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Abstract

In this paper, we obtain a new characterization for finding a common zero of set-valued accretive operators
in Banach spaces by using properties of resolvent composition operators. We next present convergence
theorem to solution of system of equilibrium problems in Banach spaces. Our technique of proof is of
independent interest.

1 Introduction

Let E be a normed linear space. For a multivalued map A : E → 2E , the domain of A, D(A), the image of
a subset S of E, A(S), the range of A,R(A) and the graph of A,G(A) are defined as follows:

D(A) := {x ∈ H : Ax 6= ∅}, A(S) := ∪{Ax : x ∈ S},

R(A) := A(H), G(A) := {(x, u) : x ∈ D(A), u ∈ Ax}.

Let 〈., .〉 denote the pairing between E and E∗. The normalized duality mapping J : E → 2E
∗
is defined by

J(x) := {x∗ ∈ E∗ : 〈x, x∗〉 = ||x||2 = ||x∗||2}

for all x ∈ E. In sequel, we use j to denote the single-valued normalized duality mapping. An operator A is
said to be accretive if for each x, y ∈ D(A), there exists j(x− y) ∈ J(x− y) such that

〈u− v, j(x− y)〉 ≥ 0

for all u ∈ Ax and v ∈ Ay. An accretive operator A is said to be maximal if there is no proper accretive
extension of A, and m-accretive if R(I + λA) = E for all λ > 0, where I is the identity operator on E. If A
is m-accretive, then it is maximal accretive, but the reverse is not true. For an accretive operator A, we can
define for each λ > 0, a single-valued mapping JAλ : R(I + λA)→ D(A) by

JAλ = (I + λA)−1.

It is called the resolvent of A. An accretive operator A defined on a Banach space E is said to satisfy the
range condition if D(A) ⊂ R(I +λA) for all λ > 0.We know that for an accretive operator A which satisfies
the range condition, A−10 = Fix(JAλ ) for all λ > 0, where, Fix(JAλ ) the set of fixed points of the mapping
JAλ , that is Fix(JAλ ) := {x ∈ E : JAλ x = x}. For E a real Banach space, a fundamental problem is that of
finding an element u ∈ A−10, where A : E → 2E is a multivalued map defined on E. This problem has been
investigated by many researchers, see for instance, Brézis and Lions [10], Martinet [9], Minty [12], Reich
[11], Rockafellar [6], Takahashi and Ueda [8], and others. Such a problem is connected with the convex
minimization problem.
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Now, we consider the following problem: Find an element

x∗ ∈ S = A−10 ∩B−10, (1)

where A : D(A)→ 2E and B : D(B)→ 2E are two accretive operators.
Most existing results for solving (1) require that the resolvents of underlying operators must be commuting

and also, the intersection of the fixed point sets Fix(JAλ ) ∩ Fix(JBλ ) must be nonempty. Above discussion
suggests the following questions.

Question 1 Is it always true that Fix(JAλ ) ∩ Fix(JBλ ) = Fix(JAλ ◦ JBλ ) without commuting assumptions?

Question 2 Can we use our results and a modified Mann algorithm such that it converges strongly to a
solution of system of equilibrium problems in real Banach spaces without compactness assumption?

The purpose of this paper is to give affi rmative answers to these questions mentioned above.

2 Preliminaries

A normed linear space E is said to be strictly convex if the following holds:

‖x‖ = ‖y‖ = 1, x 6= y ⇒
∥∥∥x+ y

2

∥∥∥ < 1.

The modulus of convexity of E is the function δE : (0, 2]→ [0, 1] defined by:

δE(ε) := inf
{

1− 1

2
‖x+ y‖ : ‖x‖ = ‖y‖ = 1, ‖x− y‖ ≥ ε

}
.

E is uniformly convex if and only if δE(ε) > 0 for every ε ∈ (0, 2]. For p > 1, E is said to be p-uniformly
convex if there exists a constant c > 0 such that δE(ε) ≥ cεp for all ε ∈ (0, 2].
Let E be a real normed space and let S := {x ∈ E : ‖x‖ = 1}. E is said to be smooth, if the limit

lim
t→0+

‖x+ ty‖ − ‖x‖
t

exists for each x, y ∈ S. E is said to be uniformly smooth if it is smooth and the limit is attained uniformly
for each x, y ∈ S.
Let Jq denote the generalized duality mapping from E to 2E

∗
defined by

Jq(x) :=
{
f ∈ E∗ : 〈x, f〉 = ‖x‖q and ‖f‖ = ‖x‖q−1

}
,

where 〈., .〉 denotes the generalized duality pairing. J2 is called the normalized duality mapping and is
denoted by J.
Let E be a smooth real Banach space with dual space E. We introduce the Lyapunov functional φ :

E × E → R, defined by
φ(x, y) = ‖x‖2 − 2〈x, Jy〉+ ‖y‖2 ∀x, y ∈ E. (2)

It was introduced by Alber in [1] and has been studied by Alber and Guerre-Delabriere [2], Kamimura and
Takahashi [4] and a host of other authors. Note that if E = H, a real Hilbert space, then the normalized
duality map J is the identity map. Hence, equation (2) reduces to φ(x, y) = ‖x− y‖2 for x, y ∈ H.

In the sequel, the following result will be useful.

Lemma 1 ([1]) For p > 1, let E be a p-uniformly convex real Banach space and let S be a bounded subset
of E. Then, there exists α > 0 such that

α‖x− y‖p ≤ φ(x, y) ∀x, y ∈ S.
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The following definition contains the nonlinear mappings we are working with and that will appear
throughout the entire paper.

Definition 1 Let E be a smooth real Banach space and T : (T ) ⊂ E → E, then T is said to be

(1) a contraction if there exists b ∈ [0, 1) such that

‖Tx− Ty‖ ≤ b‖x− y‖, x, y ∈ D(T ),

where if b = 1, T is also called nonexpansive;

(2) quasi-nonexpansive if Fix(T ) 6= ∅ and

‖Tx− p‖ ≤ ‖x− p‖, x ∈ D(T ), p ∈ Fix(T );

(3) firmly nonexpansive if for all x, y ∈ D(T ), we have

‖Tx− Ty‖2 ≤ 〈x− y, j(Tx− Ty)〉.

The resolvent operator has the following properties:

Lemma 2 ([13]) For any r > 0,

(i) A is accretive if and only if the resolvent JAr of A is single-valued and firmly nonexpansive;

(ii) A is m-accretive if and only if JAr of A is single-valued and firmly nonexpansive and its domain is the
entire E;

(iii) 0 ∈ A(x∗) if and only if x∗ ∈ F (JAr ), where F (JAr ) denotes the fixed-point set of JAr .

3 Main Results

We now prove the following result.

Theorem 1 For p > 1, let E be a p-uniformly convex smooth real Banach space and K be a closed, bounded,
convex set in E.Let A : D(A) ⊂ K → 2E and B : D(B) ⊂ K → 2E be accretive operators such that

D(A) ⊂ K ⊂
⋂
r>0

R(I + rA) and D(B) ⊂ K ⊂
⋂
r>0

R(I + rB).

Then, A−10 ∩B−10 = Fix(JAr ◦ JBr ) and JAr ◦ JBr is a quasi-nonexpansive mapping on K.

Proof. We split the proof into two steps.
Step 1: First, we show that Fix(JAr ) ∩ Fix(JBr ) = Fix(JAr ◦ JBr ). We note that Fix(JAr ) ∩ Fix(JBr ) ⊆
Fix(JAr ◦ JBr ). Thus, we only need to show that Fix(JAr ◦ JBr ) ⊆ Fix(JAr ) ∩ Fix(JBr ). Let p ∈ Fix(JAr ) ∩
Fix(JBr ) and q ∈ Fix(JAr ◦ JBr ). By using properties of JAr and JBr , we have

‖q − p‖2 = ‖JAr ◦ JBr q − JAr p‖2 ≤ ‖JBr q − p‖2. (3)

Using the fact that JBr is firmly nonexpansive, we have

‖JBr q − p‖2 ≤ 〈q − p, j(JBr q − p)〉. (4)

Furthermore, using properties of Lyapunov function, we have

φ(q − p, JBr q − p) = ‖q − p‖2 − 2〈q − p, j(JBr q − p)〉+ ‖JBr q − p‖2.
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Hence,

〈q − p, j(JBr q − p)〉 =
1

2

(
‖q − p‖2 + ‖JBr q − p‖2 − φ(q − p, JBr q − p)

)
. (5)

Using (4) and (5), we obtain

‖JBr q − p‖2 ≤ ‖q − p‖2 − φ(q − p, JBr q − p). (6)

From (3), we have
φ(q − p, JBr q − p) ≤ 0.

By Lemma 1, we have ‖JBr q − q‖ = 0 which implies that

q = JBr q.

Keeping in mind that JAr ◦ JBr q = q, we have

q = JAr ◦ JBr q = JAr q.

Thus, q ∈ Fix(JAr )∩Fix(JBr ). Hence,Fix(JAr )∩Fix(JBr ) = Fix(JAr ◦JBr ). Since A−10∩B−10 = Fix(JAr )∩
Fix(JBr ), we come to the conclusion that

A−10 ∩B−10 = Fix(JAr ◦ JBr ).

Step 2: We show JAr ◦ JBr is a quasi-nonexpansive mapping on K. Let x ∈ K and p ∈ Fix(JAr ◦ JBr ). Then,
p ∈ Fix(JAr ) ∩ Fix(JBr ) by step 1. We observe that,

‖JAr ◦ JBr x− p‖ = ‖JAr ◦ JBr x− JAr p‖ ≤ ‖JBr x− p‖ ≤ ‖x− p‖.

This completes the proof.

4 Application to System of Equilibrium Problems

In this section, we apply our main results and a modified Mann algorithm for approximating a common
solution of system of equilibrium problems in real Banach space. Let E be a real Banach space and K be
nonempty closed and bounded convex subset of E.

Let F : K ×K → R be an equilibrium bifunction. The equilibrium problem is to find x ∈ K such that

F (x, y) ≥ 0, (7)

for all y ∈ K. We shall denote the set of solutions of this equilibrium problem by EP (F ). Thus

EP (F ) :=
{
x∗ ∈ K : F (x∗, y) ≥ 0, ∀ y ∈ K

}
.

The equilibrium problem include fixed point problems, optimization problems and variational inequality
problems as special cases (see, for example, [3]). Some methods have been proposed to solve the equilibrium
problem, see for example, [7]. For solving the equilibrium problem we assume that the bifunction F satisfies
the following conditions:

(A1) F (x, x) = 0 for all x ∈ K;

(A2) F is monotone, i.e., F (x, y) + F (y, x) ≤ 0 for all x, y ∈ K;

(A3) for each x, y, z ∈ K,
lim
t→0

F (tz + (1− t)x, y) ≤ F (x, y);
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(A4) for each x ∈ K, y → F (x, y) is convex and lower semicontinuous.

For solving (7), many authors introduce the following lemma.

Lemma 3 ([16]) Let K be a nonempty closed convex subset of a smooth, strictly convex and reflexive
Banach space E. Assume that F : K ×K → R satisfies (A1)—(A4). For r > 0 and x ∈ E, define a mapping
Tr
F : E → K as follows:

TFr (x) = {z ∈ K, F (z, y) +
1

r
〈y − z, jz − jx〉 ≥ 0, ∀y ∈ K},

for all z ∈ E. Then, the following hold:

1. TFr is single-valued;

2. TFr is firmly nonexpansive;

3. Fix(TFr ) = EP (F );

4. EP (F ) is closed and convex.

Recently, Sow [15] motivated by the fact that Mann algorithm method is remarkably useful for finding fixed
points of nonexpansive mapping, proved the following theorem.

Theorem 2 Let E be a uniformly convex real Banach space having a weakly continuous duality map Jφ and
K be a nonempty, closed and convex cone of E. Let T : K → K be a quasi-nonexpansive mapping such that
Fix(T ) 6= ∅. Let {xn} be a sequence defined iteratively from arbitrary x0 ∈ K by{

x̄n+1 = βnxn + (1− βnTxn,
xn+1 = αn(λnxn) + (1− αn)T

(
snxn + (1− sn)x̄n+1

)
,

where {βn}, {λn}, {sn} and {αn} are sequences in (0, 1) satisfying

(i) limn→∞ αn = 0,

(ii) limn→∞ inf(1− sn)βn(1− βn) > 0,

(iii) limn→∞ λn = 1,

(iv)
∑∞
n=0(1− λn)αn =∞.

Assume that I − T is demiclosed at the origin. Then, the sequence {xn} converges strongly to x∗ ∈ Fix(T ).

We now prove the following result.

Corollary 1 For p > 1, let E be a p-uniformly convex smooth real Banach space having a weakly continuous
duality map Jφ and K be a closed, bounded, convex cone set in E. Let F : K ×K → R and G : K ×K → R
be bifunctions satisfying (A1)-(A4) such that Fix(Tr

F ◦ TrG) 6= ∅. Let {xn} be a sequence defined iteratively
from arbitrary x0 ∈ K by{

x̄n+1 = βnxn + (1− βn)Tr
F ◦ TrGxn,

xn+1 = αn(λnxn) + (1− αn)Tr
F ◦ TrG

(
snxn + (1− sn)x̄n+1

)
,

where {βn}, {λn}, {sn} and {αn} are sequences in (0, 1) satisfying

(i) limn→∞ αn = 0,

(ii) limn→∞ inf(1− sn)βn(1− βn) > 0,
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(iii) limn→∞ λn = 1,

(iv)
∑∞
n=0(1− λn)αn =∞.

Assume that I − Tr
F ◦ TrG is demiclosed at the origin. Then, the sequence {xn} converges strongly to

x∗ ∈ EP (F ) ∩ EP (G).

Proof. By a similar argument as in Theorem 1, we can show that Fix(Tr
F ◦ TrG) = EP (F ) ∩ EP (G) and

Tr
F ◦ TrG is quasi-nonexpansive mapping. Then, the proof follows Theorem 2.
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