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Abstract

In this paper, we introduce the concept of fixed-circle on G-metric spaces. Using this new concept,
we prove some existence and uniqueness theorems for fixed-circles of self-mappings with a geometric
interpretation. We also give some examples that verify the conditions of our results. Finally, we present
an application to the Rectified linear unit (ReLU) activation functions to show the importance of our
obtained results.

1 Introduction

The concept of a metric space is one of the most useful and fundamental tools in topology, analysis and
nonlinear analysis. Its vast area provides a powerful tool for studying variational inequalities, optimization
and approximation theory and so many. In recent years, several generalizations of metric spaces have
appeared. In 1963, Gahler [1] introduced the concept of 2-metric spaces that he claims to be a generalization
of the metric spaces. But, in 1988, Ha et al. [2] proved that there is no relation between these two functions.
Then, in 1992, Dhage [3] introduced a new class of generalized metrics called D-metrics. However, in 2003,
Mustafa and Sims demonstrated in [4] that most of the claims concerning the fundamental topological
properties of D-metric spaces are incorrect. Subsequently, in 2006, the same authors [5] introduced the
concept of G-metric space as a generalization of a metric space. In 2012, Sedghi et al. [6] introduced a
new generalized metric called an S-metric space. There are also different generalizations, such as S-normed
spaces [7] and A-normed spaces [8].

The fixed-point theory is one of the most exciting subjects studied in metric spaces and generalized metric
spaces. Banach [9] gave the most important and notable result in this direction in 1922, popularly known
as the “Banach contraction principle”. This principle has been generalized using various techniques. One of
them is the investigation of geometric properties of the fixed-point set when the number of fixed points is
more than one. In this case, the fixed-circle problem is given on metric spaces in [10] by giving a different
perspective to these theorems. Then, new solutions have been studied in both a metric space [10]-[14] and
some generalized metric spaces [15]-[17] especially S-metric spaces [18]-[23]. These solutions can be extended
with some recent popular works on Gj-metric spaces [24]-[29]. Thus, the classical fixed-point theory studies
gain depth in a different direction.

By the above motivation, we study on the existence and uniqueness theorems of a fixed-circle on G-metric
spaces. The paper consists of 5 sections. Section 2 presents some basic preliminaries and historical notes on
G-metric spaces. Also, a notion of the fixed-circle on G-metric spaces with some examples is given. Some new
existence theorems of fixed-circles and a contractive condition to exclude the identity map are established in
Section 3. In Section 4, some uniqueness theorems are proven when the number of fixed-circles is non-unique.
The final Section 5 presents an application to Rectified linear unit (ReLU) activation functions satisfying
our main theorem.
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2 Preliminaries

In this section, we first recall the concept of the S-metric space. Sedghi et al. [6] put forward that an
S-metric is a generalization of a G-metric. Moreover, these two generalized metric spaces are different from
each other. Therefore, this motivation makes our paper worthwhile.

Definition 1 ([6]) Let x be a nonempty set. A function S : x> — [0,00) is said to be an S-metric on x if
it satisfies the following properties, for each o, B,7v,n € X,

(S1) S(e,B,7) >0

(52) S(a,8,7) =0 if and only if a = § = ;

(53) S(a, 8,7) < S(a, a,m) +8(8,8,m) +S(v,7,m)-

A nonempty set x together with an S-metric is called an S-metric space.

Definition 2 ([5]) A nonempty set x together with a function G : x> — [0,00) is called a G-metric space,
denoted by (x, G) if G satisfies

(G1) G(a, B,7) =0 if and only if a = = 1;

(G2) 0 < G(a, o, B) for all o, B € x with o # f;

(G3) G(a, 04,5) < G(a, B,7) for all a, B,y € x with B # ;

(G4) G(a, B,7) = G(a, 7, B) = G(B,7,a) = ..., (symmetry in all three variables);
(G5) G(o, B, 7) < G(a,n,m) +G(n, B,7) for all o, B,7,m € X, (rectangle inequality).

Then, the nonnegative real function G is called a G-metric on x. The set x together with such a generalized
metric G is called a generalized metric space, or G-metric space and denoted by (x,G).

Obviously, these properties are fulfilled when G(a, §,7) is the perimeter of the triangle with vertices at
a, B and 7 in R?, further taking 7 in the interior of the triangle shows that (G5) is the best possible.
In [31], it is shown that there exists a G-metric that is not an S-metric. Indeed, let x = {«, 8}, let

G(a7a7a):G(ﬁ)ﬂ76):O7 G(a’a’ﬂ)::l? G(a7/B’B):2

and extend G to all of x x x x x by symmetry in the variables. Then, it is easy to proved that G is G-metric,
but G(«, 8, 8) # G(a, «, 8) [5]. Also, we have

=G(a,B,6) > 1=G(a,,8) + G(B,8,8) + G(8, 5, 8),

which proves that G is not an S-metric on x.
Also in [31], there exists an example of an S-metric that is not a G-metric. For example, let x = R and
let

S(aaﬂf-)/) = |ﬁ+’y_ 2a| + |ﬂ _’Y|7
for all a, 8,7 € x. (x,S) is an S-metric [6]. We have

S(1,0,2) =104+2—-2|+0—-2| =2,

S(2,0,1)=10+1—4|+1]0—-1]=4.

Then we get
S(]‘) 0) 2) # 8(23 07 ]‘)7

which proves that S is not a G-metric.
Because of these relationships above it makes sense to study the fixed-circle problem on G-metric.
Next, we recall here some notions, lemmas and examples we will use.
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Example 1 ([32]) If x is a nonempty subset of R, then the function G : x*> — [0,00) given by
G, B,7) = la =Bl + e =] +16 =1
for all a, 8,7 € x, is a G-metric on x.
Definition 3 ([5]) A G-metric space (x,G) is called be symmetric if
G(a, 8,8) = G(B, , ),
for all a, B € x.

The mapping given in Example 1 is symmetric G-metric. There also exist G-metric spaces that are not
symmetric, as we see in the following example.

Example 2 ([5]) Let x = {0,1,2} and the function G : x> — [0,00) be defined by the following table.

(o, 8,7) G(a, B8,7)
(0,0,0), (1,1,1), (2,2,2)
(0,0,1),(0,1,0),(1,0,0),(0,1,1),(1,0,1),(1,1,0)
(1,2,2),(2,1,2),(2,2,1)
(0,0,2),(0,2,0),(2,0,0),(0,2,2),(2,0,2),(2.2,0)
(1,1,2),(1,2,1),(2.1,1),(0,1,2),(0,2,1),(1,0,2)
(1,2,0),(2,0,1),(2.1,0)

PR L =D

Then, G is a G-metric on x, but it is not symmetric because G(1,1,2) =4 # 2 = G(2,2,1).
The relationships between a metric and a G-metric were given in the following lemmas.
Lemma 1 ([5]) If (x,d) is a metric space, then (x,d) can define G-metrics on x by

ng,(av B, F)/) = max{d(av /B)v d(/Ba 7)7 d(’% a)}

and

Gl(a, ,7) = d(e, B) + d(B,7) + d(v, @),
for all a, B, € x.
Lemma 2 ([32]) If (x,G) is a G-metric space, then (x,G) can define metrics on x by

dﬁ = max{G(Oé,@ﬁ)aG(B»a’a)}

and

dg = G(a, 8, 8) + G(B, a, ),
for all a, B € x.

Let us recall some examples of G-metric.

Example 3 ([33]) Every nonempty set x can be provided with the discrete G-metric, which is defined by

S8 ={ | g

otherwise,

for all a, B,y € x. Then, G is a G-metric on x.
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Example 4 ([33]) Let x = [0,00) and G be defined by

mm@w={0 a=p=7

max{a, 3,7} otherwise,

for all a, B,y € x. Then, G is a G-metric on x.

Example 5 ([33]) Let x = [0,00) and the function G : x*> — [0,00) be defined by

0 a=p=n,
Gla,f,7)=q 1 a=fa=yorf=,
2 aFfF#,

for all a, B,y € x. Then, G is a G-metric on x.
Next, we introduce the concept of a circle on a G-metric space.

Definition 4 Let (x,G) be a G-metric space. A circle of center oy € x and radius r € (0,00) is defined as
follows:

Ce(ag,r) ={a € x: Glag, o, ) =1}
Example 6 Let x = [0,00) and the function G : x3 — [0,00) be defined by

for each «, B,y € x [32]. So, it can be easily seen that G is a G-metric on x and the pair (x,G) is a G-metric
space. Clearly, from Lemma 1, this G-metric is generated by taking the usual metric on R. Then, we have
the circle Cg(5,10) as follows

Cs(5,10) = {aex:G(5,a,a)=10}
= {aex:b—a|+|a—a|+|a—5 =10}
= {a€ex:|5—al=5}
= {a€x:a=0Aa=10}
{0,10}.

Example 7 Let x = R? and d be a metric space. Let the function G : x®> — [0,00) be defined by

G(aa B, 7) = ma’x{d(aa ﬂ), d(ﬂa 7)7 d(’Yv Ot)}

for all a, B,y € x. Then, (x,G) be a G-metric space. Let us consider the function d: x x x — R as

d(a, ) = /(a1 = B1)? + (ag — B,)?
for all @ = (a1, 2), 8 = (B1,85) € x. Then, we get

Cs((1,0),1) = {aex:G((1,0),a,a)=1}
= {a€x:max{d((1,0),a),d(a,a),d(a, (1,0)) =1}}
= {a€x:d((1,0),a) =1}
= {aex: V(g —1)2+(ay—0)2=1}
= {aex:(a;—1)*+ai=1}
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Example 8 Let x = R3 and d be a metric space. Let the function G : x* — [0,00) be defined by

Gla,,7) = 3 (d(0, ) + d(5,7) + d(3,))

for all a, B,y € x. Then, (x,G) be a G-metric space. Let us consider the function d: x x x — R as
d(a, B) = |on — By| + [az — S| + |as — B3]

for all a = (a1, a2, a3), 8 = (61, Ba, B3) € x. Then, we obtain

Cs ((0,0,0),2) {a € x:G((0,0,0),a,x) = 2}

— f{aex: % (d((0,0,0), @) + d(a, @) + d(a, (0,0,0))) = 2}

2
= {a€x: gd((0,0,0),a) =2}
{a € x:d((0,0,0),a) = 3}
= {a€x:|a; —0]+|as — 0|+ |ag — 0] = 3}
= H{aex: |+ |az| + |as| = 3}.

Example 9 Let x = R? and the function G : x*> — [0,00) be defined by
3
Gla, B,7) = Z (loi = Bil +18; = vil + |vi — i)
i=1

for all @ = (a1, a0,a3), B = (B1,02:05)s ¥ = (Y1,7V2:73) € X- Then, G is a G-metric on x. If we choose
ag=0=1(0,0,0) and r = 2, then we get

Cs(0,2) ={zex:G(0,a,a) =2} ={a € x: |ag]| + || + |az| = 1}.
If we choose ag = (1,1,2) and r = 2, then we get

Ce((1,1,2),2) = {aex:G((1,1,2),a,a) =2}
= {a€ex:|ar =1+ |as— 1|+ |ag — 2| = 1}.

3 Existence Theorems for Fixed-Circles of Self-Mappings

Firstly, we introduce the concept of a fixed-circle on a G-metric space. After that, we present some existence
theorems for fixed-circles of self-mappings and obtain some examples of mappings which have or not fixed-
circles.

Definition 5 Let (x,G) be a G-metric space and Cg(ag,r) be a circle. For a self-mapping T : x — X, if
Ta =« for all o € Cg(ap,r) then, the circle Cg(ao, ) is said to be a fized-circle of T.

Theorem 1 Let (x,G) be a G-metric space and Cg(ag,r) be any circle on x. Let us define the mapping
¢:x —[0,00) as

(ZS(Q) = G(O[, a, Oéo), (1)
for all a € x. If there exists a self-mapping T : x — x satisfying
G(a,a,Ta) < ¢(a) — ¢(Ta) (2)
and
G(Ta,Ta,a9) >, (3)

for all a € Cg(ap,r), then the circle Cg(ao,r) is a fixed-circle of T.
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Proof. Let us consider the mapping ¢ defined in (1). Let o € Cg (g, r) be any arbitrary point. We show
that Ta = o whenever a € Cg(ap, ). Using the inequalities (2), (3) and the notion of the mapping ¢, we
obtain

G(a,a,Ta) o(a) — ¢(Ta) (4)
Gla,a,ap) — G(Ta, Ta, )

r—G(Ta,Ta,a0) <r—1r=0

IN A CIA

and so Ta = «a. Consequently, Cg (g, r) is a fixed-circle of T. m

Remark 1 Notice that the inequality (2) guarantees that T is not in the interior of the circle Cg(ag,T)
for a € Cg(a, ). Then, there exist two cases.

Case 1. If T« is exterior of the circle Cg (o, ), then we have
G(Ta,Ta,ap) > .

This is a contradiction with the inequality (/) since the distance function is a nonnegative function.

Case 2. Then, the point Ta should be lies on of the circle Cg(ag,r) and so G(Ta, Ta,ag) = r. In this
case, using (4) we obtain
Gla,a,Ta) <r—GTa,Ta,ap) =r—1r=0.

That is Ta = « and the self-mapping T fizes the circle Cg(ag,T).

Theorem 2 Let (x,G) be a G-metric space, Cg(ag,r) be any circle on x and the mapping ¢ be defined as
in (1). If there exists a self-mapping T : x — x satisfying

G, o, Ta) < ¢(a) + ¢(Ta) — 2r ()

and
G(a,Ta,Ta)+ G(Ta, Ta,ap) <, (6)

for all a € Cg(aw, 1), then the circle Cg(ag,r) is a fized-circle of T.

Proof. Let o € Cg(ap,r). Then using the inequalities (5), (6) and the properties (G4), (G5) of a G-metric
space, we have

Gla,a,Ta) < ¢la)+ ¢(Ta) —2r
= G(o,a,00) + G(Ta, Ta, ag) — 2r
< GloyTa,Ta)+ G(Ta,a,ap) + G(Ta, Tev, cg) — 2r
= G(o,To,Ta)+G(a,Ta, o) + G(Ta, Ta,ag) — 2r
< GloyTa,Ta)+ Gla,Ta, Ta) + G(Ta, Ta, ap) + G(Ta, Ta, ag) — 2r
= 2G(o,Ta,Ta) +2G(Ta, Ta, ap) — 2r
< 2r—2r=0

and so
G(a,a,Ta) =0

which implies Ta = . As a result, Cg(ag,r) is a fixed-circle of T. ®
Remark 2 Notice that the inequality (5) guarantees that T« is not in the interior of the circle Cg(ag, )

for a € Cg(ag,r). Also, the inequality (6) guarantees that Ta is not exterior of the circle Cg(ag,r) for
a € Cg(ao, ). In this case, Ta € Cg(ag,r) for each a € Cg(ag, 7).
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Remark 3 (1) Theorems on the existence of fized-circles of a self-mappings on metric spaces are given
in [10]. (2) Theorems on the existence of fized-circles of a self-mappings on S-metric spaces are given in

[20, 22].
Next, we give some examples of a self-mapping with a fixed-circle.

Example 10 Let x = [0,00) and the function G : x> — [0,00) be defined as in Example 1. Then, (x,G) is
a G-metric space. Let us consider the circle Cg(0,2) and define the self-mapping T : x — x as

Ta =3a%+a—3,
for all a € x. Then, the self-mapping T satisfies the conditions of the Theorem 1 and Theorem 2. Hence,
Cs(0,2) = {acx:G(0,a,a)=2}
= {aex:[0-a|l+|a—a|l+|a—0 =2}
= {a€x:2a =2}
{-1,1}.
Thus, Cg(0,2) is a fized-circle of T.

Example 11 Let x = R and the function G : x* — [0,00) be defined as in Example 1. Then, (x,G) is a
G-metric space. Let us consider the circle Cg(0,4) and define the self-mapping T : x — x as

_J a ae{-22},
Ta= { 18 otherwise,

for all a € x. Then the self-mapping T satisfies the conditions of the Theorem 1 and Theorem 2. Thus,
Cs(0,4) = {-2,2} is a fized-circle of T. Notice that Cg(10,16) = {2,18} is another fixed-circle of T and so
the fized-circle is not unique for a giving self-mapping. On the other hand, the circle Cg(0,2) = {—1,1} is
not a fized-circle of T.

Example 12 Let x = [0,00) and the function G : x> — [0,00) be defined as in Example 1. Let us consider
the circles Cg(0,2) = {—1,1} and Cg(4,10) = {—1,9} and define the self-mapping T : x — x as

e €C;(0,2),
Ta= { 9 otherwise,

for all o € x. Then, the self-mapping T satisfies the conditions of the Theorem 1 and Theorem 2. Notice
that the fized-circle is not unique.

In the following example, we give an example of a self-mapping that satisfies the inequalities (2) and (6)
but does not satisfy the inequalities (3) and (5).

Example 13 Let (x,G) be a G-metric space, Cg(ag,m) be a circle on x and the self-mapping T : x — x be
defined as
Ta = ap,

for all o € x. Then, the self-mapping T does not satisfy the inequality (3) of Theorem 1 and the inequality
(5) of Theorem 2. Thus, T does not fix a circle Cg(ag,r).

Now we present a contractive condition exclude the identity map I, : x — x defined by
L(a) =«,

for all @ € x in the above existence theorems.
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Theorem 3 Let (x,G) be a G-metric space, Cg(ag,r) be a circle on x, T : x — x be a self-mapping and
the mapping ¢ be defined as in (1). T satisfies the condition

(Ig) G, a,Ta) < h¢(a) — ¢(Ta)],
for all a € x and some h € [0, i) if and only if T = I,,.
Proof. Let T satisfies the condition (Ig) and o # Ta. Then, using the conditions (G4) and (G5), we have

B(8(a) - (Ta)

hG(a, a,ap) — G(Ta, Ta, ag)]

hG(a,Ta,Ta) + G(Ta,a,ap) — G(Ta, Tty avp))

hG(a,Ta,Ta) + Gla, Ta,ay) — G(Ta, Ta, ap))

hG(a,Ta,Ta) + Gla, Ta, Ta)) + G(To, T, o09) — G(T e, Tevy arp)]
2hG(a, T, Tar) = 2hG (T, v, Tx)

20 [G(Ta, o, ) + G(a, a, Tar)]

4hG(Ta, a,a) = 4hG(a, o, Ta),

G(a,o,Ta) <

IN

IAIA

which is a contradiction. So it should be o« = T'aw for each o € x and T' = I,,. The converse statement is
clear. m

Remark 4 If a self-mapping T : x — x does not satisfy the condition (Ig) then we exclude the identity
map.

4 Uniqueness Theorems for Fixed-Circles of Self-Mappings

In this section, firstly, we give two propositions expressing the existence of mappings having more than
one fixed-circle in the G-metric space. Then, we investigate the uniqueness of fixed-circles obtained in the
existence theorems.

Proposition 1 Let (x,G) be a G-metric space. For any given circles Cg(ao,r) and Cg(a1, p), there exists
at least one self-mapping T of x such that T fizes the circles Cg(ao,r) and Cg(a, p).

Proof. Let Cg(ag,r) and Cg(a1,p) be any circles on x. Also, let £ be a constant point in x satisfying
G(&, &, a9) #r and G(, €, a1) # p. Let us define the self-mapping T : x — x as

Ta = « OéGCG(OéO,T)UCG(O[l,p),
¢ otherwise,

for all « € x. Let us define the mappings ¢, ¢, : x — [0,00) as

¢1(@) = G(e, @, )

and
¢)2(OZ) = G(av a, al)a

for all « € x. Then, the self-mapping T satisfies the conditions of the Theorem 1 and Theorem 2. Thus,
Ce (o, r) and Cg(aq, p) are the fixed-circles of 7. m

Notice that the circles Cg(ag,r) and Cg (a1, p) do not have to be disjoint as seen in (12).

In the following example, the self-mapping 7" has two fixed-circle.
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Example 14 Let x = [0,00) and (x,G) be a G-metric space with the G-metric defined in as Example 1.
Let us consider the circles Cg(2,4), Ci(3,6) and define the self-mapping T : x — X as

| a ae{0,4,6},
Ta= { £ otherwise,

for all o € x where £ € x. Then, the conditions of the Theorem 1 and Theorem 2 are satisfied by T for the
circles Cg(2,4) and Cg(3,6), respectively. Consequently, Cg(2,4) and Cg(3,6) are the fived-circles of T.

Corollary 1 Let (x,G) be a G-metric space. For any given circles

C(G(Oél,?"l)7 AR CG(an?TTL)7

there exists at least one self-mapping T of x such that T fixes the circles
C(g,(oq, 7“1), ceey C(;(Ozn, Tn).

Theorem 4 Let (x,G) be a G-metric space and Cg(ap, ) be any circle on x. Let T : x — x be a self-mapping
satisfying the inequalities (2) and (3) of Theorem 1. If the contractive condition

GTo,Ta, TP) < kG(c, v, B) (7)

is satisfied for all a € Cg(ag,r), B € x \ Cg(ao,r) and some k € [0,1) by T then, Cg(ap,r) is the unique
fizxed-circle of T.

Proof. Assume that there exist two different fixed-circles Cg(ag,r) and Cg(aq,p) of the self-mapping T.
Let u € Cg(ao,r) and v € Cg(a, p) be arbitrary points such that u # v. We show that G(u, u,v) = 0 and
hence u = v. Using the contractive condition of T, we obtain

G(u,u,v) = G(Tu, Tu, Tv) < kG(u,u,v)

which is a contradiction since k € [0,1). As a result, Cg (e, r) is the unique fixed-circle of 7. m

Notice that the self-mapping T given in the proof of Proposition 1 does not satisfy the contractive
condition (7).

Now, we give a uniqueness condition for the fixed-circles in Theorem 2.

Theorem 5 Let (x,G) be a G-metric space and Cg(cp,r) be any circle on x. Let x — x be a self-mapping
satisfying the inequalities (5) and (6) of Theorem 2. If the contractive condition defined in (7) is satisfied
for all « € Cg (o, ), B € x\ Cgap,r) and some k € [0,1) by T, then Cg(ag,r) is the unique fized-circle of
T.

Proof. It can be easily proven similar to the proof of Theorem 4. m

It is important to investigate the uniqueness of the fixed-circles. Firstly, we determine the uniqueness
conditions for the fixed-circles in Theorem 1 using the Banach type contractive condition [9].

Using the Rhoades type contractive condition [36], we obtain the following theorem.

Theorem 6 Let (x,G) be a symmetric G-metric space and Cg(ag, ) be any circle on x. Let T : x — x be
a self-mapping satisfying the conditions in Theorem 1 and Theorem 2. If the contractive condition

G(Ta,Ta,T8) < max{G(a, a, B), G(o, o, Tr), G(B, B,T8),G(a, o, TB), G(B, B, Tex) } (8)

is satisfied for all o € Cg(ag,r) and § € x \ Cg(ap,r), then the fized-circle of T is unique.
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Proof. Assume that there exist two fixed-circles Cg (g, r) and Cg(aq,p) of the self-mapping T, that
is, T satisfies the conditions in Theorem 1 and Theorem 2 for each circles Cg(ag,r) and Cg(aq,p). Let
u € Cg(ao, ), v € Ce(ai, p) and u # v be arbitrary points. We show that G(u,u,v) = 0 and hence u = v.
Using the inequality (8) and the symmetric property of G-metric, we obtain

G(u,u,v) = G(Tu,Tu,Tv)
< max{G(u,u,v),G(u,u, Tu),G(v,v,Tv), G(u,u, Tv), G(v,v,Tu)}
= G(u,u,v)

which is a contradiction. As a result, it should be u = v for all u € Cg(ag,r), v € Cg(a1,p) and thus
Cg(ag,r) is the unique fixed-circle of 7. m
By the Kannan type contractive condition [34], we prove the following theorem.

Theorem 7 Let (x,G) be a G-metric space and Cg (g, ) be any circle on x. Let T : x — x be a self-mapping
satisfying the conditions in Theorem 1 and Theorem 2. If the following condition

G(Ta,Ta,TB) < A(G(o, o, Ta) + G(8,8,T8)) 9)

is satisfied for all a € Cg(a,r), B € x \ Colawo,r) and X € [0, %), then Cg(ap,r) is a unique circle of T.

Proof. Assume that there exist two fixed-circles Cg (g, r) and Cg(aq,p) of the self-mapping T, that
is, T satisfies the conditions in Theorem 1 and Theorem 2 for each circles Cg(ag,r) and Cg(aq,p). Let
u € Cg(ag,r), v € Cg(a1, p) and u # v be arbitrary points. Using the inequality (9), we have

G(u,u,v) = G(Tu,Tu,Tv)

A (G(u, u, Tu) + G(v, v, Tv))
= A G(u,u,u) + G(v,v,v))

= 0.

IN

So, we obtain G(u,u,v) = 0, that is w = v. But, this is a contradiction. Consequently, Cg (g, r) is a unique
fixed-circle of T. m
From the Reich type contractive condition [35], we obtain another uniqueness theorem as follows.

Theorem 8 Let (x,G) be a G-metric space and Cg (g, ) be any circle on x. Let T : x — x be a self-mapping
satisfying the conditions in Theorem 1 and Theorem 2. If the following condition

G(Te, T, TP) < aG(, o, Tar) +yG(B3, 8, T) + 2G (e, v, B) (10)

is satisfied for all o € Cg(ag,r), B € x \ Ce(ap,r) such that x +y+ z < 1, then Cg(ap,r) is a unique circle
of T.

Proof. Assume that there exist two fixed-circles Cg (g, r) and Cg(aq,p) of the self-mapping T, that
is, T satisfies the conditions in Theorem 1 and Theorem 2 for each circles Cg(ag,r) and Cg(aq,p). Let
u € Cg(ag,r), v € Cg(ay, p) and u # v be arbitrary points. Using the inequality (10), we have

G(u,u,v) = G(Tu,Tu,Tv)
< 2G(u,u, Tu) + yG(v,v,Tv) + 2G(u,u,v)
= 2G(u,u,v).

Since z + y + z < 1, clearly z < 1. Consequently, it is a contradiction. So, Cg(ayg,r) is a unique fixed-circle
of T. m
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5 An Application to Activation Functions

Activation functions are important in neural networks and applicable areas. There are a lot of activation
functions in the literature. In the context of artificial neural networks, one of them is Rectified Linear Unit
(ReLU) activation function (see [37] and the references therein). This activation function is defined by

0 =<0,

ReLU(z) = " = max {0, z} :{ v 250

where z is the input to a neuron. This function can be considered as the positive part of its argument.

Let us consider this function on y = R with the G-metric defined as in Example 1. The function ReLU
satisfies the conditions of Theorem 1 and Theorem 2 for the circle Cg(2,1) = {%, g} Consequently, the
circle Cg(2,1) is a fixed-circle of ReLU. On the other hand, the function ReLU satisfies the conditions of
Theorem 1 and Theorem 2 for the circle Cg(3,2) = {2,4}. Hence, the circle Cg(3,2) is another fixed circle
of ReLU. Consequently, the fixed-circle of this activation function is not unique. This situation is important
for increasing the number of fixed-points used in neural networks.

Acknowledgements. The authors are very grateful to the reviewer for his (her) insightful reading the
manuscript and valuable comments.
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