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Abstract

In this note, we show that for the complex dynamical system zk+1 + zk−1 = |= (zk)| + i|< (zk)|, all
its nontrivial solutions have the prime periods 9 or 18.

1 Introduction

The study of discrete time dynamical systems in one complex variable reveals many interesting periodic and
aperiodic as well as chaotic phenomena (for an elementary exposition, [1] may be consulted). In general, it
is difficult to give a full account of the periodic behavior of a genuine nonlinear recurrence relation.

In this note, however, we consider one such dynamical system and show that all its nontrivial solutions
are either 9- or 18-periodic.

More specifically, we consider the recurrence relation

zk−1 + zk+1 = F (zk) , k ∈ Z = {..,−2,−1, 0, 1, 2, ...} (1)

where F : C → C is the map defined by

F (z) = |= (z)| + i|< (z)|, i =
√
−1, (2)

where < (z) is the real part and = (z) is the imaginary part of z.

Given z0 and z1, say, it is easily seen that we can iteratively calculate z2, z3, ..., and z−1, z−2, ... in a
unique manner. The resulting sequence {zk}k∈Z

is called a solution of (1). A quick computer simulation
experiment shows that all nontrivial solutions are periodic with period 18. Furthermore, if = (z0) = < (z0)
and = (z1) = < (z1), then 9 is the prime period and otherwise 18 is.

Our technique to prove this observation is to relate our complex dynamical system with the following
real three term recurrence relation

ϕk+1 + ϕk−1 = |ϕk|, k ∈ Z. (3)

We first show that all its (real) solutions (i.e., real sequences {νk}k∈Z
that satisfy (3)) can be ‘generated’ by

one solution ϕ = {ϕk}k∈Z
which satisfies (ϕ0, ϕ1) = (−1, 0), then we show that all nontrivial solutions of

(3) are periodic with prime period 9. By decomposing a solution ζ of (1) into two real sequences ϕ and ψ

which are solutions of (3), we may then show that any nontrivial solution ζ = {ζk}k∈Z
of (1) is periodic with

period 18 and if <(ζk) = =(ζk) and <(ζk+1) = =(ζk+1), then ζ is 9-periodic; otherwise, ζ is 18-periodic.
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2 The Real Dynamical System

Let us first go through some elementary properties of our equation (3). First, recall that a real sequence
ϕ = {ϕi}i∈Z

is said to be periodic if there is a positive integer T such that ϕm+T = ϕm for all m ∈ Z. The
positive integer T is called a period of ϕ. If ω is the least among all periods of ϕ, then ω is called the least
or prime period of ϕ and ϕ is said to be ω-periodic. An elementary fact is that the prime period is a factor
of all periods of ϕ.

If ϕ is ω-periodic, then any (row) vector consisting of ω consecutive terms of it will be called a cycle and
denoted by

ϕ[α] = (ϕα, ϕα+1, ..., ϕα+ω−1) .

Clearly, if ϕ[α] is known, then

ϕi = ϕ
[α]

(i+1) mod ω
, i ∈ Z.

Next, a solution of (3) is a real sequence ϕ = {ϕi}i∈Z which renders (3) into an identity after substitution.
Since (3) can be rewritten as

ϕi+1 = |ϕi| − ϕi−1,

or
ϕi−1 = |ϕi| − ϕi+1,

therefore, we may see that a solution ϕ of (3) is uniquely determined by any pair (ϕk, ϕk+1) of two consecutive
terms of ϕ.

The equation (3) has several invariance properties. First, let ψ = {ψi}i∈Z
be a real sequence, a translation

of ψ is a sequence Ejψ, j ∈ Z, defined by

(Ejψ)m = ψm−j, m ∈ Z,

(in particular, E0ψ = ψ).

The following two invariance results are easily verified.

Lemma 1 Let ϕ = {ϕk}k∈Z
be a solution of (3). Then for any j ∈ Z, Ejϕ is also a solution of (3).

Furthermore, if ω is the prime period of ϕ, then ω is also the prime period of Ejϕ.

Lemma 2 If ζ = {ζi}i∈Z
is a solution of (3), then for any α ≥ 0, αζ is also a solution of (3). Furthermore,

if ξ = {ξi}i∈Z
is a solution of (3) such that ζi × ξi ≥ 0 for any i ∈ Z, then for any α, β ≥ 0, αζ + βξ is also

a solution of (3).

We now identify a solution that can be used to generate all other solutions. It is the solution u = {ui}i∈Z

of (3) that satisfies (u0, u1) = (−1, 0).

Lemma 3 Let u = {ui}i∈Z
be the solution of (3) that satisfies (u0, u1) = (−1, 0). Then u is 9-periodic and

u[0] = (−1, 0, 1, 1, 0,−1, 1, 2, 1). (4)

Furthermore, ui × (E5u)i ≥ 0 for i ∈ Z.

The proof is easy. Indeed, from (3) and (u0, u1) = (−1, 0), we may calculate u2 = 1, u3 = 1, ..., u9 =
−1, u10 = 0, ... so that 9 is a period of u. Then we may check that 1 and 3 are not periods of u. That is, the
prime period of u is 9. From u, we then see that

(E5u)[0] = (0,−1, 1, 2, 1,−1, 0, 1, 1), (5)

so that ui × (E5u)i ≥ 0 for i ∈ Z.
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Lemma 4 Let

ϕ = αu+ β(E5u),

where α, β are nonnegative real numbers. If (α, β) = (0, 0) , then ϕ = {0} ; otherwise, ϕ is a 9-periodic
solution of (3) and

ϕ[0] = (−α,−β, α+ β, α+ 2β, β,−α− β, α, 2α+ β, α+ β). (6)

Notice that if α = β = 0, then αu and β
(

E5u
)

are both trivial solutions such that ϕ is also a trivial
solution by direct verification. Suppose (α, β) 6= (0, 0) . Then by Lemma 2, ϕ is a solution of (3) since
(αu)i × (βE5u)i ≥ 0 for all i ∈ Z. Since 9 is a period of u and E5u, it is also a period of ϕ. Suppose ϕ is
1-periodic. then −α = ϕ0 = ϕ1 = −β and α+β = ϕ2 = ϕ1 = −α which leads to α = β = 0, a contradiction.
Suppose ϕ is 3-periodic. Then from (6), −α = ϕ0 = ϕ6 = α and −β = ϕ1 = ϕ4 = β that leads to α = β = 0
which is also a contradiction. Therefore, if (α, β) 6= (0, 0), then ϕ cannot be 1- nor 3-periodic. Hence ϕ is
9-periodic.

Next, we show that any nontrivial solution ϕ of (3) can be written as

ϕ = αEju+ β(Ej+5u)

for some j ∈ {0, 1, ..., 8} and some (α, β) ∈
{

(x, y) ∈ R2 | x ≥ 0, y > 0
}

.

To this end, we form 9 half rays of the form

{

t
(

(Eju)0, (E
ju)1

)

| t > 0
}

, j = 0, 1, 2, ..., 8,

and create partitions of the plane based on these half rays, namely {Ω0,Ω1, ...,Ω9} (see Figure 1) defined by

Figure 1: The partitions of Ωi∈{0,...,9} on R2.
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Ω0 = {(x, y) | x ≤ 0, y < 0},
Ω1 = {(x, y) | y ≤ 0, x+ y > 0},
Ω2 = {(x, y) | x− y ≥ 0, x− 2y < 0},
Ω3 = {(x, y) | x ≥ 0, 2x− y < 0},
Ω4 = {(x, y) | y ≥ 0, x+ y < 0},
Ω5 = {(x, y) | x+ y ≤ 0, x > 0},
Ω6 = {(x, y) | x− 2y ≥ 0, y > 0},
Ω7 = {(x, y) | 2x− y ≥ 0, x− y < 0},
Ω8 = {(x, y) | x+ y ≥ 0, x < 0},
Ω9 = {(0, 0)}.

In view of Figure 1, it is clear that for any (s, t) ∈ R2\{(0, 0)}, there is a unique j ∈ {0, .., 8} and unique
pair (α, β) ∈ (−Ω0) so that

(s, t) = α
(

(Eju)0, (E
ju)1

)

+ β
(

(Ej+5u)0, (E
j+5u)1

)

. (7)

Theorem 1 Let ϕ = {ϕk}k∈Z
be a nontrivial solution of (3). Then there is a unique 3-tuple (α, β, j) where

(α, β) ∈ (−Ω0) and j ∈ {0, ..., 8} so that

ϕ = αEju+ βEj+5u. (8)

Indeed, if ϕ is nontrivial, then (ϕ0, ϕ1) = (s, t) ∈ R2\{(0, 0)}. Hence (7) holds for unique j ∈ {0, 1, ..., 8}
and unique α ≥ 0 and unique β > 0. By (7), we see that (8) holds since (ϕ0, ϕ1) = (s, t).

It is rather easy to find the coefficients α and β and the exponent j in (8). Indeed, we let the mapping
Γ : R2 7−→ R2 be defined by

Γ(s, t) = (Γ1(s, t),Γ2(s, t)) =




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








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



(−s,−t) if (s, t) ∈ Ω0,
(−t, s+ t) if (s, t) ∈ Ω1,
(s− t, 2t− s) if (s, t) ∈ Ω2,
(s, t− 2s) if (s, t) ∈ Ω3,
(t,−s− t) if (s, t) ∈ Ω4,
(−s− t, s) if (s, t) ∈ Ω5,
(s− 2t, t) if (s, t) ∈ Ω6,
(2s− t, t− s) if (s, t) ∈ Ω7,
(s+ t,−s) if (s, t) ∈ Ω8,
(0, 0) if (s, t) ∈ Ω9,

(9)

where (s, t) ∈ R2. By direct verification, we may easily see that

(α, β) = (Γ1(s, t),Γ2(s, t)) ∈ (−Ω0)

in (7) as well as Γ(0, 0) = (0, 0).

Theorem 2 Let ζ = {ζk}k∈Z
be a nontrivial solution of (3) with (ζ0, ζ1) = (s, t) ∈ Ωj∈{0,1,2,...,8}. Then

ζ = Γ1(s, t)E
ju+ Γ2(s, t)E

j+5u. (10)

Proof. Let ζ = {ζk}k∈Z
be a solution of (3) with (ζ0, ζ1) = (s, t). Suppose (s, t) ∈ Ω0. Then by (9),

(Γ1(s, t),Γ2(s, t)) = (−s,−t). Let
ξ = Γ1(s, t)E

0u+ Γ2(s, t)E
5u.
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Thus by (4) and (5), we have (u0, u1, (E
5u)0, (E

5u)1) = (−1, 0, 0,−1). Therefore, we see that

(ξ0, ξ1) =
(

Γ1(s, t)u0 + Γ2(s, t)(E
5u)0,Γ1(s, t)u1 + Γ2(s, t)(E

5u)1
)

,

= ((−1)(−s) + 0(−t), 0(−s) + (−1)(−t)),
= (s, t),

= (ζ0, ζ1),

which implies ζ = ξ. Suppose (s, t) ∈ Ω1. Then by (9), (Γ1(s, t),Γ2(s, t)) = (−t, s+ t) and let

ξ = Γ1(s, t)E
1u+ Γ2(s, t)E

6u.

Thus, by (4) and (5), we have ((E1u)0, (E
1u)1, (E

6u)0, (E
6u)1) = (1,−1, 1, 0). Therefore, we see that

(ξ0, ξ1) =
(

Γ1(s, t)(E
1u)0 + Γ2(s, t)(E

6u)0,Γ1(s, t)(E
1u)1 + Γ2(s, t)(E

6u)1
)

,

= ((−t) + (s+ t), (−1)(−t) + 0(s+ t)) ,

= (s, t),

= (ζ0, ζ1),

which implies ζ = ξ. The other cases where j ∈ {2, ..., 8} can be handled by similar manners and this
completes the proof.

We remark that if ζ is the trivial solution, then (10) holds for j = 9. Since Γ(0, 0) = (0, 0) , by (10) and
Lemma 4, we see that ζ is a trivial solution of (3).

Corollary 1 All nontrivial solutions of (3) are 9-periodic.

Indeed, if ζ is a nontrivial solution of (3), then by Theorem 1, we have

E−jζ = αu+ βE5u

for some unique j ∈ {0, 1, ..., 8} and (α, β) ∈ (−Ω0) . Hence, by the invariance of translations and Lemma 4,
it follows that E−ju is 9-periodic which implies ζ is also 9-periodic.

3 The Complex Dynamical System

First of all, for ease of presentation, we recall the complex dynamical system of (1) as

zk−1 + zk+1 = F (zk) , k ∈ Z, (11)

where F (z) = |=(z)| + i|<(z)|. Notice that a solution ζ = {ζk}k∈Z
of (11) is a complex sequence which

renders (11) into an identity after substitution. Given ζ0 and ζ1, we may iteratively calculate ζ2, ζ3, ..., and
ζ−1, ζ−2, ... by (11) in a unique manner and hence we see that ζ is uniquely determined by its two consecutive
terms.

It’s obvious to see that the trivial solution of (11) is 1-periodic. Conversely, if a solution ζ = {ζk}k∈Z
of

(11) is 1-periodic, then ζk = ζ0 for all k ∈ Z and therefore, by (11), it’s found that

2ζ0 = ζk−1 + ζk+1 = F (ζk) = F (ζ0)

such that
2<(ζ0) = |=(ζ0)| and 2=(ζ0) = |<(ζ0)|.

Since |<(ζ0)|, |=(ζ0)| ≥ 0, we have <(ζ0),=(ζ0) ≥ 0 and by the previous discussions, it follows that

<(ζ0) =
1

4
<(ζ0) and =(ζ0) =

1

4
=(ζ0)
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which leads to <(ζ0) = 0 as well as =(ζ0) = 0. Thus, by similar arguments, we may see that ζ1 = 0 and
hence ζ is the trivial solution of (11).

The complex dynamical system (11) and the (real) dynamical system (3) are related in the following
manner.

Lemma 5 If ϕ = {ϕk}k∈Z
and ψ = {ψk}k∈Z

are solutions of (3), then the complex sequence {zk}k∈Z

defined by

zk =

{

ϕk + iψk if k ≡ 0 mod 2,
ψk + iϕk if k ≡ 1 mod 2,

(12)

is a solution of (11). Conversely, if w = {wk}k∈Z
is a solution of (11), then the sequences ϕ = {ϕk}k∈Z

and
ψ = {ψk}k∈Z

defined respectively by

ϕk =

{

<(wk) if k ≡ 0 mod 2,
=(wk) if k ≡ 1 mod 2,

(13)

and

ψk =

{

=(wk) if k ≡ 0 mod 2,
<(wk) if k ≡ 1 mod 2,

(14)

are solutions of (3).

The proof is quite straightforward. Suppose ϕ and ψ are solutions of (3). We first note from (12) that
w0 = ϕ0 + iψ0, w1 = ψ1 + iϕ1 and w2 = ϕ2 + iψ2. Then

w2 +w0 = ϕ2 + ϕ0 + i(ψ2 + ψ0) = |ϕ1| + i|ψ1| = |=(w1)| + i|<(w1)| = F (w1).

Similarly, we can then show that (11) holds. Conversely, suppose w = {wk}k∈Z
is a solution of (11). Then

ϕ2 + ϕ0 + i(ψ2 + ψ0) = <(w2) + <(w0) + i(=(w2) + =(w0))

= w2 + w0 = F (w1) = |=(w1)| + i|<(w1)| = |ϕ1| + i|ψ1|

so that
ϕ2 + ϕ0 = |ϕ1| and ψ2 + ψ0 = |ψ1|.

Similarly, we may show that ϕ and ψ are solutions of (3).

Theorem 3 Any solution of (11) is periodic with period 18. Furthermore, for any nontrivial solution w =
{wk}k∈Z

of (11), if <(w0) = =(w0) and <(w1) = =(w1), then w is 9-periodic, otherwise w is periodic with
least period 18.

Proof. Let w = {wk}k∈Z
be a solution of (11). Then by Corollary 1 and Lemma 5, the sequences ϕ and ψ

defined by (13) and (14), respectively, are solutions of (3) with period 9. Therefore, for any odd j,

w9j = ψ9j + iϕ9j = ψ0 + iϕ0 = i (ϕ0 − iψ0) = i(ϕ0 + iψ0) = iw0.

Hence, for any m ∈ Z,

wm+18 = iwm+9 = iiwm = ii (<(wm) − i=(wm)) = i(=(wm) + i<(wm))

= i (=(wm) − i<(wm)) = <(wm) + i=(wm) = wm,

that is, 18 is a period of w.
Next, if w is nontrivial, then by (13) and (14), ϕ or ψ is nontrivial. We assert that 6 is not a period of

w. Indeed, suppose the contrary holds, then w0 = w6 and w1 = w7. Hence

(<(w0),=(w1)) = (<(w6),=(w7)) which implies (ϕ0, ϕ1) = (ϕ6, ϕ7)
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as well as
(=(w0),<(w1)) = (=(w6),<(w7)) which leads to (ψ0, ψ1) = (ψ6, ψ7) .

Hence, ϕ and ψ have the period 6 which is contrary to Corollary 1. Note that w is not periodic with period
6 which implies 3 is neither a period of w. Therefore, the prime period of w, being a factor of 18, can only
be 9 or 18. If <(w0) = =(w0) and <(w1) = =(w1), then by the previous discussions,

w9 = iw0 = =(w0) + i<(w0) = <(w0) + i=(w0) = w0

as well as
w10 = iw1 = =(w1) + i<(w1) = <(w1) + i=(w1) = w1

which shows that w is 9-periodic; otherwise, w9 6= w0 or w10 6= w1 so that w is 18-periodic. The proof is
complete.
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