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Abstract

In this paper, a high order algorithm converging to the mth root of a positive square matrix is
investigated. An application for the computation of the logarithm of an invertible positive matrix is
provided as well. Numerical simulation illustrating the theoretical study and showing the interest of our
approach is also discussed.

1 Introduction

Numerical resolution of equations/systems arises in various context and contributes as a tool for solving many
scientific problems. Iterative algorithms for approximating the roots of a given equation are usually used as
useful way in theoretical point of view as well as in practical purposes. It has been proved, throughout a
lot of studies, that the so-called Newton’s algorithm is one of the most interesting methods for finding the
roots of a nonlinear equation f(x) = 0. Two facts were discovered for Newton’s method. Positively, such
method converges much more rapidly than a simple iterative method. Negatively, the starting point should
be chosen close to the unknown zero of f(x) = 0. Practically, this imposes a serious diffi culty even for real
equations with one unknown, and such diffi culty increases when we have to solve a system with multiple
unknowns. Let us discuss in detail our situation which turns into finding the principal mth roots of a matrix
A ∈ Rp×p [3, 4, 5, 6] whose eigenvalues lie in the sector

Sm =
{
z ∈ C, z 6= 0, − π

m
< arg z <

π

m

}
.

More precisely, let m ≥ 2 be an integer and consider the nonlinear matrix equation

Find a matrix X such that F (X) := Xm −A = 0. (1)

As in the general case, the Newton’s method associated to (1) is described by the following iterative scheme

Xk+1 = Xk − F ′ (Xk)
−1
F (Xk) , k = 0, 1, . . . , (2)

with given initial guess X0, provided that F ′ (Xk) is invertible at each iteration Xk. Here, F ′ refers to the
Fréchet derivative of F . If we write the Taylor series for the matrix function F (X) given by (1) we obtain

F (X +H) = (X +H)m −A = (Xm −A) +
m−1∑
i=0

Xm−1−iHXi + o
(
H2
)
, (3)
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230 High Order Algorithm Converging to the mth Root of a Positive Matrix

where o(H2) is a neglected expression in the sense that

lim
H→0

‖o(H2)‖
‖H‖ = 0.

We then observe that F ′(X) is the linear mapping given by

F ′(X)H =

m−1∑
i=0

Xm−1−iHXi.

After some simple algebraic manipulations, the classical Newton’s method, starting at X0, can be written as{ ∑m−1
i=0 Xm−1−i

k HkX
i
k = A−Xm

k ,

Hk := Xk+1 −Xk.

Otherwise, in [1] the authors presented a modified algorithm of (2) given by

Xk+1 = Xk − F ′ (Xk; I)
−1
F (Xk) , k = 0, 1, . . . , (4)

where F ′ (Xk; I) stands for the directional derivative of F at Xk in the direction I, identity matrix, namely

F ′ (Xk; I) := lim
t↓0

F (Xk + tI)− F (Xk)

t
. (5)

If F is as in (1), it is easy to check that (3) when applied to (5) yields F ′ (Xk; I) = mXm−1
k . Substituting

this in (4) we get

Xk+1 =
(m− 1)Xk +X

1−m
k A

m
, k ≥ 0, (6)

with X0 conveniently chosen. Observe that (6) is a matrix version of the Newton’s algorithm for computing
the mth root of a real number a ≥ 0, namely

xk+1 =
(m− 1)xk + ax1−mk

m
, k ≥ 0, (7)

with x0 > 0 given. The algorithm (7) converges to a1/m for each given x0 > 0, see Proposition 1 below.
It is worth mentioning that this latter result does not need x0 > 0 to be close to the exact root a1/m.
Furthermore, the convergence of (7) to a1/m is quadratic in the sense that, there is α := αm,a > 0 such that
for all k ≥ 0 we have ∣∣xk+1 − a1/m∣∣ ≤ α∣∣xk − a1/m∣∣2. (8)

About (6), if X0 commutes with A then the study of the convergence of the matrix sequence (Xk) is reduced
to that of (7), and so (Xk) converges quadratically to A1/m, namely∥∥Xk+1 −A1/m

∥∥ ≤ β∥∥Xk −A1/m
∥∥2 (9)

for some β > 0 depending only on m and A. Here, and in what follows, ‖.‖ refers to any norm among the
equivalent norms of the Banach algebra of n× n matrices. For instance, we can choose the standard matrix
norm defined by

‖A‖ := sup
x 6=0

‖Ax‖
‖x‖ = sup

‖x‖=1
‖Ax‖, (10)

where ‖x‖ is the Euclidian norm of x ∈ Rn. The matrix norm defined by (10) satisfies

‖AB‖ ≤ ‖A‖‖B‖ (11)

for any square matrices A and B.
The fundamental purpose of this paper is to accelerate the convergence of (Xk) to A1/m. We then obtain

some algorithms converging to A1/m with rates of convergence equal to 22, 23, .... Afterwards, we give an
application to the computation of the logarithm of an invertible positive matrix. In order to illustrate our
theoretical approach, a numerical simulation is discussed.
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2 High Order Algorithm Approximating A1/m

We preserve the same notations as in the previous section. Before stating our main result, we will establish
the following result already mentioned in the previous section.

Proposition 1 Let a > 0 be a real number and m ≥ 2 be an integer. For any x0 > 0, the sequence (xk)
defined by (7) converges quadratically to a1/m.

Proof. From (7), it is clear that if x0 > 0 then xk > 0 for all k ≥ 0. Since the real function x 7−→ log x is
concave on (0,∞) then (7) yields

log xk+1 ≥ m− 1
m

log xk +
1

m
log(ax1−mk )

=
m− 1
m

log xk +
1

m
log a+

1−m
m

log xk =
1

m
log a = log a1/m.

Thus, xk+1 ≥ a1/m for any k ≥ 0. Using again (7), we get

0 ≤ xk+1 − a1/m =
m− 1
m

(
xk − a1/m

)
+
1

m

(
ax1−mk − a1/m

)
. (12)

From xk ≥ a1/m, for all k ≥ 1, we easily deduce that ax1−mk − a1/m ≤ 0. Therefore, (12) leads to

0 ≤ xk+1 − a1/m ≤
m− 1
m

(
xk − a1/m

)
,

which by a simple mathematical induction yields

0 ≤ xk+1 − a1/m ≤
(m− 1

m

)k(
x1 − a1/m

)
.

This, with the fact that 0 < m−1
m < 1, implies that (xk) converges to a1/m. Since (7) is a Newton type

convergent algorithm the convergence of (xk) to a1/m is quadratic.

We need to recall the following result, see [1].

Lemma 1 Let φ1, φ2, . . . , φs be functions corresponding to iterative methods of orders r1, r2, . . . , rs, respec-
tively. Then the composition of iterative functions

φ(x) = φ1 ◦ φ2 ◦ ... ◦ φs(x) := φ1

(
φ2
(
· · · (φs(x)) · · ·

))
defines an iterative method of order r1r2 · · · rs.

Let us explain how to use Lemma 1. To fix our idea, let us take s = 2. Lemma 1 asserts that if the two
iterative algorithms xk+1 = φ1(xk) and xk+1 = φ2(xk) are convergent of orders r1 and r2, respectively, then
the following algorithm

xk+1 = φ1
(
φ2(xk)

)
(13)

is also convergent with order r1r2. Setting yk = φ2(xk), (13) is then equivalent to the coupled algorithm
given by {

yk = φ2(xk),

xk+1 = φ1(yk).
(14)

Applying (14) with the Newton’s algorithm, that is,

φ1(x) = φ2(x) = x− f(x)

f ′(x)
,
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we then obtain the following coupled algorithm
yk = xk −

f (xk)

f ′ (xk)
,

xk+1 = yk −
f (yk)

f ′ (yk)
.

(15)

Lemma 1 tell us that, if the Newton’s algorithm corresponding to the equation f(x) = 0 is convergent (with
order 2) then (15) is also a convergent algorithm with order 2× 2 = 4.
Summarizing, if we take f(x) = xm − a in (15) we are in the position to consider the following coupled

algorithm 
yk =

(m− 1)xk + ax1−mk

m
,

xk+1 =
(m− 1)yk + ay1−mk

m
,

(16)

which is convergent to a1/m with order four, provided that the initial guess x0 satisfies x0 > 0.
Inspired by (16), with the help of (6), we now consider the following coupled algorithm involving matrix

arguments 
Yk =

(m− 1)Xk +X
1−m
k A

m
,

Xk+1 =
(m− 1)Yk + Y 1−mk A

m
.

(17)

We mention that, whenever X0 is conveniently chosen the matrix sequence (Xk) is well defined. We are
in the position to state the following main result.

Theorem 1 Let X0 be an invertible positive matrix such that AX0 = X0A. Then the sequence (Xk) defined
through (17) satisfies the following properties:

(i) Xk is invertible positive, for each k ≥ 0.

(ii) (Xk) converges to A1/m, for any m ≥ 2.

(iii) The speed of convergence of (Xk) to A1/m is equal to four. That is, the following estimation

∀k ≥ 0
∥∥∥Xk+1 −A1/m

∥∥∥ ≤ βm ∥∥∥Xk −A1/m
∥∥∥4 (18)

holds for some constant βm > 0 depending only on A and m.

Proof. Since AX0 = X0A simple mathematical induction leads to show that AXk = XkA for all k ≥ 0.
Then, (17) generates iterative matrices which are all analytical functions with respect to the given matrix
A. The convergence of (Xk) is then easily examined by transforming the iterates to diagonal forms and so
considering the convergence of the scalar version (16) by standard way. The details are straightforward and
therefore omitted here.

We end this section by stating the following remarks which may be of interest for the reader.

Remark 1 Taking s = 3, 4, ... in Lemma 1, and by the same previous way for s = 2, we can construct
matrix algorithms converging to A1/m with orders 23, 24, ..., respectively. We left to the reader the task for
formulating the matrix algorithm that converges to A1/m with order equal to 23 = 8. We notice that, the
previous algorithm of order 22 is more than enough for obtaining quite good approximations for A1/m even
from the first iterations. This latter claim will be discussed and justified by numerical examples in Section 4.



Alharbi et al. 233

Remark 2 The previous study, and its related algorithms, are still valid for computing Aa/b where a, b are
integer numbers with b ≥ 2. Indeed, instead of (1) we take F (X) = Xb − Aa = 0 or we simply write
Aa/b =M1/b with M = Aa. By the same previous procedure, we obtain the following algorithm

Yk =
(b− 1)Xk +X

1−b
k Aa

b
, Xk+1 =

(b− 1)Yk + Y 1−bk Aa

b
,

which for a = 1 and b = m coincides with (17).

3 Application for Computing logA

The computation of logarithm for a positive matrix arises in various numerical contexts. Before stating our
claimed application about the approximation of logA, we need the following lemma.

Lemma 2 Let A be an invertible positive matrix. Then we have

logA = lim
n↑∞

2n−1
(
A

1
2n −A− 1

2n

)
. (19)

Proof. We present here two ways for proving this result.
Method 1: We first show (19) for real arguments. Let a > 0 be a real number. Setting t = 1/2n and

using the standard l’Hopital rule, we get

lim
n↑∞

2n−1
(
a1/2

n

− a−1/2
n
)
= lim

t↓0

at − a−t
2t

= lim
t↓0

at log a− (−1)a−t log a
2

= log a.

To prove (19) for matrix arguments we then use the techniques of Functional Calculus (Cauchy’s integral
formula) or we simply use the process of matrix diagonalization.

Method 2: We can directly show (19) for matrix arguments. Indeed, the Taylor’s series when applied for
matrix exponential gives

A1/2
n

:= exp
( 1
2n
logA

)
=

∞∑
k=0

(logA)k

2nkk!
,

A−1/2
n

:= exp
(
− 1

2n
logA

)
=

∞∑
k=0

(logA)k

(−1)k2nkk! .

It follows that

A
1
2n −A− 1

2n =

∞∑
k=0

(logA)k

k!2nk

(
1− 1

(−1)k
)
=

∞∑
k=0

(logA)2k+1

(2k + 1)!2n(2k+1)−1

=
logA

2n−1
+

∞∑
k=1

(logA)2k+1

(2k + 1)!2n(2k+1)−1
. (20)

Let ‖.‖ be the matrix norm defined by (10). From (20), and using (11), we deduce that

∥∥∥2n−1(A 1
2n −A− 1

2n

)
− logA

∥∥∥ =

∥∥∥∥∥
∞∑
k=1

(logA)2k+1

(2k + 1)!22nk

∥∥∥∥∥
≤

∞∑
k=1

‖ logA‖2k+1
(2k + 1)!22nk

≤ 1

22n

∞∑
k=1

‖ logA‖2k+1
(2k + 1)!

<
1

22n
exp ‖ logA‖.

The right expression of this latter inequality tends to 0 when n ↑ ∞, so the desired result is proved.
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According to (17), for fixed n ≥ 0, we consider the following algorithm Uk,n =
(
1− 2−n

)
Vk,n + 2

−nV 1−2
n

k,n A,

Vk+1,n =
(
1− 2−n

)
Uk,n + 2

−nU1−2
n

k,n A,
(21)

where V0,n is given for any fixed n ≥ 0. Following Theorem 1, Vk,n approximates A1/2
n

when k ↑ ∞. By
a simple argument of continuity, V −1k,n approximates A

−1/2n when k ↑ ∞. Thanks to Lemma 2, we have
established the following result.

Proposition 2 Let A be an invertible positive matrix. Then we have

logA = lim
k,n↑∞

2n−1
(
Vk,n − V −1k,n

)
, (22)

where (Vk,n) is defined by (21) when V0,n satisfies the condition V0,nA = AV0,n.

4 Concluding Remarks and Numerical Examples

In this paper we have constructed and studied an iterative matrix algorithm approximating A1/m with a
rate of convergence equal to 22. As already pointed out in Remark 1, we can pursue the same procedure by
constructing algorithms of orders 23, 24, ... also converging to A1/m. These algorithms are all of Newton type
whose convergence depends generally on the initial guess that should be chosen close to the exact solution
which is in fact unknown. This is most inconvenient aspect of the Newton method, even for scalar equations
and the diffi culty increases when we have to solve matrix equations. However, in our previous study, the
initial data X0 needs only to satisfy the simple condition AX0 = X0A, for example X0 = I or X0 = A,
which can be easily manipulable in the numerical situation when A is a given matrix. This latter point will
be explained by the following numerical examples.
We notice that the numerical simulation here was done by using MATLAB 2021a with 3500 digits floating

arithmetic. In the Banach algebra of square matrices, the computations were stopped when the estimation
‖Xk+1 −Xk‖ < ε is satisfied, for some ε > 0 small enough.

Example 1 Let us consider the matrix

A =

 13 4 −5
4 17 2
−5 2 19

 ,

whose the 2-norm condition number is Cond2(A) := ‖A‖2‖A−1‖2 ≈ 2.744. Taking m = 2, 3, 4, and X0 = I,
in algorithms (6) and (17) we obtain the following estimations for computing A1/m. See Table 1.

Example 2 Let us consider the so-called Wilson matrix [2]

A =


10 7 8 7
7 5 6 5
8 6 10 9
7 5 9 10

 .

About this specific matrix we have Cond2(A) := ‖A‖2‖A−1‖2 ≈ 2984. Here we take m = 5, 6, 7 and X0 = I,
in (6) and (17). We obtain the following estimations. See Table 2.

Example 3 Let us find an approximation of logA, when A is the Wilson matrix, by using Proposition 2. If
we set

Lk,n = 2
n−1
(
Vk,n − V −1k,n

)
,
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Table 1: Estimations for A1/m .

m=2 m=3 m=4
‖Xk+1 −Xk‖2 ‖Xk+1 −Xk‖2 ‖Xk+1 −Xk‖2

k Alg. (6) Alg. (17) Alg. (6) Alg. (17) Alg. (6) Alg. (17)
0 10.424 5.6682 6.9493 4.4148 5.212 3.6818
1 4.7557 1.9851 2.5345 2.3534 1.5302 1.8878
2 1.6959 8.9384e-3 1.5565 0.26564 1.1172 0.6115
3 0.2892 7.7835e-12 0.79685 1.7779e-04 7.7054e-1 2.0525e-2
4 8.9229e-3 4.4926e-48 0.24341 4.5721e-17 4.4808e-1 5.7425e-8
5 8.5301e-6 4.9862e-193 2.2235e-2 2.0001e-67 1.6342e-1 3.6319e-30
6 7.7835e-12 7.5661e-773 1.7778e-4 7.3252e-269 2.0237e-2 5.8107e-119
7 6.4806e-24 4.0113e-3092 1.1306e-8 1.3178e-1074 2.8767e-4 3.8074e-474

Table 2: Computations for A1/m .

m=5 m=6 m=7
‖Xk+1 −Xk‖2 ‖Xk+1 −Xk‖2 ‖Xk+1 −Xk‖2

k Alg. (6) Alg. (17) Alg. (6) Alg. (17) Alg. (6) Alg. (17)
0 5.8577 4.4889 4.8814 3.9019 4.1841 3.4437
1 1.3688 1.9545 0.97952 1.4919 0.74036 1.1771
2 1.0911 1.1516 0.8152 1.0061 0.63426 0.85471
3 0.86337 0.39254 0.67669 0.54806 0.5428 0.56907
4 0.66807 1.2166e-2 0.55739 9.016e-2 0.46311 0.2086
5 0.48354 2.2092e-8 0.44872 1.4817e-4 0.3916 64704e-3
6 0.28867 2.4619e-31 0.33777 1.3679e-15 0.32259 1.0741e-8
7 0.10387 3.7968e-123 0.21029 9.9415e-60 0.24647 8.3297e-32
8 1.2018e-2 2.1477e-490 8.0009e-2 2.7732e-236 0.15282 3.0133e-124
9 1.4781e-4 2.1989e-1959 1.0151e-2 1.6793e-942 5.5774e-2 5.1605e-494

Table 3: Approximations for logA.

n=2 n=3 n=4 n=5 n=6
k ‖Lk+1,n − Lk,n‖2 ‖Lk+1,n − Lk,n‖2 ‖Lk+1,n − Lk,n‖2 ‖Lk+1,n − Lk,n‖2 ‖Lk+1,n − Lk,n‖2
10 7.0127e-639 3.4187e-339 2.3253e-12 0.56649 1.9215
11 4.789e-2555 8.7774e-1356 2.8144e-48 0.0082624 1.3993
12 8.9121e-3468 4.4601e-3463 6.0393e-192 5.18e-10 0.27858
13 1.1928e-3463 2.0803e-3458 1.2805e-766 8.0443e-39 0.00059755
14 1.5965e-3459 9.7027e-3454 2.588e-3065 4.6785e-154 1.5131e-14
15 - - - 5.3531e-615 6.2236e-57
16 - - - 9.1742e-2459 1.7811e-226
17 - - - 1.9155e-3437 1.1949e-904
18 - - - - 7.2529e-3432
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then (22) tells us that Lk,n approximates logA when k, n ↑ ∞. This, with V0,n = I in (21), leads to the
following estimations. See Table 3. As an approximative value of logA we can take

logA ≈ L14,2 ≈

 0.151871071925 3.47189006352 0.336791127306 0.850370892666
3.47189006352 −3.13785518545 1.6269720327 −0.153505935774
0.336791127306 1.6269720327 0.926046956447 1.55749530144
0.850370892666 −0.153505935774 1.55749530144 1.43832101511

 .
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