Controllability Radius For Infinite Dimensional Systems*

Amel Merghad ${ }^{\dagger}$, Salah Eddine Rebiai ${ }^{\ddagger}$
Received 16 Janaury 2022

Abstract

In this paper, we establish a formula for the exact controllability radius for a class of infinite dimensional systems.

1 Introduction

Let X and U be two complex Hilbert spaces. In this paper we consider the linear control system:

$$
\left\{\begin{array}{l}
\dot{x}(t)=A x(t)+B u(t) \text { if } t \geq 0 \tag{1}\\
x(0)=x_{0}
\end{array}\right.
$$

where $A \in \mathcal{L}(X), B \in \mathcal{L}(U, X)$. X is called the state space, U the control space and $u(.) \in L^{2}(0, T ; U)$ the control function. The mild solution of (1) is given by

$$
x(t)=e^{t A} x_{0}+\int_{0}^{t} e^{(t-s) A} B u(s) d s .
$$

We will denote the system (1) by (A, B).
Definition 1 The system (A, B) is called exactly controllable if for every $\left(x_{0}, x_{1}\right) \in X^{2}$, there exists a control $u(.) \in L^{2}(0, T ; U)$ and a time $T>0$ such that

$$
e^{T A} x_{0}+\int_{0}^{T} e^{(T-s) A} B u(s) d s=x_{1}
$$

Define the following bounded linear operator

$$
\begin{aligned}
{[A, B]: X \times U } & \longrightarrow X \\
(x, u) & \longmapsto A x+B u
\end{aligned}
$$

Then, according to [4] the system (A, B) is exactly controllable if and only if for each $\lambda \in \mathbb{C}$ the linear operator $[A-\lambda I, B]$ is surjective.

Since the subset of all exactly controllable pairs (A, B) is open (see [6]), it is interesting to study the robustness of the exact controllability property. The exact controllability radius is defined as the smallest perturbation of (A, B) that makes the system uncontrollable, that is

$$
\begin{equation*}
r_{(A, B)}=\inf _{\left(\Delta_{A}, \Delta_{B}\right) \in \mathcal{L}(X) \times \mathcal{L}(U, X)}\left\{\left\|\left[\Delta_{A}, \Delta_{B}\right]\right\|,\left(A+\Delta_{A}, B+\Delta_{B}\right) \text { is not exactly controllable }\right\} . \tag{2}
\end{equation*}
$$

The problem of estimating (2) is of great importance in mathematical systems theory, and there have been several works in this direction over the last decades, see for example [8], [9], [1], [3] and the references therein. However the attention has mainly been devoted to this problem for finite-dimensional systems and very little is known for systems in infinite-dimensional spaces. Our main purpose in this paper is to derive a formula for the exact controllability radius for a class of infinite dimensional systems described by (1), and this will be done in Section 2. In Section one, we will recall for a later use some known results from the theory of linear multi-valued operators, for more details see $[2,9]$.

[^0]
2 Preliminaries

Let X and Y be Hilbert spaces over the field $K=\mathbb{R}$ or \mathbb{C}. The notation $\mathcal{T}: X \rightrightarrows Y$ indicates that \mathcal{T} is a set valued operator, that is, for each $x \in \mathcal{T}$ is a subset of Y. the inverse of \mathcal{T} is the set-valued operator $\mathcal{T}^{-1}: Y \rightrightarrows X$ defined by $x \in \mathcal{T}^{-1} \Leftrightarrow y \in \mathcal{T}(x)$. The domain, range, the graph, and the kernel of \mathcal{T} are defined, respectively by

$$
\begin{gathered}
D(\mathcal{T})=\{x \in X: \mathcal{T}(x) \neq \emptyset\} \\
\operatorname{Im} \mathcal{T}=\cup_{x \in D(\mathcal{T})} \mathcal{T}(x) \\
G r(\mathcal{T})=\{(x, y) \in X \times Y: x \in D(\mathcal{T}), y \in \mathcal{T}(x)\} \\
\operatorname{ker}(\mathcal{T})=\{x \in D(\mathcal{T}): 0 \in \mathcal{T}(x)\}
\end{gathered}
$$

A multivalued operator \mathcal{T} is called linear if for all $x, y \in D(\mathcal{T})$ and non zero scalars α we have

$$
\mathcal{T} x+\mathcal{T} z=\mathcal{T}(x+z) \text { and } \alpha \mathcal{T} x=\mathcal{T}(\alpha x)
$$

(Obviously the domain of a multivalued linear operator is a linear subspace). The norm of \mathcal{T} is defined as follows

$$
\|\mathcal{T}\|=\sup \left\{\inf _{y \in \mathcal{T}}\|y\|: x \in D(\mathcal{T}),\|x\|=1\right\}
$$

It follows from the definition that

$$
\inf _{y \in \mathcal{T}(x)}\|y\| \leq\|\mathcal{T}\|\|x\| \quad \text { for all } x \in D(\mathcal{T})
$$

We also assert that

$$
\text { if } y \in \mathcal{T}(x) \text { and } y \in(\mathcal{T}(0))^{\perp}, \text { then } d(0, \mathcal{T}(x))=\inf _{z \in \mathcal{T}(x)}\|z\|=\|y\|
$$

Indeed, if $y \in \mathcal{T}(x)$, then $\mathcal{T}(x)=y=\mathcal{T}(0)$. Let $z \in \mathcal{T}(x)$. Then there exists $w \in \mathcal{T}(0)$ such that $z=y+w$ and

$$
\begin{align*}
d(0, \mathcal{T}(x))= & \inf _{z \in \mathcal{T}(x)}\|z\|=\inf _{w \in \mathcal{T}(0)}\|y+w\|=\inf _{w \in \mathcal{T}(0)}\left[\|y\|^{2}+\|w\|^{2}\right]^{\frac{1}{2}} \\
= & \|y\| \quad(0 \in \mathcal{T}(0)) . \\
& \left(\mathcal{T}^{*}\right)^{*}=\mathcal{T},\left(\mathcal{T}^{*}\right)^{-1}=\left(\mathcal{T}^{-1}\right)^{*},\left\|\mathcal{T}^{*}\right\|=\|\mathcal{T}\| . \tag{3}
\end{align*}
$$

Lemma 1 ([5]) Let X and Y be Banach spaces. If $\phi: X \rightarrow Y$ is a bounded linear operator and surjective, then

$$
\begin{equation*}
\inf \{\|P\|: P \in \mathcal{L}(X), \quad \phi+P \quad \text { is not surjective }\}=\left\|\phi^{-1}\right\|^{-1} \tag{4}
\end{equation*}
$$

where ϕ^{-1} is a linear multivalued operator.
Now, we follow the approach adopted by Son and Thuan [8] to prove that $\left\|A^{-1}\right\|=\left\|A^{\dagger}\right\|$ (where A^{\dagger} is the pseudo-inverse of A) if A is a surjective bounded linear operator in a Hilbert space.
Lemma 2 Let $A: X \rightarrow Y$ be a surjective bounded linear operator where X and Y are Hilbert spaces. Then $\left\|A^{-1}\right\|=\left\|A^{\dagger}\right\|$.
Proof. Since A is surjective, we see that $A A^{*}$ is invertible and we have

$$
A^{\dagger}=A^{*}\left(A A^{*}\right)^{-1}
$$

Let $u=A^{\dagger}(y)$ for $y \in Y$. Then $A u=A A^{\dagger} y=\left(A A^{*}\right)\left(A A^{*}\right)^{-1} y=y$. Therefore $u \in A^{-1}(y)$. It follows that $A^{-1}(y)=u+A^{-1}(0)$. An easy computation shows that $u \in\left(A^{-1}(0)\right)^{\perp}$. Since $u \in A^{-1}(y)$ and $u \in\left(A^{-1}(0)\right)^{\perp}$, we conclude that $d\left(0, A^{-1}(y)\right)=\|u\|=\left\|A^{\dagger}(y)\right\|$. By definition, then

$$
\left\|A^{\dagger}\right\|=\sup _{\|y\|=1}\left\|A^{\dagger}(y)\right\|
$$

3 Main Result

Theorem 1 Assume that the system (A, B) is exactly contollable. Then

$$
r_{(A, B)}=\frac{1}{\sup _{\lambda \in \mathbb{C}}\left\|[A-\lambda I, B]^{\dagger}\right\|}
$$

Proof. If the system (A, B) is exactly controllable, then

$$
[A-\lambda I, B] U=X, \quad \forall \lambda \in \mathbb{C}
$$

Assume that the perturbed control system is not exactly controllable for some $\left[\Delta_{A}^{0}, \Delta_{B}^{0}\right]$. Then there exists

$$
\lambda_{0} \in \mathbb{C}
$$

such that

$$
\left[A+\Delta_{A}^{0}-\lambda_{0} I, B+\Delta_{B}^{0}\right]=\left[A-\lambda_{0} I, B\right]+\left[\Delta_{A}^{0}, \Delta_{B}^{0}\right]
$$

is not surjective. So by (4) we have

$$
\begin{aligned}
\frac{1}{\left\|\left[A-\lambda_{0} I, B\right]^{-1}\right\|} & =\inf \left\{\left\|\left[\Delta_{A}, \Delta_{B}\right]\right\|,\left[A-\lambda_{0} I, B\right]+\left[\Delta_{A}, \Delta_{B}\right] \text { is not surjective }\right\} \\
& \geq \inf \left\{\left\|\left[\Delta_{A}, \Delta_{B}\right]\right\|,\left(A+\Delta_{A}, B+\Delta_{B}\right] \text { is not exactly contollable }\right\} \\
& \geq r_{(A, B)}
\end{aligned}
$$

It follows that

$$
\frac{1}{\sup _{\lambda \in \mathbb{C}}\left\|[A-\lambda I, B]^{-1}\right\|} \geq r_{(A, B)}
$$

To prove the converse, we first note that for any operator $\Delta \in \mathcal{L}(X \times U, X)$, there exists $\Delta_{1} \in \mathcal{L}(X)$ and $\Delta_{2} \in \mathcal{L}(U, X)$ such that $\Delta=\left[\Delta_{1}, \Delta_{2}\right]$.

For any small $\epsilon>0$, we have

$$
\sup _{\lambda \in \mathbb{C}}\left\|[A-\lambda I, B]^{-1}\right\|-2 \epsilon>0
$$

Then there exists $\lambda_{\epsilon} \in \mathbb{C}$ such that

$$
\left\|\left[A-\lambda_{\epsilon} I, B\right]^{*-1}\right\|=\left\|\left[A-\lambda_{\epsilon} I, B\right]^{-1}\right\|>\sup _{\lambda \in \mathbb{C}}\left\|[A-\lambda I, B]^{-1}\right\|-\epsilon
$$

Since $\left[A-\lambda_{\epsilon} I, B\right]^{*-1}$ is single-valued (because $\left[A-\lambda_{\epsilon} I, B\right]$ is surjective) its norm is the operator norm and thus there exists $\left(x_{\epsilon}, u_{\epsilon}\right) \in X \times U$ with $\left\|\left(x_{\epsilon}, u_{\epsilon}\right)\right\|_{X \times U}=1$ and

$$
\left\|\left[A-\lambda_{\epsilon} I, B\right]^{*-1}\left(x_{\epsilon}, u_{\epsilon}\right)\right\|>\sup _{\lambda \in \mathbb{C}}\left\|[A-\lambda I, B]^{*-1}\right\|-2 \epsilon .
$$

Let $x_{\epsilon}^{*}=-\left[A-\lambda_{\epsilon} I, B\right]^{-1 *}\left(x_{\epsilon}, u_{\epsilon}\right)$. Then $\left[A-\lambda_{\epsilon} I, B\right]^{*}\left(x_{\epsilon}^{*}\right)=-\left(x_{\epsilon}, u_{\epsilon}\right)$. By the Hahn-Banach theorem, there exists $z_{\epsilon} \in X$ such that $\left\|z_{\epsilon}\right\|=1,\left\langle z_{\epsilon}, x_{\epsilon}^{*}\right\rangle=\left\|x_{\epsilon}^{*}\right\|$, by setting

$$
\Delta_{\epsilon}(x, u)=\frac{1}{\left\|x_{\epsilon}^{*}\right\|^{2}}\left\langle(x, u),\left(x_{\epsilon}, u_{\epsilon}\right)\right\rangle x_{\epsilon}^{*}
$$

it is clear that Δ_{ϵ} is a bounded linear map with norm

$$
\left\|\Delta_{\epsilon}\right\|=\frac{1}{\left\|x_{\epsilon}^{*}\right\|}=\frac{1}{\left\|\left[A-\lambda_{\epsilon} I, B\right]^{-1 *}\left(x_{\epsilon}, u_{\epsilon}\right)\right\|}
$$

On the other hand,

$$
\left[A-\lambda_{\epsilon} I, B\right]^{*}\left(x_{\epsilon}^{*}\right)+\Delta_{\epsilon}^{*}\left(x_{\epsilon}^{*}\right)=0
$$

or equivalently $\left[A-\lambda_{\epsilon} I, B\right]+\Delta_{\epsilon}$ is not surjective. It follows that the perturbed system $(A, B)+\Delta_{\epsilon}$ is not exactly controllable. Thus by definition

$$
r_{(A, B)} \leq\left\|\Delta_{\epsilon}\right\|<\frac{1}{\sup _{\lambda \in \mathbb{C}}\left\|[A-\lambda I, B]^{-1}\right\|-2 \epsilon}
$$

By letting $\epsilon \rightarrow 0$ we obtain the converse inequality. The proof is finished.
Remark 1 (Extension to fractional systems) From a combination of the theorem in [4] page 537 and Theorem 2.1 in [7], we can show in the same way that this result remains valid for time fractional systems described by

$$
\left\{\begin{array}{l}
{ }^{c} D_{0}^{\alpha}=A x(t)+B u(t) \quad \text { if } t \geq 0 \\
x(0)=x_{0}
\end{array}\right.
$$

where $\frac{1}{2}<\alpha<1, A: X \rightarrow X, B: U \rightarrow X$ are bounded linear operators, and $u \in L^{2}(0, T ; U)$.
Example 1 It is proved in [10] that the system (A, B) defined by

$$
(B f)(x)=\left\{\begin{array}{l}
f(x), \quad \frac{1}{2} \leq x \leq 1, \\
0, \quad 0 \leq x<\frac{1}{2},
\end{array} \quad \text { and } \quad(A f)(x)=\left\{\begin{array}{l}
0, \quad \frac{1}{2} \leq x \leq 1 \\
f(1-x), \quad 0 \leq x<\frac{1}{2}
\end{array}\right.\right.
$$

where $f \in X=L_{2}(0,1)$ is exactely controllable on X with control space $U=X$. Then

$$
[A-\lambda I, B]^{\dagger} f=\binom{H_{\lambda}^{1} f}{H_{\lambda}^{2} f}
$$

where

$$
\begin{gathered}
H_{\lambda}^{1} f(x)=\frac{1+|\lambda|^{2}}{|\lambda|^{4}+|\lambda|^{2}+1}\left\{\begin{array}{l}
\left(\frac{\lambda}{1+|\lambda|^{2}}-\bar{\lambda}\right) f(x)+\left(1-\frac{|\lambda|^{2}}{1+|\lambda|^{2}}\right) f(1-x), \quad \frac{1}{2} \leq x \leq 1, \\
-\bar{\lambda} f(x)-\frac{\bar{\lambda}^{2}}{1+|\lambda|^{2}} f(1-x), \quad 0 \leq x<\frac{1}{2},
\end{array}\right. \\
H_{\lambda}^{2} f(x)=\frac{1+|\lambda|^{2}}{|\lambda|^{4}+|\lambda|^{2}+1}\left\{\begin{array}{l}
f(x)+\frac{\lambda}{1+|\lambda|^{2}} f(1-x), \quad \frac{1}{2} \leq x \leq 1, \\
0, \quad 0 \leq x<\frac{1}{2},
\end{array}\right. \\
r_{(A, B)} \leq \frac{1}{\sup _{\lambda \in \mathbb{C}}\left\|H_{\lambda}^{2}\right\|}=\frac{1}{\sup _{\lambda \in \mathbb{C}} \frac{1+|\lambda|^{2}}{|\lambda|^{4}+|\lambda|^{2}+1} \sqrt{1+\left[\frac{|\lambda|}{1+|\lambda|^{2}}\right]^{2}} \approx \frac{1}{1,035} .} .
\end{gathered}
$$

References

[1] B. T. Anh, D. C. Khanh and D. D. X. Thanh, Distance from an exactly controllable system to not approximately controllable systems, Vietnam J. Math., 36(2008), 463-472.
[2] R. Cross, Multivalued Linear Operators, Marcel Dekker, 1998.
[3] D. D. Thuan and N. T. Hong, Controllability radii of linear neutral systems under structured perturbations, Internat. J. Control, 91(2018), 145-155.
[4] K. Takahashi, Exact controllability and spectrum assignment, J. Math. Anal. Appl., 104(1984), 573-545.
[5] A. Lewis, Ill-conditioned convex processes and conic linear systems, Math. Oper. Res., 24(1999), 829834.
[6] Z. D. Mei and J. G. Peng, On robustness of exact controllability and exact observability under cross perturbations on the generator in Banach spaces, Proc. Amer. Math. Soc., 138(2010), 4455-4468.
[7] T. Mur and H. R. Henriquez, Controllability of abstract systems of fractional order, Fract. Calc. Appl. Anal., 6(2015), 1379-1398.
[8] N. K. Son and D. D. Thuan, The structured distance to uncontrollability under multi-perturbations: an approach using multi-valued linear operators, Systems Control Lett., 59(2010), 476-483.
[9] N. K. Son, D. D. Thuan and N. T. Hong, Radius of approximate controllability of linear retared systems under structured perturbations, Systems Control Lett., 84(2015), 13-20.
[10] R. Triggiani, Constructive steering control functions for linear systems and abstract rank conditions, J. Optim. Theory Appl., 74(1992), 347-367.

[^0]: *Mathematics Subject Classifications: 20F05, 20F10, 20F55, 68Q42.
 ${ }^{\dagger}$ LTM, University of Batna 2, Batna, Algeria
 \ddagger LTM, University of Batna 2, Batna, Algeria

