On Turan's Inequality Concerning Polynomials*

Faroz Ahmad Bhat ${ }^{\dagger}$

Received 7 November 2022

Abstract

In this paper, we prove some inequalities that relate the uniform norm of the derivative of a complex polynomial having μ-fold zero at origin and the uniform norm of the polynomial itself. We further extend the obtained result to the polar derivative of a polynomial.

1 Introduction

Let $P(z)$ be a polynomial of degree n and $P^{\prime}(z)$ its derivative. The comparison of the norm of $P(z)$ and that of $P^{\prime}(z)$ on the unit circle is given by Turan's inequality [9] which states that, if $P(z)$ is a polynomial of degree n having all its zeros in $|z| \leq 1$, then

$$
\begin{equation*}
\max _{|z|=1}\left|P^{\prime}(z)\right| \geq \frac{n}{2} \max _{|z|=1}|P(z)| \tag{1}
\end{equation*}
$$

Equality in (1) holds for polynomials having all zeros on $|z|=1$. As a generalisation of inequality (1) to the polynomials having all their zeros in $|z| \leq k$ where $k \geq 1$, Govil [3] proved if $P(z)$ is a polynomial of degree n having all its zeros in $|z| \leq k, k \geq 1$, then

$$
\begin{equation*}
\max _{|z|=1}\left|P^{\prime}(z)\right| \geq \frac{n}{1+k^{n}} \max _{|z|=1}|P(z)| . \tag{2}
\end{equation*}
$$

Inequality (2) is sharp and equality holds for the polynomial $P(z)=z^{n}+k^{n}$. Dubinin [2] established the refinement of inequality (1) by introducing the extreme coefficients of the polynomial involved. He proved that if $P(z)=a_{n} z^{n}+a_{n-1} z^{n-1}+\cdots+a_{1} z+a_{0}$ has all zeros in the disc $|z| \leq 1$, then for each z on $|z|=1$ for which $P^{\prime}(z) \neq 0$, the following inequality holds

$$
\operatorname{Re}\left(\frac{z P^{\prime}(z)}{P(z)}\right) \geq \frac{n}{2}+\frac{\left|a_{n}\right|-\left|a_{0}\right|}{2\left(\left|a_{n}\right|+\left|a_{0}\right|\right)}
$$

Taking into consideration the size of each zero of $P(z)$, Aziz [1] established the following generalisation of inequality (2) for the class of polynomials having all their zeros in $|z| \leq k$, where $k \geq 1$ by proving that if $P(z)=a_{n} \prod_{\nu=1}^{n}\left(z-z_{\nu}\right)$ is a complex polynomial of degree n with $\left|z_{\nu}\right| \leq k, k \geq 1$, then

$$
\begin{equation*}
\max _{|z|=1}\left|P^{\prime}(z)\right| \geq \frac{2}{1+k^{n}} \sum_{\nu=1}^{n} \frac{k}{k+\left|z_{\nu}\right|} \max _{|z|=1}|P(z)| . \tag{3}
\end{equation*}
$$

However the bound in inequality (3) was recently improved by Kumar [5] by involving the modulus of each zero and some of the coefficients of the underlying polynomial. In fact, he proved that if $P(z)=$ $a_{n} \prod_{\nu=1}^{n}\left(z-z_{\nu}\right)$ is a polynomial of degree n with $\left|z_{\nu}\right| \leq k, 1 \leq \nu \leq n$ and $k \geq 1$, then

$$
\begin{equation*}
\max _{|z|=1}\left|P^{\prime}(z)\right| \geq\left\{\frac{2}{1+k^{n}}+\frac{\left(\left|a_{n}\right| k^{n}-\left|a_{0}\right|\right)(k-1)}{\left(1+k^{n}\right)\left(\left|a_{n}\right| k^{n}+\left|a_{0}\right| k\right)}\right\} \sum_{\nu=1}^{n} \frac{k}{k+\left|z_{\nu}\right||z|=1} \max _{\mid z=1}|P(z)| . \tag{4}
\end{equation*}
$$

[^0]Very recently, Milovanovic and Mir [6] strengthened inequality (4) by involving the minimum value of $|P(z)|$ on $|z|=k$. They proved that if $P(z)=\prod_{\nu=1}^{n}\left(z-z_{\nu}\right)$ has all its zeros in $|z| \leq k, k \geq 1$, then for each t with $0 \leq t \leq 1$, the following inequality holds

$$
\begin{align*}
\max _{|z|=1}\left|P^{\prime}(z)\right| \geq & \sum_{\nu=1}^{n} \frac{k}{k+\left|z_{\nu}\right|}\left[\left\{\frac{2}{1+k^{n}}+\frac{\left(k^{n}-\left|a_{0}\right|-t m\right)(k-1)}{\left(1+k^{n}\right)\left(k^{n}+k\left|a_{0}\right|-t m\right)}\right\} \max _{|z|=1}|P(z)|\right. \\
& \left.+\left\{\frac{k^{n}-1}{k^{n}\left(1+k^{n}\right)}-\frac{\left(k^{n}-\left|a_{0}\right|-t m\right)(k-1)}{\left(1+k^{n}\right)\left(k^{n}+k\left|a_{0}\right|-t m\right)}\right\} t m\right] \tag{5}
\end{align*}
$$

where $m=\min _{|z|=k}|P(z)|$.
Let $D_{\alpha} P(z)$ denote the polar derivative of a polynomial of degree n with respect to a real or complex number α, then

$$
D_{\alpha} P(z)=n P(z)+(\alpha-z) P^{\prime}(z)
$$

The polar derivative $D_{\alpha} P(z)$ is a polynomial of degree at most $n-1$. Furthermore, it generalises the ordinary derivative $P^{\prime}(z)$ of $P(z)$ in the sense that

$$
\lim _{\alpha \rightarrow \infty} \frac{D_{\alpha} P(z)}{\alpha}=P^{\prime}(z)
$$

uniformly with respect to z for $|z| \leq R, R>0$.
For more information about the polar derivative of a polynomial one can refer monographs by Rahman and Schmeisser or Milovanovic et al. [7].

Over the last few decades many different authors produced a large number of interesting versions and generalizations of the above inequalities by introducing restrictions on the multiplicity of zero at $z=0$, the modulus of largest root of $P(z)$, restrictions on coefficients, etc. Many of these generalizations involve the comparison of polar derivative $D_{\alpha} P(z)$ with various choices of $P(z), \alpha$ and other parameters. For the latest research and development pertaining to this topic see ([8], [10]). For the class of polynomials having all their zeros in $|z| \leq k, k \geq 1$, Govil and Kumar [4] recently proved that if $P(z)=z^{s}\left(a_{0}+a_{1} z+\cdots+a_{n-s} z^{n-s}\right)$, $0 \leq s \leq n$ is a polynomial of degree n having all its zeros in $|z| \leq k, k \geq 1$, then for any complex number α with $|\alpha| \geq k$,

$$
\max _{|z|=1}\left|D_{\alpha} P(z)\right| \geq(|\alpha|-k)\left(\frac{n+s}{1+k^{n}}-\frac{\left|a_{n-s}\right| k^{n-s}-\left|a_{0}\right|}{\left(1+k^{n}\right)\left(\left|a_{n-s}\right| k^{n-s}+\left|a_{0}\right|\right)}\right) \max _{|z|=1}|P(z)| .
$$

Milovanovic and Mir [6] also generalised inequality (5) to the polar derivative of a polynomial by establishing that if $P(z)=\prod_{\nu=1}^{n}\left(z-z_{\nu}\right)$ has all its zeros in $|z| \leq k, k \geq 1$, then for any complex number α with $|\alpha| \geq k$ and $0 \leq t \leq 1$, the following inequality holds

$$
\begin{align*}
\max _{|z|=1}\left|D_{\alpha} P(z)\right| \geq & \sum_{\nu=1}^{n} \frac{k(|\alpha|-k)}{k+\left|z_{\nu}\right|}\left[\left\{\frac{2}{1+k^{n}}+\frac{\left(k^{n}-\left|a_{0}\right|-t m\right)(k-1)}{\left(1+k^{n}\right)\left(k^{n}+k\left|a_{0}\right|-t m\right)}\right\} \max _{|z|=1}|P(z)|\right. \\
& \left.+\left\{\frac{k^{n}-1}{k^{n}\left(1+k^{n}\right)}-\frac{\left(k^{n}-\left|a_{0}\right|-t m\right)(k-1)}{\left(1+k^{n}\right)\left(k^{n}+k\left|a_{0}\right|-t m\right)}\right\} t m\right], \tag{6}
\end{align*}
$$

where $m=\min _{|z|=k}|P(z)|$.
In this paper, we extend inequality (5) to the class of polynomials having μ-fold zero at origin. In fact, we prove

Theorem 1 If $P(z)=z^{\mu}\left(a_{0}+a_{1} z+\ldots+a_{n-\mu} z^{n-\mu}\right)=a_{n-\mu} z^{\mu} \prod_{j=1}^{n-\mu}\left(z-z_{j}\right), 0 \leq \mu \leq n$ with $z_{j} \neq 0$ for $1 \leq j \leq n-\mu$ is a polynomial of degree n which has all its zeros in $|z| \leq k$ with $k \geq 1$, then for $0 \leq t \leq 1$, we have

$$
\begin{align*}
\max _{|z|=1}\left|P^{\prime}(z)\right| \geq & \left(\frac{\mu}{1+k^{n-\mu}}+\sum_{j=1}^{n-\mu} \frac{k}{\left(1+k^{n-\mu}\right)\left(k+\left|z_{j}\right|\right)}\right) \\
& \times\left[(2+X(k, t, m)) \max _{|z|=1}|P(z)|+\left(\frac{k^{n-\mu}-1}{k^{n}}+\frac{X(k, t, m)}{k^{n}}\right) t m\right] \tag{7}
\end{align*}
$$

where $m=\min _{|z|=k}|P(z)|$ and

$$
X(k, t, m)=\frac{(k-1)\left(\left|a_{n-\mu}\right| k^{n}-\left|a_{0}\right| k^{\mu}-t m\right)}{\left|a_{n-\mu}\right| k^{n}+\left|a_{0}\right| k^{\mu+1}-t m}
$$

Remark 1 If we take $\mu=0$ and $a_{n-\mu}=1$ in Theorem 1, we obtain inequality (5) due to Milovanovic and A. Mir.

If we take $k=1$ in Theorem 1, we obtain the following refinement of inequality (4) for the polynomials having μ-fold zero at origin.

Corollary 1 If $P(z)=z^{\mu}\left(a_{0}+a_{1} z+\ldots+a_{n-\mu} z^{n-\mu}\right)=a_{n-\mu} z^{\mu} \prod_{j=1}^{n-\mu}\left(z-z_{j}\right), 0 \leq \mu \leq n$ with $z_{j} \neq 0$ for $1 \leq j \leq n-\mu$ is a polynomial of degree n which has all its zeros in $|z| \leq 1$, then

$$
\begin{equation*}
\max _{|z|=1}\left|P^{\prime}(z)\right| \geq\left(\mu+\sum_{j=1}^{n-\mu} \frac{1}{1+\left|z_{j}\right|}\right) \max _{|z|=1}|P(z)| \geq \frac{n+\mu}{2} \max _{|z|=1}|P(z)| \tag{8}
\end{equation*}
$$

The lower bound given by inequality (8) is sharp and provides the stronger information than the inequality (1) due to Turan. For instance if we take a polynomial $P(z)=z^{10}\left(z^{2}+1\right)$, then $P(z)$ has all its zeros in $|z| \leq 1$ with $n=20, \mu=10$ and

$$
\max _{|z|=1}\left|P^{\prime}(z)\right|=30 \text { and } \frac{n}{2} \max _{|z|=1}|P(z)|=20 \text { while as } \frac{n+\mu}{2} \max _{|z|=1}|P(z)|=30
$$

We next prove the following extension of Theorem 1 to the polar derivative of a polynomial having μ-fold zero at origin.

Theorem 2 If $P(z)=z^{\mu}\left(a_{0}+a_{1} z+\ldots+a_{n-\mu} z^{n-\mu}\right)=a_{n-\mu} z^{\mu} \prod_{j=1}^{n-\mu}\left(z-z_{j}\right), 0 \leq \mu \leq n$ with $z_{j} \neq 0$ for $1 \leq j \leq n-\mu$ is a polynomial of degree n which has all its zeros in $|z| \leq k$, then for any complex number α with $|\alpha| \geq k, \quad k \geq 1$ and $0 \leq t \leq 1$, we have

$$
\begin{align*}
\max _{|z|=1}\left|D_{\alpha} P(z)\right| \geq & \left(\frac{\mu(|\alpha|-k)}{1+k^{n-\mu}}+\sum_{j=1}^{n-\mu} \frac{k(|\alpha|-k)}{\left(1+k^{n-\mu}\right)\left(k+\left|z_{j}\right|\right)}\right) \\
& \times\left[\left(2+\frac{X(k, t, m)}{k^{n}}\right) \max _{|z|=1}|P(z)|+\left(\frac{k^{n-\mu}-1}{k^{n}}+\frac{X(k, t, m)}{k^{n}}\right) t m\right] \tag{9}
\end{align*}
$$

where $m=\min _{|z|=k}|P(z)|$ and

$$
X(k, t, m)=\frac{(k-1)\left(\left|a_{n-\mu}\right| k^{n}-\left|a_{0}\right| k^{\mu}-t m\right)}{\left|a_{n-\mu}\right| k^{n}+\left|a_{0}\right| k^{\mu+1}-t m} .
$$

Remark 2 If we divide both sides to inequality (9) by $|\alpha|$ and let $|\alpha| \rightarrow \infty$, we get inequality (7) as a special case of Theorem 2.

2 Lemmas

Following lemma is due to Mir et al. [8].
Lemma 1 If $P(z)=\sum_{j=0}^{n} a_{j} z^{j}$ is a polynomial of degree $n \geq 2$ with no zeros in $|z|<1$, then for any $\rho>1$ and $0 \leq t \leq 1$,

$$
\max _{|z|=\rho}|P(z)| \leq\left(\frac{\left(1+\rho^{n}\right)\left(\rho\left|a_{n}\right|+\left|a_{0}\right|-t m\right)}{(1+\rho)\left(\left|a_{n}\right|+\left|a_{0}\right|-t m\right)}\right) \max _{|z|=1}|P(z)|-\left(\frac{\left(1+\rho^{n}\right)\left(\rho\left|a_{n}\right|+\left|a_{0}\right|-t m\right)}{(1+\rho)\left(\left|a_{n}\right|+\left|a_{0}\right|-t m\right)}-1\right) t m
$$

where $m=\min _{|z|=1}|P(z)|$.

Lemma 2 If $P(z)=z^{\mu}\left(a_{0}+a_{1} z+\ldots+a_{n-\mu} z^{n-\mu}\right), 0 \leq \mu \leq n$ is a polynomial of degree n which has all its zeros in $|z| \leq k$ with $k \geq 1$, then for $0 \leq t \leq 1$, we have

$$
\begin{aligned}
\max _{|z|=k}|P(z)| \geq & {\left[\left(\frac{2 k^{n}}{1+k^{n-\mu}}+\frac{(k-1) k^{n}\left(\left|a_{n-\mu}\right| k^{n}-\left|a_{0}\right| k^{\mu}-t m\right)}{\left(k^{n-\mu}+1\right)\left(\left|a_{n-\mu}\right| k^{n}+\left|a_{0}\right| k^{\mu+1}-t m\right)}\right) \max _{|z|=1}|P(z)|\right.} \\
& \left.+\left(\frac{k^{n-\mu}-1}{k^{n-\mu}+1}+\frac{(k-1)\left(\left|a_{n-\mu}\right| k^{n}-\left|a_{0}\right| k^{\mu}-t m\right)}{k^{n}\left(k^{n-\mu}+1\right)\left(\left|a_{n-\mu}\right| k^{n}+\left|a_{0}\right| k^{\mu+1}-t m\right)}\right) t m\right],
\end{aligned}
$$

where $m=\min _{|z|=k}|P(z)|$. The result is sharp and the extremal polynomial is $P(z)=z^{\mu}\left(z^{n-\mu}+k^{n-\mu}\right)$.
Proof. Since all the zeros of $P(z)$ lie in $|z| \leq k, k \geq 1$, the polynomial $T(z)=P(k z)$ has all zeros in $|z| \leq 1$. Therefore the $(n-\mu)$ th degree polynomial $H(z)=z^{n} T(1 / z)$ does not vanish in $|z|<1$. Hence applying Lemma 1 to the polynomial $H(z)$ with $\rho=k \geq 1$, we get

$$
\begin{aligned}
\max _{|z|=k}|H(z)| \leq & {\left[\left(\frac{\left(1+k^{n-\mu}\right)\left(\left|a_{n-\mu}\right| k^{n}+\left|a_{0}\right| k^{\mu+1}-t m^{*}\right)}{(1+k)\left(\left|a_{n-\mu}\right| k^{n}+\left|a_{0}\right| k^{\mu}-t m^{*}\right)}\right) \max _{|z|=1}|H(z)|\right.} \\
& \left.-\left(\frac{\left(1+k^{n-\mu}\right)\left(\left|a_{n-\mu}\right| k^{n}+\left|a_{0}\right| k^{\mu+1}-t m^{*}\right)}{(1+k)\left(\left|a_{n-\mu}\right| k^{n}+\left|a_{0}\right| k^{\mu}-t m^{*}\right)}-1\right) t m\right]
\end{aligned}
$$

where

$$
m^{*}=\min _{|z|=1}|H(z)|=\min _{|z|=1}\left|z^{n} P(k / z)\right|=\min _{|z|=1}|P(k / z)|=\min _{|z|=k}|P(z)|=m
$$

and

$$
\max _{|z|=1}|H(z)|=\max _{|z|=1}\left|z^{n} P(k / z)\right|=\max _{|z|=k}|P(z)| .
$$

Using these observations in (11), we get

$$
\begin{aligned}
\max _{|z|=k}|P(z)| \geq & \frac{k^{n}(1+k)\left(\left|a_{n-\mu}\right| k^{n}+\left|a_{0}\right| k^{\mu}-t m\right)}{\left(1+k^{n-\mu}\right)\left(\left|a_{n-\mu}\right| k^{n}+\left|a_{0}\right| k^{\mu+1}-t m\right)} \max _{|z|=1}|H(z)| \\
& +\left(1-\frac{(1+k)\left(\left|a_{n-\mu}\right| k^{n}+\left|a_{0}\right| k^{\mu}-t m\right)}{\left(1+k^{n-\mu}\right)\left(\left|a_{n-\mu}\right| k^{n}+\left|a_{0}\right| k^{\mu+1}-t m\right)}\right) t m
\end{aligned}
$$

which is equivalent to

$$
\begin{aligned}
\max _{|z|=k}|P(z)| \geq & \left\{\frac{2 k^{n}}{1+k^{n-\mu}}+\frac{k^{n}(k-1)\left(\left|a_{n-\mu}\right| k^{n}-\left|a_{0}\right| k^{\mu}-t m\right)}{\left(1+k^{n-\mu}\right)\left(\left|a_{n-\mu}\right| k^{n}+\left|a_{0}\right| k^{\mu+1}-t m\right)}\right\} \max _{|z|=1}|P(z)| \\
& +\left\{\frac{k^{n-\mu}-1}{k^{n-\mu}+1}-\frac{(k-1)\left(\left|a_{n-\mu}\right| k^{n}-\left|a_{0}\right| k^{\mu}-t m\right)}{\left(1+k^{n-\mu}\right)\left(\left|a_{n-\mu}\right| k^{n}+\left|a_{0}\right| k^{\mu+1}-t m\right)}\right\} t m .
\end{aligned}
$$

This completes the proof of Lemma 2.
Next lemma is a simple deduction from maximum modulus principle, see ([7]).
Lemma 3 If $P(z)$ is a polynomial of degree n, then for $R \geq 1$

$$
\max _{|z|=R}|P(z)| \leq R^{n} \max _{|z|=1}|P(z)|
$$

3 Proofs of Theorems

Proof of Theorem 1. Since $P(z)=a_{n-\mu} z^{n-\mu} \prod_{j=1}^{n-\mu}\left(z-z_{j}\right), 0 \leq \mu \leq n$ has all its zeros in $|z| \leq k, k \geq 1$, the polynomial $T(z)=P(k z)=k^{n} a_{n-\mu} z^{\mu} \prod_{j=1}^{n-\mu}\left(z-z_{j} / k\right)$ has all its zeros in $|z| \leq 1$. Hence for all z on $|z|=1$ for which $G(z) \neq 0$, we have

$$
\frac{z G^{\prime}(z)}{G(z)}=\mu+\sum_{j=1}^{n-s} \frac{z}{z-\frac{z_{j}}{k}} .
$$

This gives for all z on $|z|=1$ for which $G(z) \neq 0$

$$
\operatorname{Re}\left(\frac{z G^{\prime}(z)}{G(z)}\right)=\mu+\operatorname{Re}\left(\sum_{j=1}^{n-\mu} \frac{z}{z-z_{j} / k}\right) \geq \mu+\sum_{j=1}^{n-\mu} \frac{k}{k+\left|z_{j}\right|}
$$

which implies

$$
\begin{equation*}
\left|G^{\prime}(z)\right| \geq\left(\mu+\sum_{j=1}^{n-\mu} \frac{k}{k+\left|z_{j}\right|}\right)|G(z)| \tag{10}
\end{equation*}
$$

for all z on $|z|=1$ for which $G(z) \neq 0$. Since the inequality (10) is already true for the points z for which $G(z)=0$. It follows that

$$
\begin{equation*}
\max _{|z|=1}\left|G^{\prime}(z)\right| \geq\left(\mu+\sum_{j=1}^{n-\mu} \frac{k}{k+\left|z_{j}\right|}\right) \max _{|z|=1}|G(z)| \tag{11}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
k \max _{|z|=1}\left|P^{\prime}(k z)\right| \geq\left(\mu+\sum_{j=1}^{n-\mu} \frac{k}{k+\left|z_{j}\right|}\right) \max _{|z|=1}|P(k z)| . \tag{12}
\end{equation*}
$$

Using Lemma 2 and the fact that $k^{n-1} \max _{|z|=1}\left|P^{\prime}(z)\right| \geq\left|P^{\prime}(k z)\right|$, we obtain from (12)

$$
\begin{aligned}
k^{n} \max _{|z|=1}\left|P^{\prime}(z)\right| \geq & \left(\frac{\mu}{1+k^{n-\mu}}+\sum_{j=1}^{n-\mu} \frac{k}{\left(1+k^{n-\mu}\right)\left(k+\left|z_{j}\right|\right)}\right) \\
& \times\left[\left(2 k^{n}+k^{n} X(k, t, m)\right) \max _{|z|=1}|P(z)|+\left(k^{n-\mu}-1+X(k, t, m)\right) t m\right]
\end{aligned}
$$

which is equivalent to

$$
\begin{aligned}
\max _{|z|=1}\left|P^{\prime}(z)\right| \geq & \left(\frac{\mu}{1+k^{n-\mu}}+\sum_{j=1}^{n-\mu} \frac{k}{\left(1+k^{n-\mu}\right)\left(k+\left|z_{j}\right|\right)}\right) \\
& \times\left[(2+X(k, t, m)) \max _{|z|=1}|P(z)|+\left(\frac{k^{n-\mu}-1}{k^{n}}+\frac{X(k, t, m)}{k^{n}}\right) t m\right] .
\end{aligned}
$$

This completes the proof of Theorem 1.
Proof of Theorem 2. Since $P(z)$ has all its zeros in $|z| \leq k, k \geq 1$, the polynomial $G(z)=P(k z)$ has all its zeros in $|z| \leq 1$. Therefore for $|\alpha| / k \geq 1$, it can be easily seen that

$$
\max _{|z|=1}\left|D_{\alpha / k} G(z)\right| \geq \frac{(|\alpha|-k)}{k} \max _{|z|=1}\left|G^{\prime}(z)\right|
$$

or

$$
\max _{|z|=k}\left|D_{\alpha} P(z)\right| \geq \frac{(|\alpha|-k)}{k} \max _{|z|=1}\left|G^{\prime}(z)\right|
$$

Using inequality (12), we have

$$
\max _{|z|=k}\left|D_{\alpha} P(z)\right| \geq \frac{(|\alpha|-k)}{k}\left(\mu+\sum_{j=1}^{n-\mu} \frac{k}{k+\left|z_{j}\right|}\right) \max _{|z|=1}|G(z)|
$$

which is equivalent to

$$
\max _{|z|=k}\left|D_{\alpha} P(z)\right| \geq \frac{(|\alpha|-k)}{k}\left(\mu+\sum_{j=1}^{n-\mu} \frac{k}{k+\left|z_{j}\right|}\right) \max _{|z|=k}|P(z)|
$$

Now applying Lemma 2 in the right hand side of above inequality, we get

$$
\begin{align*}
k \max _{|z|=k}\left|D_{\alpha} P(z)\right| \geq & \left(\frac{\mu(|\alpha|-k)}{1+k^{n-\mu}}+\sum_{j=1}^{n-\mu} \frac{k(|\alpha|-k)}{\left(1+k^{n-\mu}\right)\left(k+\left|z_{j}\right|\right)}\right) \\
& \times\left[\left(2 k^{n}+k^{n} X(k, t, m)\right) \max _{|z|=1}|P(z)|+\left(k^{n-\mu}-1+X(k, t, m)\right) t m\right] \tag{13}
\end{align*}
$$

where

$$
X(k, t, m)=\frac{(k-1)\left(\left|a_{n-\mu}\right| k^{n}-\left|a_{0}\right| k^{\mu}-t m\right)}{\left|a_{n-\mu}\right| k^{n}+\left|a_{0}\right| k^{\mu+1}-t m}
$$

Since $D_{\alpha} P(z)$ is a polynomial of degree at most $n-1$, so that by Lemma 3 , we get

$$
\max _{|z|=k}\left|D_{\alpha} P(z)\right| \leq k^{n-1} \max _{|z|=1}\left|D_{\alpha} P(z)\right|
$$

Using this observation in (13), we obtain

$$
\begin{aligned}
\max _{|z|=k}\left|D_{\alpha} P(z)\right| \geq & \left(\frac{\mu(|\alpha|-k)}{1+k^{n-\mu}}+\sum_{j=1}^{n-\mu} \frac{k(|\alpha|-k)}{\left(1+k^{n-\mu}\right)\left(k+\left|z_{j}\right|\right)}\right) \\
& \times\left[(2+X(k, t, m)) \max _{|z|=1}|P(z)|+\left(\frac{k^{n-\mu}-1}{k^{n}}+\frac{X(k, t, m)}{k^{n}}\right) t m\right] .
\end{aligned}
$$

This is the desired inequality and hence completes the proof of Theorem 2.
Acknowledgment. The author is thankful to the editor and referee for useful comments and suggestions.

References

[1] A. Aziz, Inequalities for the derivative of a polynomial, Proc. Amer. Math. Soc., 89(1983), 259-266.
[2] V. N. Dubinin, Applications of the Schwarz lemma to inequalities for entire functions with constraints on zeros, J. Math. Sci., 143(2007), 3069-3076.
[3] N. K. Govil, On the derivative of a polynomial, Proc. Am. Math. Soc., 41(1973), 543-546.
[4] N. K. Govil and P. Kumar, On sharpening of an inequality of Turan, Appl. Anal. Discrete Math., 13(2019), 711-720.
[5] P. Kumar, On the inequalities concerning polynomials, Complex Analysis and Operator Theory., 14(2020), 1-11.
[6] G. V. Milovanovic and A. Mir, On the Erdos-Lax and Turan inequalities concerning polynomials., Math. Ineq. and Appl., 25(2022), 407-419.
[7] G. V. Milovanovic, D. S. Mitrinovic and Th. M. Rassias, Topics in Polynomials: Extremal Problems, Inequalities, Zeros, World Scientific Publishing co., Singapore, 1994.
[8] A. Mir, I. Hussain and A. Wani, A note on Ankeny-Rivlin theorem, J. Anal., 27(2019), 1103-1107.
[9] P. Turan, Über die Ableitung von Polynomen, Compos. Math., 7(1939), 89-95.
[10] A. Zireh and M. Bidkham, Inequalities for the polar derivative of a polynomial with restricted zeros, Kragujevac J. Math., 40(2016), 113-124.

[^0]: *Mathematics Subject Classifications: 26D10, 41A17, 30C15.
 \dagger Department of Mathematics, University of Kashmir, South Campus, India

