All Nontrivial Solutions Of A Complex Dynamical System Are Periodic With Prime Period 9 Or 18*

Gen-qiang Wang ${ }^{\dagger}$, Yen Chih Chang ${ }^{\ddagger}$, Sui Sun Cheng ${ }^{\S}$, Chengmin Hou ${ }^{〔}$

Received 4 April 2023

Abstract

In this note, we show that for the complex dynamical system $z_{k+1}+z_{k-1}=\left|\Im\left(z_{k}\right)\right|+i\left|\Re\left(z_{k}\right)\right|$, all its nontrivial solutions have the prime periods 9 or 18 .

1 Introduction

The study of discrete time dynamical systems in one complex variable reveals many interesting periodic and aperiodic as well as chaotic phenomena (for an elementary exposition, [1] may be consulted). In general, it is difficult to give a full account of the periodic behavior of a genuine nonlinear recurrence relation.

In this note, however, we consider one such dynamical system and show that all its nontrivial solutions are either 9 - or 18 -periodic.

More specifically, we consider the recurrence relation

$$
\begin{equation*}
z_{k-1}+z_{k+1}=F\left(z_{k}\right), k \in \mathbf{Z}=\{\ldots,-2,-1,0,1,2, \ldots\} \tag{1}
\end{equation*}
$$

where $F: \mathbf{C} \rightarrow \mathbf{C}$ is the map defined by

$$
\begin{equation*}
F(z)=|\Im(z)|+i|\Re(z)|, i=\sqrt{-1} \tag{2}
\end{equation*}
$$

where $\Re(z)$ is the real part and $\Im(z)$ is the imaginary part of z.
Given z_{0} and z_{1}, say, it is easily seen that we can iteratively calculate z_{2}, z_{3}, \ldots, and z_{-1}, z_{-2}, \ldots in a unique manner. The resulting sequence $\left\{z_{k}\right\}_{k \in \mathbf{Z}}$ is called a solution of (1). A quick computer simulation experiment shows that all nontrivial solutions are periodic with period 18. Furthermore, if $\Im\left(z_{0}\right)=\Re\left(z_{0}\right)$ and $\Im\left(z_{1}\right)=\Re\left(z_{1}\right)$, then 9 is the prime period and otherwise 18 is.

Our technique to prove this observation is to relate our complex dynamical system with the following real three term recurrence relation

$$
\begin{equation*}
\varphi_{k+1}+\varphi_{k-1}=\left|\varphi_{k}\right|, k \in \mathbf{Z} \tag{3}
\end{equation*}
$$

We first show that all its (real) solutions (i.e., real sequences $\left\{\nu_{k}\right\}_{k \in \mathbf{Z}}$ that satisfy (3)) can be 'generated' by one solution $\varphi=\left\{\varphi_{k}\right\}_{k \in \mathbf{Z}}$ which satisfies $\left(\varphi_{0}, \varphi_{1}\right)=(-1,0)$, then we show that all nontrivial solutions of (3) are periodic with prime period 9 . By decomposing a solution ζ of (1) into two real sequences φ and ψ which are solutions of (3), we may then show that any nontrivial solution $\zeta=\left\{\zeta_{k}\right\}_{k \in \mathbf{Z}}$ of (1) is periodic with period 18 and if $\Re\left(\zeta_{k}\right)=\Im\left(\zeta_{k}\right)$ and $\Re\left(\zeta_{k+1}\right)=\Im\left(\zeta_{k+1}\right)$, then ζ is 9-periodic; otherwise, ζ is 18-periodic.

[^0]
2 The Real Dynamical System

Let us first go through some elementary properties of our equation (3). First, recall that a real sequence $\varphi=\left\{\varphi_{i}\right\}_{i \in \mathbf{Z}}$ is said to be periodic if there is a positive integer T such that $\varphi_{m+T}=\varphi_{m}$ for all $m \in \mathbf{Z}$. The positive integer T is called a period of φ. If ω is the least among all periods of φ, then ω is called the least or prime period of φ and φ is said to be ω-periodic. An elementary fact is that the prime period is a factor of all periods of φ.

If φ is ω-periodic, then any (row) vector consisting of ω consecutive terms of it will be called a cycle and denoted by

$$
\varphi^{[\alpha]}=\left(\varphi_{\alpha}, \varphi_{\alpha+1}, \ldots, \varphi_{\alpha+\omega-1}\right) .
$$

Clearly, if $\varphi^{[\alpha]}$ is known, then

$$
\varphi_{i}=\varphi_{(i+1) \bmod \omega}^{[\alpha]}, i \in \mathbf{Z} .
$$

Next, a solution of (3) is a real sequence $\varphi=\left\{\varphi_{i}\right\}_{i \in \mathbf{Z}}$ which renders (3) into an identity after substitution. Since (3) can be rewritten as

$$
\varphi_{i+1}=\left|\varphi_{i}\right|-\varphi_{i-1},
$$

or

$$
\varphi_{i-1}=\left|\varphi_{i}\right|-\varphi_{i+1},
$$

therefore, we may see that a solution φ of (3) is uniquely determined by any pair $\left(\varphi_{k}, \varphi_{k+1}\right)$ of two consecutive terms of φ.

The equation (3) has several invariance properties. First, let $\psi=\left\{\psi_{i}\right\}_{i \in \mathbf{Z}}$ be a real sequence, a translation of ψ is a sequence $E^{j} \psi, j \in \mathbf{Z}$, defined by

$$
\left(E^{j} \psi\right)_{m}=\psi_{m-j,} m \in \mathbf{Z}
$$

(in particular, $E^{0} \psi=\psi$).
The following two invariance results are easily verified.
Lemma 1 Let $\varphi=\left\{\varphi_{k}\right\}_{k \in \mathbf{Z}}$ be a solution of (3). Then for any $j \in \mathbf{Z}, E^{j} \varphi$ is also a solution of (3). Furthermore, if ω is the prime period of φ, then ω is also the prime period of $E^{j} \varphi$.

Lemma 2 If $\zeta=\left\{\zeta_{i}\right\}_{i \in \mathbf{Z}}$ is a solution of (3), then for any $\alpha \geq 0, \alpha \zeta$ is also a solution of (3). Furthermore, if $\xi=\left\{\xi_{i}\right\}_{i \in \mathbf{Z}}$ is a solution of (3) such that $\zeta_{i} \times \xi_{i} \geq 0$ for any $i \in \mathbf{Z}$, then for any $\alpha, \beta \geq 0, \alpha \zeta+\beta \xi$ is also a solution of (3).

We now identify a solution that can be used to generate all other solutions. It is the solution $u=\left\{u_{i}\right\}_{i \in \mathbf{Z}}$ of (3) that satisfies $\left(u_{0}, u_{1}\right)=(-1,0)$.

Lemma 3 Let $u=\left\{u_{i}\right\}_{i \in \mathbf{Z}}$ be the solution of (3) that satisfies $\left(u_{0}, u_{1}\right)=(-1,0)$. Then u is 9-periodic and

$$
\begin{equation*}
u^{[0]}=(-1,0,1,1,0,-1,1,2,1) . \tag{4}
\end{equation*}
$$

Furthermore, $u_{i} \times\left(E^{5} u\right)_{i} \geq 0$ for $i \in \mathbf{Z}$.
The proof is easy. Indeed, from (3) and $\left(u_{0}, u_{1}\right)=(-1,0)$, we may calculate $u_{2}=1, u_{3}=1, \ldots, u_{9}=$ $-1, u_{10}=0, \ldots$ so that 9 is a period of u. Then we may check that 1 and 3 are not periods of u. That is, the prime period of u is 9 . From u, we then see that

$$
\begin{equation*}
\left(E^{5} u\right)^{[0]}=(0,-1,1,2,1,-1,0,1,1) \tag{5}
\end{equation*}
$$

so that $u_{i} \times\left(E^{5} u\right)_{i} \geq 0$ for $i \in \mathbf{Z}$.

Lemma 4 Let

$$
\varphi=\alpha u+\beta\left(E^{5} u\right)
$$

where α, β are nonnegative real numbers. If $(\alpha, \beta)=(0,0)$, then $\varphi=\{0\}$; otherwise, φ is a 9-periodic solution of (3) and

$$
\begin{equation*}
\varphi^{[0]}=(-\alpha,-\beta, \alpha+\beta, \alpha+2 \beta, \beta,-\alpha-\beta, \alpha, 2 \alpha+\beta, \alpha+\beta) \tag{6}
\end{equation*}
$$

Notice that if $\alpha=\beta=0$, then αu and $\beta\left(E^{5} u\right)$ are both trivial solutions such that φ is also a trivial solution by direct verification. Suppose $(\alpha, \beta) \neq(0,0)$. Then by Lemma $2, \varphi$ is a solution of (3) since $(\alpha u)_{i} \times\left(\beta E^{5} u\right)_{i} \geq 0$ for all $i \in \mathbf{Z}$. Since 9 is a period of u and $E^{5} u$, it is also a period of φ. Suppose φ is 1-periodic. then $-\alpha=\varphi_{0}=\varphi_{1}=-\beta$ and $\alpha+\beta=\varphi_{2}=\varphi_{1}=-\alpha$ which leads to $\alpha=\beta=0$, a contradiction. Suppose φ is 3-periodic. Then from (6), $-\alpha=\varphi_{0}=\varphi_{6}=\alpha$ and $-\beta=\varphi_{1}=\varphi_{4}=\beta$ that leads to $\alpha=\beta=0$ which is also a contradiction. Therefore, if $(\alpha, \beta) \neq(0,0)$, then φ cannot be 1 - nor 3-periodic. Hence φ is 9-periodic.

Next, we show that any nontrivial solution φ of (3) can be written as

$$
\varphi=\alpha E^{j} u+\beta\left(E^{j+5} u\right)
$$

for some $j \in\{0,1, \ldots, 8\}$ and some $(\alpha, \beta) \in\left\{(x, y) \in \mathbf{R}^{2} \mid x \geq 0, y>0\right\}$.
To this end, we form 9 half rays of the form

$$
\left\{t\left(\left(E^{j} u\right)_{0},\left(E^{j} u\right)_{1}\right) \mid t>0\right\}, j=0,1,2, \ldots, 8
$$

and create partitions of the plane based on these half rays, namely $\left\{\Omega_{0}, \Omega_{1}, \ldots, \Omega_{9}\right\}$ (see Figure 1) defined by

Figure 1: The partitions of $\Omega_{i \in\{0, \ldots, 9\}}$ on $\mathbf{R}^{\mathbf{2}}$.

$$
\begin{aligned}
\Omega_{0} & =\{(x, y) \mid x \leq 0, y<0\} \\
\Omega_{1} & =\{(x, y) \mid y \leq 0, x+y>0\} \\
\Omega_{2} & =\{(x, y) \mid x-y \geq 0, x-2 y<0\} \\
\Omega_{3} & =\{(x, y) \mid x \geq 0,2 x-y<0\} \\
\Omega_{4} & =\{(x, y) \mid y \geq 0, x+y<0\} \\
\Omega_{5} & =\{(x, y) \mid x+y \leq 0, x>0\} \\
\Omega_{6} & =\{(x, y) \mid x-2 y \geq 0, y>0\} \\
\Omega_{7} & =\{(x, y) \mid 2 x-y \geq 0, x-y<0\} \\
\Omega_{8} & =\{(x, y) \mid x+y \geq 0, x<0\} \\
\Omega_{9} & =\{(0,0)\}
\end{aligned}
$$

In view of Figure 1, it is clear that for any $(s, t) \in \mathbf{R}^{2} \backslash\{(0,0)\}$, there is a unique $j \in\{0, . ., 8\}$ and unique pair $(\alpha, \beta) \in\left(-\Omega_{0}\right)$ so that

$$
\begin{equation*}
(s, t)=\alpha\left(\left(E^{j} u\right)_{0},\left(E^{j} u\right)_{1}\right)+\beta\left(\left(E^{j+5} u\right)_{0},\left(E^{j+5} u\right)_{1}\right) \tag{7}
\end{equation*}
$$

Theorem 1 Let $\varphi=\left\{\varphi_{k}\right\}_{k \in \mathbf{Z}}$ be a nontrivial solution of (3). Then there is a unique 3-tuple (α, β, j) where $(\alpha, \beta) \in\left(-\Omega_{0}\right)$ and $j \in\{0, \ldots, 8\}$ so that

$$
\begin{equation*}
\varphi=\alpha E^{j} u+\beta E^{j+5} u \tag{8}
\end{equation*}
$$

Indeed, if φ is nontrivial, then $\left(\varphi_{0}, \varphi_{1}\right)=(s, t) \in \mathbf{R}^{2} \backslash\{(0,0)\}$. Hence (7) holds for unique $j \in\{0,1, \ldots, 8\}$ and unique $\alpha \geq 0$ and unique $\beta>0$. By (7), we see that (8) holds since $\left(\varphi_{0}, \varphi_{1}\right)=(s, t)$.

It is rather easy to find the coefficients α and β and the exponent j in (8). Indeed, we let the mapping $\Gamma: \mathbf{R}^{2} \longmapsto \mathbf{R}^{2}$ be defined by

$$
\Gamma(s, t)=\left(\Gamma_{1}(s, t), \Gamma_{2}(s, t)\right)= \begin{cases}(-s,-t) & \text { if }(s, t) \in \Omega_{0} \tag{9}\\ (-t, s+t) & \text { if }(s, t) \in \Omega_{1} \\ (s-t, 2 t-s) & \text { if }(s, t) \in \Omega_{2} \\ (s, t-2 s) & \text { if }(s, t) \in \Omega_{3} \\ (t,-s-t) & \text { if }(s, t) \in \Omega_{4} \\ (-s-t, s) & \text { if }(s, t) \in \Omega_{5} \\ (s-2 t, t) & \text { if }(s, t) \in \Omega_{6} \\ (2 s-t, t-s) & \text { if }(s, t) \in \Omega_{7} \\ (s+t,-s) & \text { if }(s, t) \in \Omega_{8} \\ (0,0) & \text { if }(s, t) \in \Omega_{9}\end{cases}
$$

where $(s, t) \in \mathbf{R}^{2}$. By direct verification, we may easily see that

$$
(\alpha, \beta)=\left(\Gamma_{1}(s, t), \Gamma_{2}(s, t)\right) \in\left(-\Omega_{0}\right)
$$

in (7) as well as $\Gamma(0,0)=(0,0)$.
Theorem 2 Let $\zeta=\left\{\zeta_{k}\right\}_{k \in \mathbf{Z}}$ be a nontrivial solution of (3) with $\left(\zeta_{0}, \zeta_{1}\right)=(s, t) \in \Omega_{j \in\{0,1,2, \ldots, 8\}}$. Then

$$
\begin{equation*}
\zeta=\Gamma_{1}(s, t) E^{j} u+\Gamma_{2}(s, t) E^{j+5} u \tag{10}
\end{equation*}
$$

Proof. Let $\zeta=\left\{\zeta_{k}\right\}_{k \in \mathbf{Z}}$ be a solution of (3) with $\left(\zeta_{0}, \zeta_{1}\right)=(s, t)$. Suppose ($\left.s, t\right) \in \Omega_{0}$. Then by (9), $\left(\Gamma_{1}(s, t), \Gamma_{2}(s, t)\right)=(-s,-t)$. Let

$$
\xi=\Gamma_{1}(s, t) E^{0} u+\Gamma_{2}(s, t) E^{5} u
$$

Thus by (4) and (5), we have $\left(u_{0}, u_{1},\left(E^{5} u\right)_{0},\left(E^{5} u\right)_{1}\right)=(-1,0,0,-1)$. Therefore, we see that

$$
\begin{aligned}
\left(\xi_{0}, \xi_{1}\right) & =\left(\Gamma_{1}(s, t) u_{0}+\Gamma_{2}(s, t)\left(E^{5} u\right)_{0}, \Gamma_{1}(s, t) u_{1}+\Gamma_{2}(s, t)\left(E^{5} u\right)_{1}\right) \\
& =((-1)(-s)+0(-t), 0(-s)+(-1)(-t)) \\
& =(s, t) \\
& =\left(\zeta_{0}, \zeta_{1}\right)
\end{aligned}
$$

which implies $\zeta=\xi$. Suppose $(s, t) \in \Omega_{1}$. Then by $(9),\left(\Gamma_{1}(s, t), \Gamma_{2}(s, t)\right)=(-t, s+t)$ and let

$$
\xi=\Gamma_{1}(s, t) E^{1} u+\Gamma_{2}(s, t) E^{6} u
$$

Thus, by (4) and (5), we have $\left(\left(E^{1} u\right)_{0},\left(E^{1} u\right)_{1},\left(E^{6} u\right)_{0},\left(E^{6} u\right)_{1}\right)=(1,-1,1,0)$. Therefore, we see that

$$
\begin{aligned}
\left(\xi_{0}, \xi_{1}\right) & =\left(\Gamma_{1}(s, t)\left(E^{1} u\right)_{0}+\Gamma_{2}(s, t)\left(E^{6} u\right)_{0}, \Gamma_{1}(s, t)\left(E^{1} u\right)_{1}+\Gamma_{2}(s, t)\left(E^{6} u\right)_{1}\right) \\
& =((-t)+(s+t),(-1)(-t)+0(s+t)) \\
& =(s, t) \\
& =\left(\zeta_{0}, \zeta_{1}\right)
\end{aligned}
$$

which implies $\zeta=\xi$. The other cases where $j \in\{2, \ldots, 8\}$ can be handled by similar manners and this completes the proof.

We remark that if ζ is the trivial solution, then (10) holds for $j=9$. Since $\Gamma(0,0)=(0,0)$, by (10) and Lemma 4 , we see that ζ is a trivial solution of (3).

Corollary 1 All nontrivial solutions of (3) are 9-periodic.
Indeed, if ζ is a nontrivial solution of (3), then by Theorem 1 , we have

$$
E^{-j} \zeta=\alpha u+\beta E^{5} u
$$

for some unique $j \in\{0,1, \ldots, 8\}$ and $(\alpha, \beta) \in\left(-\Omega_{0}\right)$. Hence, by the invariance of translations and Lemma 4, it follows that $E^{-j} u$ is 9-periodic which implies ζ is also 9-periodic.

3 The Complex Dynamical System

First of all, for ease of presentation, we recall the complex dynamical system of (1) as

$$
\begin{equation*}
z_{k-1}+z_{k+1}=F\left(z_{k}\right), k \in \mathbf{Z} \tag{11}
\end{equation*}
$$

where $F(z)=|\Im(z)|+i|\Re(z)|$. Notice that a solution $\zeta=\left\{\zeta_{k}\right\}_{k \in \mathbf{Z}}$ of (11) is a complex sequence which renders (11) into an identity after substitution. Given ζ_{0} and ζ_{1}, we may iteratively calculate $\zeta_{2}, \zeta_{3}, \ldots$, and $\zeta_{-1}, \zeta_{-2}, \ldots$ by (11) in a unique manner and hence we see that ζ is uniquely determined by its two consecutive terms.

It's obvious to see that the trivial solution of (11) is 1-periodic. Conversely, if a solution $\zeta=\left\{\zeta_{k}\right\}_{k \in \mathbf{Z}}$ of (11) is 1-periodic, then $\zeta_{k}=\zeta_{0}$ for all $k \in \mathbf{Z}$ and therefore, by (11), it's found that

$$
2 \zeta_{0}=\zeta_{k-1}+\zeta_{k+1}=F\left(\zeta_{k}\right)=F\left(\zeta_{0}\right)
$$

such that

$$
2 \Re\left(\zeta_{0}\right)=\left|\Im\left(\zeta_{0}\right)\right| \text { and } 2 \Im\left(\zeta_{0}\right)=\left|\Re\left(\zeta_{0}\right)\right|
$$

Since $\left|\Re\left(\zeta_{0}\right)\right|,\left|\Im\left(\zeta_{0}\right)\right| \geq 0$, we have $\Re\left(\zeta_{0}\right), \Im\left(\zeta_{0}\right) \geq 0$ and by the previous discussions, it follows that

$$
\Re\left(\zeta_{0}\right)=\frac{1}{4} \Re\left(\zeta_{0}\right) \text { and } \Im\left(\zeta_{0}\right)=\frac{1}{4} \Im\left(\zeta_{0}\right)
$$

which leads to $\Re\left(\zeta_{0}\right)=0$ as well as $\Im\left(\zeta_{0}\right)=0$. Thus, by similar arguments, we may see that $\zeta_{1}=0$ and hence ζ is the trivial solution of (11).

The complex dynamical system (11) and the (real) dynamical system (3) are related in the following manner.

Lemma 5 If $\varphi=\left\{\varphi_{k}\right\}_{k \in \mathbf{Z}}$ and $\psi=\left\{\psi_{k}\right\}_{k \in \mathbf{Z}}$ are solutions of (3), then the complex sequence $\left\{z_{k}\right\}_{k \in \mathbf{Z}}$ defined by

$$
z_{k}=\left\{\begin{array}{lll}
\varphi_{k}+i \psi_{k} & \text { if } k \equiv 0 & \bmod 2, \tag{12}\\
\psi_{k}+i \varphi_{k} & \text { if } k \equiv 1 & \bmod 2,
\end{array}\right.
$$

is a solution of (11). Conversely, if $w=\left\{w_{k}\right\}_{k \in \mathbf{Z}}$ is a solution of (11), then the sequences $\varphi=\left\{\varphi_{k}\right\}_{k \in \mathbf{Z}}$ and $\psi=\left\{\psi_{k}\right\}_{k \in \mathbf{Z}}$ defined respectively by

$$
\varphi_{k}=\left\{\begin{array}{lll}
\Re\left(w_{k}\right) & \text { if } k \equiv 0 & \bmod 2, \tag{13}\\
\Im\left(w_{k}\right) & \text { if } k \equiv 1 & \bmod 2,
\end{array}\right.
$$

and

$$
\psi_{k}=\left\{\begin{array}{lll}
\Im\left(w_{k}\right) & \text { if } k \equiv 0 & \bmod 2, \tag{14}\\
\Re\left(w_{k}\right) & \text { if } k \equiv 1 & \bmod 2,
\end{array}\right.
$$

are solutions of (3).
The proof is quite straightforward. Suppose φ and ψ are solutions of (3). We first note from (12) that $w_{0}=\varphi_{0}+i \psi_{0}, w_{1}=\psi_{1}+i \varphi_{1}$ and $w_{2}=\varphi_{2}+i \psi_{2}$. Then

$$
w_{2}+w_{0}=\varphi_{2}+\varphi_{0}+i\left(\psi_{2}+\psi_{0}\right)=\left|\varphi_{1}\right|+i\left|\psi_{1}\right|=\left|\Im\left(w_{1}\right)\right|+i\left|\Re\left(w_{1}\right)\right|=F\left(w_{1}\right) .
$$

Similarly, we can then show that (11) holds. Conversely, suppose $w=\left\{w_{k}\right\}_{k \in \mathbf{Z}}$ is a solution of (11). Then

$$
\begin{aligned}
\varphi_{2}+\varphi_{0}+i\left(\psi_{2}+\psi_{0}\right) & =\Re\left(w_{2}\right)+\Re\left(w_{0}\right)+i\left(\Im\left(w_{2}\right)+\Im\left(w_{0}\right)\right) \\
& =w_{2}+w_{0}=F\left(w_{1}\right)=\left|\Im\left(w_{1}\right)\right|+i \Re\left(w_{1}\right)\left|=\left|\varphi_{1}\right|+i\right| \psi_{1} \mid
\end{aligned}
$$

so that

$$
\varphi_{2}+\varphi_{0}=\left|\varphi_{1}\right| \text { and } \psi_{2}+\psi_{0}=\left|\psi_{1}\right| .
$$

Similarly, we may show that φ and ψ are solutions of (3).
Theorem 3 Any solution of (11) is periodic with period 18. Furthermore, for any nontrivial solution $w=$ $\left\{w_{k}\right\}_{k \in \mathbf{Z}}$ of (11), if $\Re\left(w_{0}\right)=\Im\left(w_{0}\right)$ and $\Re\left(w_{1}\right)=\Im\left(w_{1}\right)$, then w is 9 -periodic, otherwise w is periodic with least period 18 .

Proof. Let $w=\left\{w_{k}\right\}_{k \in \mathbf{Z}}$ be a solution of (11). Then by Corollary 1 and Lemma 5, the sequences φ and ψ defined by (13) and (14), respectively, are solutions of (3) with period 9 . Therefore, for any odd j,

$$
w_{9 j}=\psi_{9 j}+i \varphi_{9 j}=\psi_{0}+i \varphi_{0}=i\left(\varphi_{0}-i \psi_{0}\right)=i \overline{\left(\varphi_{0}+i \psi_{0}\right)}=i \bar{w}_{0} .
$$

Hence, for any $m \in \mathbf{Z}$,

$$
\begin{aligned}
w_{m+18} & =i \bar{w}_{m+9}=i \overline{i \overline{w_{m}}}=i \overline{i\left(\Re\left(w_{m}\right)-i \Im\left(w_{m}\right)\right)}=i \overline{\left(\Im\left(w_{m}\right)+i \Re\left(w_{m}\right)\right)} \\
& =i\left(\Im\left(w_{m}\right)-i \Re\left(w_{m}\right)\right)=\Re\left(w_{m}\right)+i \Im\left(w_{m}\right)=w_{m},
\end{aligned}
$$

that is, 18 is a period of w.
Next, if w is nontrivial, then by (13) and (14), φ or ψ is nontrivial. We assert that 6 is not a period of w. Indeed, suppose the contrary holds, then $w_{0}=w_{6}$ and $w_{1}=w_{7}$. Hence

$$
\left(\Re\left(w_{0}\right), \Im\left(w_{1}\right)\right)=\left(\Re\left(w_{6}\right), \Im\left(w_{7}\right)\right) \text { which implies }\left(\varphi_{0}, \varphi_{1}\right)=\left(\varphi_{6}, \varphi_{7}\right)
$$

as well as

$$
\left(\Im\left(w_{0}\right), \Re\left(w_{1}\right)\right)=\left(\Im\left(w_{6}\right), \Re\left(w_{7}\right)\right) \text { which leads to }\left(\psi_{0}, \psi_{1}\right)=\left(\psi_{6}, \psi_{7}\right)
$$

Hence, φ and ψ have the period 6 which is contrary to Corollary 1. Note that w is not periodic with period 6 which implies 3 is neither a period of w. Therefore, the prime period of w, being a factor of 18 , can only be 9 or 18 . If $\Re\left(w_{0}\right)=\Im\left(w_{0}\right)$ and $\Re\left(w_{1}\right)=\Im\left(w_{1}\right)$, then by the previous discussions,

$$
w_{9}=i \bar{w}_{0}=\Im\left(w_{0}\right)+i \Re\left(w_{0}\right)=\Re\left(w_{0}\right)+i \Im\left(w_{0}\right)=w_{0}
$$

as well as

$$
w_{10}=i \bar{w}_{1}=\Im\left(w_{1}\right)+i \Re\left(w_{1}\right)=\Re\left(w_{1}\right)+i \Im\left(w_{1}\right)=w_{1}
$$

which shows that w is 9 -periodic; otherwise, $w_{9} \neq w_{0}$ or $w_{10} \neq w_{1}$ so that w is 18 -periodic. The proof is complete.

References

[1] E. R. Scheinerman, Invitation to Dynamical Systems, Prentice Hall, New Jersey, 1996.

[^0]: *Mathematics Subject Classifications: 11B37, 11B50.
 ${ }^{\dagger}$ Department of Computer Science, Guangdong Polytechnic Normal University, Guangzhou, Guangdong 510663, P. R. China
 ${ }^{\ddagger}$ Library,, Tsing Hua University, Hsinchu, Taiwan 300044, R. O. China
 ${ }^{\S}$ Department of Mathematics, Tsing Hua University, Hsinchu, Taiwan 300044, R. O. China
 ${ }^{\text {a }}$ Department of Mathematics, Yanbian University, Yanji 133002, P. R. China

