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Abstract

In this note, we investigate integer solutions of a Diophantine equation related to magic squares and a
class of quadratic polynomials. As a consequence, we obtain that there are finitely many magic constants
in a sequence of s-gonal and centered s-gonal numbers for a fixed integer s > 2. Additionally, we also
establish several results related to polygonal numbers and centered polygonal numbers using properties
of magic squares.

1 Introduction

A magic square is a square array of numbers consisting of distinct positive integers 1, 2, . . . , n2, arranged so
that the sum of the numbers in any horizontal, vertical, or main diagonal line is always the same number,
known as the magic constant M2(n) (see sequence A006003 of the OEIS [10]). According to a legend, the
oldest known magic square is the Chinese magic square, lo-shu (see Figure 1), discovered around 2200 B.C.
According to the definition of magic squares [4], we get
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Figure 1: lo-shu magic square.

M2(n) =
1 + 2 + · · ·+ n2

n
=
n(n2 + 1)

2
.

In Figure 1, the lo-shu magic square is a magic square of order 3, with magic constant M2(3) = 15. For
n = 0, 1, 2, 3, 4, 5 . . . , the values of the magic constant are 0, 1, 5, 15, 34, 65, 111, . . ..

From ancient times, magic squares and puzzles related to them were a source of entertainment not only in
royal courts but also among ordinary people. Today, they are still popular among mathematicians, amateurs,
and professionals. Several authors have contributed to the study of magic squares and their construction
(see [1, 3, 7]). The most recent work includes the construction and enumeration of magic squares of order 4k,
where k is a positive integer by Oboudi [8] in 2022. In the same year, Jitjankarn [5] studied the construction
of generalization of magic squares called sq-corner (or square corner) magic squares. Magic squares also
related to well-known number sequences like the Fibonacci sequence, polygonal, and centered polygonal
numbers. In 1964, J.L. Brown Jr. proved there are no magic squares with only Fibonacci entries (see [6]).
Magic constants can also be studied in terms of triangular and centered triangular numbers (see Section 2).
For example, n copies of the magic constantM2(n) give a triangular number with a square index. Any magic
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constant is the sum of integers between two consecutive triangular numbers. Any magic constant M2(n) is
the sum of the first n centered triangular numbers. One can see [2] for more details on magic squares.

The study of the intersection of some well-known number sequences with the sequence of polygonal
numbers is an interesting problem (see [4] and references therein). The above problem motivates us to
investigate magic constants in the sequence of polygonal and centered polygonal numbers. Moreover, we try
to answer a more general question:
Does there exist a magic constant in the values of quadratic polynomials? If yes, then they are finitely

many or infinitely many?
In this note, we investigate integer solutions of a Diophantine equation related to magic squares and a

class of quadratic polynomials. As a consequence, we obtain that there are finitely many magic constants in a
sequence of s-gonal and centered s-gonal numbers for a fixed integer s > 2. Further, we also establish several
results related to polygonal numbers and centered polygonal numbers using properties of magic squares.

2 Preliminaries

We start this section by defining the sequence of polygonal and centered polygonal numbers.

Definition 1 (Polygonal numbers [4]) For each integer x and s > 2, xth s-gonal number is given by

Ps(x) =
(s− 2)x(x− 1)

2
+ x.

For example, for s = 3, P3(x) =
n(n+ 1)

2
is the sequence of triangular numbers, and for s = 4, P4(x) = n2

are square numbers.

Definition 2 (Centered Polygonal numbers [4]) For each integer x and s > 2, xth centered s-gonal
number is given by

CPs(x) =
sx(x− 1)

2
+ 1.

For example, for s = 3, CP3(x) =
3n2 − 3n+ 2

2
is the sequence of centered triangular numbers, and for

s = 4, P4(x) = 2n2 − 2n+ 1 are centered square numbers.
The following result states the relation between magic constants, triangular, and centered triangular

numbers.

Proposition 1 ([4, page-293]) Let M2(n) be the magic constant associated with n×n magic square, Ps(x)
be the xth s-gonal number, and CPs(x) be the xth centered s-gonal number. Then

(i) for every natural number n, nM2(n) = P3(P4(n)). In other words, n copies of the magic constant
M2(n) give a triangular number with a square index.

(ii) for every natural number n, M2(n) = (P3(n− 1) + 1) + (P3(n− 1) + 2) + · · ·+ P3(n). In other words,
any magic constant is the sum of integers between two consecutive triangular numbers.

(iii) for every natural number n, M2(n) = CP3(1) + CP3(2) + · · · + CP3(n). In other words, any magic
constant M2(n) is the sum of the first n centered triangular numbers.

We use the following well-known results for the number of integral points from the theory of cubic curves
and elliptic curves [9, 11]:

Proposition 2 (Siegel’s Theorem [9, page-146]) Let C be a non-singular cubic curve given by an equa-
tion f(x, y) = 0 with integer coeffi cients. Then C has only finitely many points with integer coordinates.

Proposition 3 (Baker’s Theorem [9, page-176]) Let a, b, c ∈ Z and let H = max{|a|, |b|, |c|}, then
every point (x, y) on the elliptic curve y2 = x3 + ax2 + bx + c with integer coordinates x, y ∈ Z satisfies
max{|x|, |y|} ≤ exp (106H)

106 .
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3 Main Results

In this section, we give an affi rmative answer to the problem proposed in Section 1 for a class of quadratic
polynomials. The following result is in this direction.

Theorem 1 There are at most finitely many positive integers x and y satisfying the Diophantine equation

Ay2 +By + C =
x(x2 + 1)

2
, (1)

where A 6= 0, B, and C ∈ R such that 2A, 2B, and C are integers. Further, let

H = max
{
|(2A)2|, |((2AB)2 − 2(2A)3C)

}
,

then integer solutions of (1) satisfies max{|x|, |y|} ≤ exp(106H)10
6

.

Proof. We multiply both sides of (1) by 16A3 and after simplification, we obtain

(4A2y + 2AB)2 = (2Ax)3 + (2A)2(2Ax) + (2AB)2 − 2(2A)3C.

On substituting Y = 4A2y + 2AB and X = 2Ax in above equation, we obtain

Y 2 = X3 + (2A)2X + (2AB)2 − 2(2A)3C. (2)

Equation (2) represents an elliptic curve, which is a cubic curve. The positive integer solutions of equation (1)
correspond to some integer points on the elliptic curve given by (2). Since A 6= 0, therefore the discriminant
of a cubic polynomial on the right-hand side of (2) is non-zero, i.e., ∆ = −42A2((4A)2+27(B2−4AC)2) 6= 0.
Hence, the elliptic curve given by (2) is a non-singular cubic curve. Therefore, using Proposition 2, there are
finitely many points (X,Y ) with integer coordinates. As a consequence, (1) has a finite number of positive
integer solutions whenever they exist. By Proposition 3, we deduce that integer points (X,Y ) on an elliptic
curve (2) satisfy

max{|X|, |Y |} ≤ exp (106H)
106

.

Clearly, |x| ≤ |X| and |y| ≤ |Y |, therefore the positive integer solutions to (2) satisfy

max{|x|, |y|} ≤ exp (106H)
106

.

Remark 1 Theorem 1 does not guarantee the existence of positive integer solutions of (1), but it ensures
that there are only finitely many positive integer solutions whenever they exist.

As an application to Theorem 1, we deduce the following results related to magic squares, polygonal
numbers, and centered polygonal numbers.

Corollary 1 Let s > 2 be a fixed positive integer, and M2(n) be the magic constant associated with n × n
magic square. Then there are finitely many magic constants in the sequence of s-gonal numbers.

Proof. Clearly, by Definition 1, the yth s-gonal number is given by

Ps(y) =
(s− 2)y(y − 1)

2
+ y =

(s− 2)y2

2
− (s− 4)y

2
.

In order to find magic constants in sequence of s-gonal numbers, we find positive integers x and y such that
Ps(y) = M2(x) which can be written as

(s− 2)y2

2
− (s− 4)y

2
=
x(x2 + 1)

2
. (3)
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The above equation is of the form of the Diophantine equation given by (1), where

A =
(s− 2)

2
6= 0, B = − (s− 4)

2
and C = 0.

Note that (x, y) = (1, 1) satisfies (3). Hence, by Theorem 1, there are only finitely many positive integers
x and y satisfying (3). Therefore, there are only finitely many magic constants in the sequence of s-gonal
numbers.

Corollary 2 Let s > 2 be a fixed positive integer, and M2(n) be the magic constant associated with n × n
magic square. Then there are finitely many magic constants in the sequence of centered s-gonal numbers.

Proof. The proof is similar to Corollary 1 and follows directly by Definition 2 and Theorem 1.
Using Corollary 1, Corollary 2, and the properties of magic constant discussed in Proposition 1, we deduce

some more properties of polygonal and centered polygonal numbers. In Theorem 2, we establish results that
relate s-gonal numbers with triangular numbers and centered triangular numbers.

Theorem 2 Let Ps(y) be the yth s-gonal number. Then

(1) there are finitely many positive integers x and y such that xPs(y) = P3(P4(x)).

(2) there are finitely many positive integers x and y such that

Ps(y) = (P3(x− 1) + 1) + (P3(x− 1) + 2) + · · ·+ P3(x).

(3) there are finitely many positive integers x and y such that

Ps(y) = CP3(1) + CP3(2) + · · ·+ CP3(x).

Proof.

(1) By Proposition 1(i), for every positive integer x, we have xM2(x) = P3(P4(x)). However, using
Corollary 1, we get finitely many positive integer solutions (x, y) of Ps(y) = M2(x). With the above
two results, the proof follows directly.

(2) By Proposition 1(ii), for every positive integer x, we have

M2(x) = (P3(x− 1) + 1) + (P3(x− 1) + 2) + · · ·+ P3(x).

By Corollary 1, there are finitely many positive integer solutions (x, y) of Ps(y) = M2(x). Hence, the
result follows.

(3) By Proposition 1(iii), for every positive integer x,

M2(x) = CP3(1) + CP3(2) + · · ·+ CP3(x).

However, using Corollary 1, we get finitely many positive integer solutions (x, y) of Ps(y) = M2(x).
Hence, from the above two arguments, the result follows.

In Theorem 3, we establish results that relate centered s-gonal numbers with triangular numbers and
centered triangular numbers.

Theorem 3 Let CPs(y) be the yth centered s-gonal number. Then

(1) there are only finitely many positive integers x and y satisfying xCPs(y) = P3(P4(x)).
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(2) there are only finitely many positive integers x and y satisfying

CPs(y) = (P3(x− 1) + 1) + (P3(x− 1) + 2) + · · ·+ P3(x).

(3) there are only finitely many positive integers x and y satisfying

CPs(y) = CP3(1) + CP3(2) + · · ·+ CP3(n).

Proof. The proof follows a similar approach to Theorem 2, using Corollary 2 and Proposition 1. Therefore,
we omit the proof.

Remark 2 We conclude this note with a few comments on Theorem 1. Using Siegel’s result, we transformed
the Diophantine equation problem into the problem of finding integer points on an elliptic curve. Furthermore,
we provide an upper bound for the values of integer points using Baker’s result. However, in general, finding
all integer points on elliptic curves is itself a computationally challenging problem. Table 1 lists the magic
constants in the sequence of some polygonal numbers.

s s-gonal number magic constant
3 triangular number 1, 15
4 square number 1
5 pentagonal number 1
6 hexagonal number 1, 15
7 heptagonal number 1, 19669

Table 1: Magic constants in polygonal numbers.
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