + pA(xn+1, xn))

= ψA(pA(xn, xn−1)) + ψA(pA(xn, xn+1)). (13)

From (13), we get
(1− ψA)pA(xn, xn+1) � ψA(pA(xn, xn−1)),

pA(xn, xn+1) � ψA(1− ψA)−1pA(xn, xn−1).

From Lemma 1 and Definition 5, letting

φA = ψA(1− ψA)−1 = ψA

∞∑
n=0

ψnA =

∞∑
n=0

ψn+1A <∞,

we get pA(xn, xn+1) � φA(pA(xn−1, xn)). Using mathematical induction, we get

pA(xn, xn+1) � φnA(pA(x0, x1)) for all n ∈ N. (14)

For m ≥ 1 and n ≥ 1, follow from similar calculations in Theorem 1 that

pA(xm, xm+n) �
m+n−1∑
i=m

φiA(pA(x0, x1))−
m+n−1∑
i=m+1

pA(xi, xi). (15)
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Using θA � pA(xn, xn) � pA(xn, xn+1) and (14), we get

θA � pA(xn, xn) � pA(xn, xn+1) � φnA(pA(x0, x1)). (16)

Taking limit as n→∞ in (16) and Definition 5, we get

lim
n→∞

pA(xn, xn) = θA. (17)

Using (17) in (15) and Definition 5, we get

pA(xm, xm+n) �
m+n−1∑
i=m

φiA(pA(x0, x1))−
m+n−1∑
i=m+1

pA(xi, xi)→ θA as n→∞. (18)

Thus, {xn} is a Cauchy sequence in a complete C∗-algebra valued partial metric space (X,A, pA). So there
exists x ∈ X such that xn → x as n→∞. Thus, there exists x ∈ X such that

lim
n→∞

pA(xn, xm) = lim
n→∞

pA(xn, x) = pA(x, x). (19)

By using equation (18), we get
lim
n→∞

pA(xn, x) = pA(x, x) = θA. (20)

Now, we shall show that x is fixed point of T . For any n ∈ N, we have

pA(Tx, x) = lim
n→∞

pA(Txn, xn)

= lim
n→∞

pA(Txn, Txn−1)

� lim
n→∞

αA(xn, xn−1)pA(Txn, Txn−1)

� lim
n→∞

ψA
(
pA(Txn, xn) + pA(Txn−1, xn−1)

)
= lim

n→∞
ψA
(
pA(xn+1, xn) + pA(xn, xn−1)

)
= ψA

(
pA(x, x) + pA(x, x)

)
→ θA.

Hence, Tx = x, i.e., x is a fixed point of T .
To prove the uniqueness of fixed point, let us assume that y is another fixed point of T . In a similar way,

we can construct a Cauchy sequence {yn} such that

lim
n→∞

yn = y for y ∈ X.

Consider

θA � pA(x, y) = lim
n→∞

pA(Txn, Tyn)

� lim
n→∞

αA(xn, yn)pA(Txn, T yn)

� lim
n→∞

φA(pA(xn, Txn) + pA(yn, T yn))

= lim
n→∞

φA(pA(xn, xn+1) + pA(yn, yn+1))

= lim
n→∞

φA(pA(xn, xn+1)) + lim
n→∞

φA(pA(yn, yn+1))

� lim
n→∞

φn+1A (pA(x0, x1)) + lim
n→∞

φn+1A (pA(y0, y1))

→ θA as n→∞.

Hence, x = y. This completes the proof.
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Theorem 3 Let (X,A, pA) be a complete C∗-algebra valued partial metric space and T : X → X be a
mapping satisfying

αA(x, y)pA(Tx, Ty) � ψA(p(x, y) + pA(x, Tx) + pA(y, Ty)) for all x, y ∈ X; (21)

where αA : X ×X → A+, ψA ∈ ΨA and the following conditions hold:

(i) T is αA-admissible;

(ii) there exists x0 ∈ X such that αA(x0, Tx0) � IA;

(iii) T is continuous.

Then, T has a unique fixed point.

Proof. Similar to the proof of Theorem 1, we get

αA(xn, xn+1) � IA for all n ∈ N. (22)

Using (21) and (22), we get

pA(xn, xn+1) = pA(Txn−1, Txn)

� αA(xn−1, xn)pA(Txn−1, Txn)

� ψA(pA(xn−1, xn) + pA(Txn−1, xn−1) + pA(Txn, xn))

= ψA(pA(xn−1, xn) + pA(xn, xn−1) + pA(xn+1, xn))

= ψA(pA(xn, xn−1))2IA + ψA(pA(xn, xn+1)). (23)

From (23), we get
(1− ψA)pA(xn, xn+1) � ψA(pA(xn, xn−1))2IA,

pA(xn, xn+1) � ψA(1− ψA)−12IApA(xn, xn−1).

From Lemma 1 and Definition 5, letting φA
2IA

= ψA(1−ψA)−1, we get pA(xn, xn+1) � φA(pA(xn−1, xn)). Using
mathematical induction, we get

pA(xn, xn+1) � φnA(pA(x0, x1)) for all n ∈ N. (24)

For m ≥ 1 and n ≥ 1, follows from the similar calculations in Theorem 1 that

pA(xm, xm+n) �
m+n−1∑
i=m

φiA(pA(x0, x1))−
m+n−1∑
i=m+1

pA(xi, xi). (25)

Using θA � pA(xn, xn) � pA(xn, xn+1) and by (24), we get

θA � pA(xn, xn) � pA(xn, xn+1) � φnA(pA(x0, x1)). (26)

Taking limit as n→∞ in (26) and Definition 5, we get

lim
n→∞

pA(xn, xn) = θA. (27)

Using (27) in (25) and Definition 5, we get

pA(xm, xm+n) �
m+n−1∑
i=m

φiA(pA(x0, x1))−
m+n−1∑
i=m+1

pA(xi, xi) (28)

→ θA as n→∞.
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Thus, {xn} is a Cauchy sequence in complete C∗-algebra valued partial metric space (X,A, pA). So there
exists x ∈ X such that xn → x as n→∞. Thus, there exist x ∈ X such that

lim
n→∞

pA(xn, xm) = lim
n→∞

pA(xn, x) = pA(x, x). (29)

Using (28), we have
lim
n→∞

pA(xn, x) = pA(x, x) = θA. (30)

Now, we shall show that x is fixed point of T . For any n ∈ N, we have

pA(Tx, x) = lim
n→∞

pA(Txn, xn)

= lim
n→∞

pA(Txn, Txn−1)

� lim
n→∞

αA(xn, xn−1)pA(Txn, Txn−1)

� lim
n→∞

ψA
(
pA(xn, xn−1) + pA(Txn, xn) + pA(Txn−1, xn−1)

)
= lim

n→∞
ψA
(
pA(xn, xn−1) + pA(xn+1, xn) + pA(xn, xn−1)

)
= ψA

(
pA(x, x) + pA(x, x) + pA(x, x)

)
→ θA.

Hence, Tx = x, i.e. x is a fixed point of T .
To prove the uniqueness of fixed point, let us assume that y is another fixed point of T . Consider,

pA(x, y) = pA(Tnx, Tny)

� αA(Tn−1x, Tn−1y)pA(Tnx, Tny)

� φA(pA(Tn−1x, Tn−1y) + pA(Tn−1x, Tnx) + pA(Tn−1y, Tny))

= φn−1A (pA(x, y)) + φn−1A (pA(x, x)) + φn−1A (pA(y, y))

= φn−1A (pA(x, y))→ θA as n→∞.

Hence, x = y. This completes the proof.
By the above results, similarly one can also obtain the following corollaries mentioned below:

Corollary 2 Let (X,A, pA) be a complete C∗-algebra valued partial metric space and T : X → X a mapping
satisfying

αA(x, y)pA(Tx, Ty) � ψA(p(x, y) + pA(x, Ty) + pA(y, Tx)) for all x, y ∈ X,
where αA : X ×X → A+, ψA ∈ ΨA and the following conditions hold:

(i) T is αA-admissible;

(ii) there exists x0 ∈ X such that αA(x0, Tx0) � IA;

(iii) T is continuous.

Then, T has a unique fixed point.

Corollary 3 Let (X,A, pA) be a complete C∗-algebra valued partial metric space and T : X → X a mapping
satisfying

αA(x, y)pA(Tx, Ty) � ψA(p(x, y) + pA(x, Tx) + pA(y, Ty)

+pA(x, Ty) + pA(y, Tx)) for all x, y ∈ X;

where αA : X ×X → A+, ψA ∈ ΨA and the following conditions hold:

(i) T is αA-admissible;
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(ii) there exists x0 ∈ X such that αA(x0, Tx0) � IA;

(iii) T is continuous.

Then, T has a unique fixed point.

Example 4 As given in Example 1, define T : X → X by Tx = x/3 and αA : X × X → A such that
αA(x, y) = 1. So αA(Tx, Ty) = 1 implies that T is αA-admissible. Define ψA : C+ → C+, ψA(a) = 2a.
Clearly, T is αA − ψA-contractive mapping and satisfies αA(x, y)pA(Tx, Ty) � ψA(pA(x, y)) for all x, y ∈ X.

Example 5 As given in Example 3, define T : S(X) → S(X) by T (F (fn)) = {fn : d(fn, f) ≤ ε/3} and
αA : S(X)× S(X)→ A such that αA(fn, fm) = If . So αA(Tfn, T fm) = If implies that T is αA-admissible.
Define ψA : C+ → C+, ψA(a) = 5a. Clearly, T is αA − ψA-contractive mapping and satisfies

αA(fn, fm)pA(TFε1fn, TFε1fm) � ψA(pA(Fε1fn, Fε1fm)) for all x, y ∈ X.

4 Application

In this section, we check the existence and uniqueness of a solution of an integral equation by using Theorem
1.

Theorem 4 Consider an integral equation m(t) =
∫
E
F (t,m(s))ds + g(t), where t, s ∈ E, a Lebesgue mea-

surable set, F : E ×R→ R and g ∈ L∞(E) such that there exist a continuous function φ : E × E → R and
θA ≺ k ≺ IA satisfying

(i) |F (t,m(s))− F (t, n(s))| < k|φ(t, s)(m− n)| for m,n ∈ R;

(ii) sup t∈E
∫
E
||φ(t, s)||ds < 1.

Then, the integral equation has a unique solution, i.e., m∗ ∈ L∞(E).

Proof. Let L∞(E) be the set of bounded measurable functions on E and H = L2(E) be a Hilbert space.
The set of bounded linear operator L(H) is C∗-algebra with the usual operator norm.

Define pA : L∞(E)×L∞(E)→ L(H) by pA(m,n) = π|m−n| where πh : H → H is multiplication operator
defined by πh(φ) = h.φ, φ ∈ H. Then, (L∞(E), L(H), pA) is a complete C∗-algebra partial valued metric
space.

Let T : L∞(E)→ L∞(E), α : L∞(E)× L∞(E)→ L(H) and ψ : L(H)→ L(H) be defined by

Tm(t) =

∫
E

F (t,m(s))ds+ g(t), for t ∈ E,

α(m,n) = 1 and ψ(m) = m,
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respectively. The solution of an integral equation is fixed point. Consider

‖pA(Tm, Tn)‖ = sup
‖h‖=1

(π|Tm−Tn|h, h)

= sup
‖h‖=1

∫
E

|Tm− Tn|h(t)h(t)dt

= sup
‖h‖=1

∫
E

∫
E

(F (t,m(s))− F (t, n(s)))dsh(t)h(t)dt

< sup
‖h‖=1

∫
E

∫
E

(F (t,m(s))− F (t, n(s)))ds‖h(t)‖2dt

< sup
‖h‖=1

∫
E

∫
E

k|φ(t, s)(m(s)− n(s))|ds‖h(t)‖2dt

< ‖k‖‖m− n‖∞ sup
t∈E

∫
E

‖φ(t, s)‖ds

= ‖k‖.‖pA(m,n)‖.

It is given that θA ≺ k ≺ IA, therefore ‖k‖ ≤ IA. Thus

αA(m,n)pA(Tm, Tn) ≤ ‖k‖ψA(pA(m,n)) � ψA(pA(m,n)).

Hence, T is an αA − ψA type contractive mapping and satisfies all the conditions of Theorem 1. So T has a
unique fixed point and the integral equation has a unique solution, i.e. m∗ ∈ L∞.
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