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Abstract

The authors examine the oscillatory behavior of solutions of the third-order nonlinear delay differential
equation (

p2(t)
(
p1(t)x

′(t)
)′)′

+ q(t)xβ(σ(t)) = 0

when it is in noncanonical form. The main idea is to transform the noncanonical operator into canonical
form and then obtain criteria for the oscillation of all solutions of the studied equation. Particular
examples are provided to show the importance and novelty of the main results.

1 Introduction

Our goal is to examine the oscillatory behavior of all solutions to the third-order nonlinear delay differential
equation (

p2(t) (p1(t)x
′(t))

′
)′

+ q(t)xβ(σ(t)) = 0, (1)

where t ≥ t0 > 0 and β is the ratio of odd positive integers. In the remainder of the paper we assume that:

(i) p1, p2, q ∈ C([t0,∞),R) are positive, and equation (1) is in noncanonical form, i.e.,∫ ∞
t0

1

p1(t)
dt <∞ and

∫ ∞
t0

1

p2(t)
dt <∞; (2)

(ii) σ ∈ C1([t0,∞),R) is strictly increasing, σ(t) ≤ t, and limt→∞ σ(t) =∞.

By a solution of (1), we mean a function x ∈ C([tx,∞),R) for some tx ≥ t0 such that x ∈ C1([tx,∞),R),
p1x
′ ∈ C1([tx,∞),R), p2(p1x′)′ ∈ C1([tx,∞),R) and x satisfies (1) on [tx,∞). We only consider those

solutions x(t) of (1) that exist on some half-line [tx,∞) and satisfy the condition

sup{|x(t)| : T1 ≤ t <∞} > 0 for any T1 ≥ tx;

in addition, we tacitly assume that (1) possesses such solutions. Such a solution x(t) of (1) is said to be
oscillatory if it has arbitrarily large zeros on [tx,∞), i.e., for any t1 ∈ [tx,∞) there exists t2 ≥ t1 such that
x(t2) = 0; otherwise it is called nonoscillatory, i.e., it is eventually of one sign. Equation (1) is said to be
oscillatory if all its solutions are oscillatory.
The investigation of qualitative properties of equation (1) is important for many real world applications,

since these equations are considered as valuable tools in the modeling of many phenomena in different areas of
applied mathematics and physics; for example, see Hale’s monograph [19] for some applications in science and
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266 Oscillation of Noncanonical Third-order Delay Differential Equations

technology. In the last several years, the oscillation theory and asymptotic behavior of third-order differential
equations and their applications have received more and more attention in the literature; for some typical
results, we refer the reader to the book [24] and the papers [2, 3, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 20, 23]
and the references contained therein. See also [1, 4, 5, 17, 21] for some interesting work on recent developments
in oscillation theory.
On the other hand, most of the research work dealing with the oscillatory properties of solutions of (1)

are for the cases ∫ ∞
t0

1

p1(t)
dt =

∫ ∞
t0

1

p2(t)
dt =∞, (3)

∫ ∞
t0

1

p1(t)
dt =∞ and

∫ ∞
t0

1

p2(t)
dt <∞, (4)

or ∫ ∞
t0

1

p1(t)
dt <∞, and

∫ ∞
t0

1

p2(t)
dt =∞. (5)

This is due to the fact that the investigation of (1) with (3) or (4) (or (5) holds is much easier than
noncanonical type equations. Further to the best of our observations, the oscillation criteria for (1) when the
equation is in noncanonical form were obtained in the literature without changing the form of the equation.
In view of the above observation, in this paper, we first convert the noncanonical equation (1) into canonical
form and then we obtain some new oscillation criteria for (1). Our second task is to test the strength of
our criteria via some particular examples. It should be noted that the results in the present paper improve,
extend and simplify the results in [14, 16] in particular (see Example 1 below) as well as many known results
on nonlinear oscillation in general. For these reasons, it is our hope that the present paper will stimulate
additional interest in research on third and higher odd-order nonlinear noncanonical functional differential
equations. We also note that equation (1) is in canonical form if (3) holds, it is in semi-canonical form if (4)
or (5) holds, and it is in noncanonical form if (2) holds, as it is here.

2 Preliminary Results

In view of (1), while considering nonoscillatory solutions, we can restrict our attention to positive ones.
The following lemma is rather standard when studying the oscillatory behavior of solutions of third order
equations; for example, see [2, 14]. Therefore, it follows from [2, 14] that the set of positive solutions of (1)
has the following structure:

Lemma 1 Let (i)—(ii) hold. If x is an eventually positive solution of (1), then there exists t1 ∈ [t0,∞) such
that x satisfies one of following four cases:

(I) x(t) > 0, p1(t)x
′(t) > 0, p2(t) (p1(t)x

′(t))
′
> 0,

(
p2(t) (p1(t)x

′(t))
′)′
< 0,

(II) x(t) > 0, p1(t)x
′(t) < 0, p2(t) (p1(t)x

′(t))
′
> 0,

(
p2(t) (p1(t)x

′(t))
′)′
< 0,

(III) x(t) > 0, p1(t)x
′(t) < 0, p2(t) (p1(t)x

′(t))
′
< 0,

(
p2(t) (p1(t)x

′(t))
′)′
< 0,

(IV) x(t) > 0, p1(t)x
′(t) > 0, p2(t) (p1(t)x

′(t))
′
< 0,

(
p2(t) (p1(t)x

′(t))
′)′
< 0.

for all t ≥ t1.

So, if we want to derive oscillation criteria for the noncanonical equation (1), we have to eliminate the
above mentioned four cases. However, if we transform equation (1) into canonical form, then the number of
cases is reduced to only two. Therefore, this significantly simplifies the investigation of oscillation of (1).
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In view of (2), we can adopt the following notation:

Ω1(t) =

∫ ∞
t

ds

p1(s)
, Ω2(t) =

∫ ∞
t

ds

p2(s)
, Ω(t) =

∫ ∞
t

Ω2(s)

p1(s)
ds,

Ω∗(t) =

∫ ∞
t

Ω1(s)

p2(s)
ds, r1(t) =

p1(t)Ω
2(t)

Ω∗(t)
, r2(t) =

p2(t)Ω
2
∗(t)

Ω(t)
.

Instead of using the result of Trench [27], we employ [7, Theorem 2.1] to transform equation (1) in the
equivalent canonical form as(

r2(t)

(
r1(t)

(
x(t)

Ω(t)

)′)′)′
+ Ω∗(t)q(t)x

β(σ(t)) = 0. (6)

Now, setting µ(t) = x(t)/Ω(t) in (6) and using the notation

Q(t) = Ω∗(t)Ω
β(σ(t))q(t),

the following results in [7] are immediate.

Theorem 1 Noncanonical nonlinear differential equation (1) possesses a solution x(t) if and only if the
canonical equation (

r2(t) (r1(t)µ
′(t))

′
)′

+Q(t)µβ(σ(t)) = 0 (7)

has the solution µ(t) = x(t)/Ω(t).

Corollary 1 Noncanonical nonlinear differential equation (1) has an eventually positive solution if and only
if canonical equation (7) has an eventually positive solution.

Corollary 1 essentially simplifies investigation of equation (1). Because, due to equation (7), we deal with
only two classes of an eventually positive solution, namely either

N0 : µ(t) > 0, r1(t)µ
′(t) < 0, r2(t)(r1(t)µ

′(t))′ > 0, (r2(t)(r1(t)µ
′(t))′)′ < 0, or

N2 : µ(t) > 0, r1(t)µ
′(t) > 0, r2(t)(r1(t)µ

′(t))′ > 0, (r2(t)(r1(t)µ
′(t))′)′ < 0,

for suffi ciently large t. Hence the results obtained here are new and different from the existing results.

3 Main Results

In this section, we provide criteria for the oscillation of all solutions of (1). We begin with the following
lemma.

Lemma 2 Assume that µ(t) is a positive solutions of (7) which belong to N2. Define

R1(t, t∗) =

∫ t

t∗

1

r1(s)

∫ s

t∗

1

r2(u)
duds,

Rm+1(t, t∗) =

∫ t

t∗

1

r1(s)

∫ s

t∗

1

r2(u)
exp

(∫ t

u

Q(v)Rm(σ(v), t∗)dv

)
duds, m ∈ N,

for t ≥ t∗ for some t∗ ≥ t0. Then

µ(σ(t)) ≥ Rm(σ(t), t∗)L2µ(σ(t)) if β = 1, (8)

µ(σ(t)) ≥ R1(σ(t), t∗)L2µ(σ(t)) if β 6= 1, (9)

where L2µ(t) = r2(t)(r1(t)µ
′(t))′.
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Proof. The proof is similar to Lemma 2 of [11] and so it is omitted.

Theorem 2 Assume that there exists a function τ ∈ C1([t0,∞),R) such that

τ ′(t) ≥ 0, τ(t) ≥ t, and g(t) = σ(τ(τ(t))) < t. (10)

If both first order delay differential equations

z′(t) +Q1(t)z
β(σ(t)) = 0 (11)

and
w′(t) +Q2(t)w

β(g(t)) = 0 (12)

are oscillatory, where

Q1(t) =

{
Q(t)Rβ1 (σ(t), t∗) if β 6= 1,

Q(t)Rm(σ(t), t∗) if β = 1,

for some m ∈ N and t∗ ≥ t0, and

Q2(t) =
1

r1(t)

∫ τ(t)

t

1

r2(s)

∫ τ(s)

s

Q(u)duds,

then equation (1) is oscillatory.

Proof. Let x(t) be an eventually positive solution of equation (1), say x(t) > 0 and x(σ(t)) > 0 for t ≥ t1
for some t1 ≥ t0. Then, by Corollary 1, the corresponding function µ(t) = x(t)/Ω(t) is a positive solution of
(7), and so either µ ∈ N0 or µ ∈ N2 for t ≥ t2 for some t2 ≥ t1.
First assume that µ ∈ N0. Integrating (7) from t (t ≥ t2) to τ(t), we get

r2(t)(r1(t)µ
′(t))′ ≥

∫ τ(t)

t

Q(s)µβ(σ(s))ds.

Using the fact that µ is decreasing and taking (10) into account, we see that

(r1(t)µ
′(t))′ ≥ 1

r2(t)
µβ(σ(τ(t)))

∫ τ(t)

t

Q(s)ds.

Integrating the last inequality from t to τ(t), we obtain

−r1(t)µ′(t) ≥
∫ τ(t)

t

µβ(σ(τ(s)))

r2(s)

∫ τ(s)

s

Q(u)duds,

which yields
µ′(t) +Q2(t)µ

β(g(t)) ≤ 0.

Therefore, by [25, Theorem 1], we conclude that there exists a positive solution of (12) which tends to zero
as t→∞, which contradicts the fact that (12) is oscillatory.
Next, assume µ ∈ N2. Combining (8) with (7), we see that z(t) = L2µ(t) is a positive solution of the

first order delay differential inequality

z′(t) +Q1(t)z
β(σ(t)) ≤ 0. (13)

As in the case µ ∈ N0, we obtain a contradiction to the fact that (11) is oscillatory. Thus (7) is oscillatory,
which in turn implies (1) is oscillatory. This completes the proof of the theorem.

The proofs of the following Corollaries 2 and 3 follows from Theorem 2 of [22] and Theorem 2 and hence
the details are omitted.
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Corollary 2 Let β = 1. Assume that there exists a function τ ∈ C1([t0,∞),R) such that (10) holds. If

lim inf
t→∞

∫ t

σ(t)

Q(s)Rm(σ(s), t∗)ds >
1

e
(14)

for some m ∈ N and t∗ ≥ t0, and

lim inf
t→∞

∫ t

g(t)

Q2(s)ds >
1

e
, (15)

then (1) is oscillatory.

Corollary 3 Let β ∈ (0, 1). Assume that there exists a function τ ∈ C1([t0,∞),R) such that (10) holds. If

lim sup
t→∞

∫ t

σ(t)

Q1(s)ds > 0 (16)

and

lim sup
t→∞

∫ t

g(t)

Q2(s)ds > 0, (17)

then (1) is oscillatory.

To present our next results, we assume that

σ(t) = θ1t and τ(t) = θ2t with θ3 = θ1θ
2
2 < 1, (18)

or
σ(t) = tθ1 and τ(t) = tθ2 with θ3 = θ1θ

2
2 < 1, (19)

where θ1, θ3 ∈ (0, 1) and θ2 > 1.

Corollary 4 Let β ∈ (1,∞) and let (18) holds. Suppose also that there exists a function τ ∈ C1([t0,∞),R)
such that (10) holds. If there exists λ1 > − ln(β)/ ln(θ1) such that

lim inf
t→∞

[Q1(t) exp(−tλ1)] > 0, (20)

and λ2 > − ln(β)/ ln(θ3) such that
lim inf
t→∞

[Q2(t) exp(−tλ2)] > 0 (21)

hold, then (1) is oscillatory.

Corollary 5 Let β ∈ (1,∞) and let (19) holds. Suppose also that there exists a function τ ∈ C1([t0,∞),R)
such that (10) holds. If there exists λ1 > − ln(β)/ ln(θ1) such that

lim inf
t→∞

[Q1(t) exp(−(ln t)λ1)] > 0, (22)

and λ2 > − ln(β)/ ln(θ3) such that

lim inf
t→∞

[Q2(t) exp(−(ln t)λ2)] > 0 (23)

hold, then (1) is oscillatory.

The proofs of Corollaries 4 and 5 follows from Theorem 4 and Theorem 5 of [26], respectively.
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Theorem 3 Let β = 1. Assume that there exists a function σ1 ∈ C1([t0,∞),R) such that σ′1(t) ≥ 0,
σ1(t) < t and limt→∞ σ1(t) =∞. If (14) holds for some m ∈ N and t ≥ t∗ ≥ t0, and

lim sup
t→∞

∫ t

σ(t)

1

r1(u)

∫ σ1(t)

u

1

r2(s)

∫ σ1(t)

s

Q(v)dvdsdu > 1, (24)

then (1) is oscillatory.

Proof. Let x(t) be an eventually positive solution of equation (1), say x(t) > 0 and x(σ(t)) > 0 for t ≥ t1
for some t1 ≥ t0. Then, by Corollary 1, the corresponding function µ(t) = x(t)/Ω(t) is a positive solution of
(7), and so either µ ∈ N0 or µ ∈ N2 for t ≥ t2 for some t2 ≥ t1.
First assume that µ ∈ N0. Integrating (7) from u (u ≥ t2) to σ1(t) and using the fact that µ is decreasing,

we have

r2(u)(r1(u)µ′(u))′ ≥
∫ σ1(t)

u

Q(v)µ(σ(v))dv ≥ µ(σ(t))

∫ σ1(t)

u

Q(v)dv,

or

(r1(u)µ′(u))′ ≥ µ(σ(t))

r2(u)

∫ σ1(t)

u

Q(v)dv.

Integrating the above inequality from u to σ1(t) yields

−µ′(u) ≥ µ(σ(t))

r1(u)

∫ σ1(t)

u

1

r2(x)

∫ σ1(t)

x

Q(v)dvdx.

Again integrating the last inequality from u to t, we get

µ(u) ≥ µ(σ(t))

∫ t

u

1

r1(v)

∫ σ1(t)

v

1

r2(x)

∫ σ1(t)

x

Q(s)dsdxdv. (25)

Letting u = σ(t) in (25), we obtain a contradiction with (24).
Next assume µ ∈ N2. In view of (14) and Corollary 2, we see that the set N2 = ∅. Thus, (7) is oscillatory,

which in turn implies (1) is oscillatory. The proof of the theorem is complete.

4 Numerical Examples

Let us illustrate the importance of our newly obtained results on Euler type linear and nonlinear third-order
delay differential equations.

Example 1 Consider the third-order linear delay differential equation(
t2
(
t2x′(t)

)′)′
+ atx(λt) = 0, t ≥ 1, (26)

where a > 0 is a constant and λ ∈ (0, 1). Using Theorem 1, equation (26) has the canonical representation

µ′′′(t) +
a

λ2t3
µ(λt) = 0.

Moreover, r1(t) = r2(t) = 1, Q(t) = a
λ2t3

, and σ(t) = λt.
Now let m = 2, then condition (14) becomes

lim inf
t→∞

∫ t

λt

Q(s)R2(λs, 1)ds =
4a

(2− a)(4− a)
ln(1/λ) >

1

e
,
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that is, (14) holds if 4a
(2−a)(4−a) ln(1/λ) > 1

e . Let σ1(t) = λ1t with λ1 ∈ (0, 1), we see that (24) becomes

lim sup
t→∞

∫ t

λt

∫ λ1t

u

∫ λ1t

s

a

λ2v3
dvdsdu =

a

λ2

(
4λ

λ1
− 4

λ1
+

1

λ21
− λ2

λ21
+ 2 ln(1/λ)

)
> 4,

that is, (24) holds if

a

λ2

(
4λ

λ1
− 4

λ1
+

1

λ21
− λ2

λ21
+ 2 ln(1/λ)

)
> 4.

Let λ = 3/10 and a = 0.45. Then (14) is clearly satisfied. With λ1 = 1/5, we see that condition (24)
holds for a > 0.03226. Hence by Theorem 3, equation (26) is oscillatory if a = 0.45.

The same equation (26) is found in [16]. They used the expression (see (4.5) in [16])

a

(
3

λ2
+

4

λ
− 1− 2

λ2
lnλ

)
> 4

to prove their claim. But this expression is wrong and the correct one is

a

(
4

λ
− 3

λ2
− 1− 2

λ2
lnλ

)
> 4.

If we let λ = 3/10 in the above expression, we see that a > 0.6949, and therefore (26) is oscillatory for
a > 0.6949. Thus, our Theorem 3 improves Theorem 3.3 of [16] and also the results in [14].

Example 2 Consider the third-order sublinear delay differential equation(
t2
(
t2x′(t)

)′)′
+ at5/3x1/3

(
t

3

)
= 0, t ≥ 1, (27)

where a > 0. By simple calculation, we see that (27) has the canonical representation

µ′′′(t) +
3
√

36a

t
µ1/3

(
t

3

)
= 0.

By choosing τ(t) = 3t/2, we see that all conditions of Corollary 3 are satisfied and hence equation (27) is
oscillatory.

Example 3 Consider the third-order superlinear delay differential equation(
t2
(
t2x′(t)

)′)′
+ t8et

4

x3
(
t

3

)
= 0, t ≥ 1. (28)

The transformed canonical equation is

µ′′′(t) +
729

4
et

4

µ3
(
t

3

)
= 0.

By choosing θ2 = 4/3, we see that θ3 = 16/27 < 1 and so condition (18) holds. By choosing λ1 = 2 and
λ2 = 3, we see that condition (20) and (21) are satisfied. Hence, by Corollary 4, equation (28) is oscillatory.

Remark 1 It is worth mentioning that the oscillation of equations (27) and (28) cannot be commented by
previous results reported in the literature.
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5 Conclusion

In this paper, we have established new type of oscillation criteria for third order noncanonical delay differential
equations by transforming it to canonical type equations. The canonical transformation is based on the recent
result obtained in [7]. Also our criteria applicable to linear and nonlinear equations and they improve, extend
and simplify the results in [2, 6, 9, 11, 12, 14, 16, 20]. This is illustrated via examples. Establishing oscillation
criteria for fractional order differential equations using this technique could be a promising topic for future
work.

Acknowledgements. The authors would like to express their gratitude to the editor and the anonymous
reviewer for his/her careful reading of the original manuscript and useful comments that helped to improve
the presentation of the results.
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