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Abstract

In this paper, using some elements of the q-harmonic analysis associated to the q-Dunkl operator
introduced by N. Bettaibi et al. in [1], for fixed 0 < q < 1, the notion of a q-Dunkl two-wavelet is
introduced. The resolution of the identity formula for the q-Dunkl continuous wavelet transform is then
formulated and proved. Calderón’s type reproducing formula in the context of the q-Dunkl two wavelet
theory is proved.

1 Introduction

In recent years, the q-theory, called also in some literature "quantum calculus", began to arise. Interest in
this theory is grown at an explosive rate by both physicists and mathematicians due to a large number of
its application domains. For instance, a lot of work has been carried out while developing some q-analogues
of Fourier analysis using elements of quantum calculus (see [1, 4, 5, 6, 26, 22] and references therein). In
the recent mathematical literature, we find many articles that deal with the theory of q-Fourier analysis
associated with the q-Dunkl transform. In [1], Bettaibi et al. introduced a new q-analogue of the classical
Dunkl operator and studied its related Fourier transform, which is a q-analogue of the classical Bessel-Dunkl
one and called the q-Dunkl transform. The q-analogue of the Dunkl operator is defined in terms of Rubin’s
q-differential operator ∂q, introduced in [23, 22].
Calderón formula [3] involving convolution related to the Fourier transform is useful in obtaining recon-

struction formula for wavelet transform besides many other applications in decomposition of certain function
spaces. It is expressed as follows:

Φ(ξ) =
1

cϕ,φ

∫ +∞

0

Φ ∗ ϕt ∗ φt(ξ)
dt

t
, ξ ∈ R, (1)

where
ϕt(x) :=

1

t
ϕ
(x
t

)
, φt(x) :=

1

t
φ
(x
t

)
, ∀x ∈ R,

cϕ,φ is a constant depending on functions ϕ, φ and ∗ denotes a convolution operation.
Formula (1) first appeared in the pioneering paper [3] by Calderón. It went on to play an important

role as a tool in harmonic analysis, see e.g. [11] or, more recently, [9]. It also occurs in wavelet theory
[7, 12, 14, 18].
It is believed that Calderón’s type reproducing formula as discussed here will be of great utility in

Inversion Problems (see [19, 24, 25]), and in wavelet theory on Bessel-Kingman hypergroups (see [25]). Our
investigation in the present work consists to study similar questions when in (1), the classical convolution
∗ is replaced by a generalized q-Dunkl convolution a on the real line generated by the q-Dunkl differential
operator Λq,α, α ≥ −1/2, introduced in [1].
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In this paper, using some new elements of q-harmonic analysis related to the q-Dunkl transform Fq,αD
introduced by N. Bettaibi et al. in [1], we define and study the q-Dunkl two wavelet and the continuous
q-wavelet transform associated with this q-harmonic analysis. In addition to several properties, we establish
a Plancherel formula and an inversion theorem for this transform. As applications, we prove a Calderón’s
type reproducing formula in the context of the q-Dunkl two wavelet theory.
The outline of this paper is arranged as follows. In Section 2, we state some basic notions and results

from the q-harmonic analysis related to the q-Dunkl transform that will be needed throughout this paper. In
Section 3, we define and study the q-Dunkl two wavelet and the continuous q-wavelet transform associated
with the q-Dunkl operator Λq,α. Thus, some results (Plancherel’s formula, inversion formula, etc.) are
established. Section 4 is devoted to giving the main results of this paper, Calderón’s type reproducing
formula in the context of the q-Dunkl two wavelet theory is proved.

2 Harmonic Analysis Associated with the q-Dunkl Operator

We recall some usual notions and notations used in the q-theory (see [16] and [20]). We refer to the book
by G. Gasper and M. Rahman [16] for the definitions, notations and properties of the q-shifted factorials.
The references [1, 2, 4, 22] are devoted to the q-Dunkl Fourier analysis. Throughout this paper, we assume
0 < q < 1, α ≥ −1/2 and we denote

Rq = {±qn, n ∈ Z}, R+
q = {qn, n ∈ Z} and R̂q = Rq ∪ {0}.

For complex number a, the q-shifted factorials are defined by

(a; q)0 = 1, (a; q)n =

n−1∏
l=0

(1− aql), n = 1, 2, ..., (a; q)∞ =

+∞∏
l=0

(1− aql).

We also denote for all x ∈ C and n ∈ N,

[x]q =
1− qx
1− q , [n]q! = [1]q × [2]q × ...× [n]q =

(q; q)n
(1− q)n .

The q-Gamma function is given by (see [13])

Γq(x) =
(q; q)∞
(qx; q)∞

(1− q)1−x, x 6= 0,−1,−2, ....

It satisfies the following relations

Γq(x+ 1) = [x]qΓq(x) = [x]q!, Γq(1) = 1 and lim
q→1−

Γq(x) = Γ(x), Re(x) > 0.

The q-Jackson integrals from 0 to a, from 0 to +∞ and from −∞ to +∞ are defined by (see [13])∫ a

0

f(x)dqx = (1− q)a
+∞∑
n=0

qnf(aqn),

∫ +∞

0

f(x)dqx = (1− q)
+∞∑

n=−∞
qnf(qn),

∫ +∞

−∞
f(x)dqx = (1− q)

+∞∑
n=−∞

qn
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provided the sums converge absolutely. In particular, for a ∈ R+
q ,∫ +∞

a

f(x)dqx = (1− q)a
−1∑

n=−∞
qnf(aqn).

The q-Jackson integral in a generic interval [a, b] is given by (see [13])∫ b

a

f(x)dqx =

∫ b

0

f(x)dqx−
∫ a

0

f(x)dqx.

The q-derivative Dqf of a function f is given by

Dqf(x) =
f(x)− f(qx)

(1− q)x , if x 6= 0,

where Dqf(0) = f
′
(0) provided f

′
(0) exists. The Rubin’s q-differential operator is defined in [22, 23] by

∂qf(x) =


f(q−1x) + f(−q−1x)− f(qx) + f(−qx)− 2f(−x)

2(1− q)x if x 6= 0,

lim
x→0

∂qf(x), (in Rq) if x = 0.

We remark that if f is differentiable at x, then ∂qf(x) tends to f
′
(x) as q tends to 1 and by using the

definition of ∂q, we can see that

∂qf(x) = q−1Dq−1fe(x) +Dqfo(x),

with fe and fo are respectively, the even and the odd parts of f defined by

fe(x) =
f(x) + f(−x)

2
and fo(x) =

f(x)− f(−x)

2
.

A repeated application of the Rubin’s q-differential operator n times is denoted by

∂0
qf = f, ∂n+1

q f = ∂q(∂
n
q f).

The q-analogue of the integration theorem by a change of variable can be stated as follows∫ b

a

f

(
λ

χ

)
|λ|2α+1dqλ = χ2α+2

∫ b
χ

a
χ

f(x)|x|2α+1dqx, ∀χ ∈ Rq.

The third q-Bessel function is defined as follows (see [1, 15])

Jα(x; q2) =
(q2α+2; q2)∞

(q2; q2)∞

+∞∑
n=0

(−1)n
Γq2(α+ 1)qn(n+1)

Γq2(α+ n+ 1)Γq2(n+ 1)

(
x

1 + q

)2n

.

Jα(·; q2) has the normalized form

jα(x; q2) =

+∞∑
n=0

(−1)n
Γq2(α+ 1)qn(n+1)

Γq2(α+ n+ 1)Γq2(n+ 1)

(
x

1 + q

)2n

.

For α ≥ −1/2, the q-Dunkl operator Λq,αf is defined by

Λq,αf(x) = ∂q[Hq,α(f)](x) + [2α+ 1]q
f(x)− f(−x)

2x
,

where
Hq,α : f = fe + fo 7→ fe + q2α+1fo.

It satisfies the following relations:
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• For α = −1/2, Λq,α = ∂q.

• Λq,α leaves Sq(Rq) invariant.

• For all a ∈ C, Λq,α [f(ax)] = aΛq,α(f)(ax).

• If f is odd, then
Λq,α(f)(x) = q2α+1∂qf(x) + [2α+ 1]q

f(x)

x

and if f is even, then
Λq,αf(x) = ∂qf(x).

It was shown in [1] that for all λ ∈ C, the function

x 7→ Ψq,α(λx) = jα(λx, q2) +
iλx

[2α+ 2]q
jα+1(λx, q2), ∀x ∈ Rq (2)

is the unique analytic solution of the q-differential-difference equation:

Λq,αf(x) = iλf(x), f(0) = 1.

Some other properties of the q-Dunkl kernel are given in the following results.

Theorem 1 The following properties are checked:

i) For all λ, x ∈ R, Ψq,α(λx) = Ψq,α(−λx).

ii) For all λ, x ∈ Rq, Λq,αΨq,α(λx) = iλΨq,α(λx).

iii) For all λ ∈ Rq, Ψq,α(λ.) is bounded on R̂q and we have

|Ψq,α(λx)| ≤ 4

(q, q)∞
, ∀x ∈ R̂q. (3)

Proof. See [1, Proposition 6].
In what follows, let us fix some notations:

• Cpq (Rq), the space of functions f , p times q-differentiable on R̂q such that for all 0 ≤ n ≤ p, Λnq,αf is

continuous on R̂q.

• Sq(Rq), the space of functions f defined on Rq satisfying

∀n,m ∈ N, Pn,m,q(f) = sup
x∈Rq
|xm∂nq f(x)| <∞

and
lim
x→0

∂nq (f)(x) (in Rq) exists.

• Dq(Rq), the subspace of Sq(Rq) constituted of functions with compact supports.

We denote by Lpq,α(Rq), p ∈ [1,+∞], the set of all real functions on Rq for which

‖f‖q,p,α =


(∫ +∞
−∞ |f(x)|p|x|2α+1dqx

)1/p

< +∞ if 1 ≤ p < +∞,
sup
xx∈Rq

|f((x)| < +∞ if p = +∞.
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For p = 2, we provide this space with the scalar product

〈f, g〉q,α = cq,α

∫ +∞

−∞
f(x)g(x)|x|2α+1dqx. (4)

By the q-integration by parts one can verify the correlation (see [1])

〈Λq,αf, g〉q,α = −〈f,Λq,αg〉q,α, (5)

for any functions f, g ∈ Dq(Rq).

Definition 1 ([1]) The q-Dunkl transform Fq,αD associated with the q-Dunkl operator Λq,α is defined for
every function in L1

q,α(Rq) by

Fq,αD (f)(λ) = cq,α

∫ +∞

−∞
f(x)Ψq,α(−λx)|x|2α+1dqx, ∀λ ∈ R̂q, (6)

where

cq,α =
(1 + q)−α

2Γq2(α+ 1)
.

The q-Dunkl transform Fq,αD satisfies the following properties:

• L1 − L∞-boundedness: For all f ∈ L1
q,α(Rq), we have Fq,αD (f) ∈ Cq,0(Rq) and we get

‖Fq,αD (f)‖q,∞ ≤
4cq,α

(q, q)∞
‖f‖q,1,α. (7)

• Riemann-Lebesque Lemma: If f ∈ L1
q,α(Rq), then

lim
|λ|→∞
λ∈Rq

Fq,αD (f)(λ) = 0.

• q-Plancherel formula: The q-Dunkl transform Fq,αD is an isomorphism from Sq(Rq) onto itself and
extends uniquely to an isometric isomorphism on L2

q,α(Rq) with:

‖Fq,αD (f)‖q,2,α = ‖f‖q,2,α. (8)

• q-Parseval’s formula: For all f , g in L2
q,α(Rq), we have∫ +∞

−∞
f(x)g(x)|x|2α+1dqx =

∫ +∞

−∞
Fq,αD (f)(ξ)Fq,αD (g)(ξ)|ξ|2α+1dqξ. (9)

• q-Inversion formula: If f ∈ L1
q,α(Rq) such that Fq,αD (f) ∈ L1

q,α(Rq), then the q-inversion formula holds
and we have

f(x) = cq,α

∫ +∞

−∞
Fq,αD (f)(λ)Ψq,α(λx)|λ|2α+1dqλ (10)

= Fq,αD (Fq,αD (f))(x).

Note that a consequence of the q-Plancherel theorem says that for every function f ∈ L2
q,α(Rq), its inverse

transform (Fq,αD )−1 is given by

(Fq,αD )−1(f)(x) = cq,α

∫ +∞

−∞
f(λ)Ψq,α(λx)|λ|2α+1dqλ (11)

= Fq,αD (f)(−x).



Tyr et al. 25

Proposition 1 (q-hausdorff inequality) Let f ∈ Lpq,α(Rq), with p ≥ 1. Then Fq,αD (f) ∈ Lp′q,α(Rq). More-
over, if 1 ≤ p ≤ 2, hence we have

‖Fq,αD (f)‖q,p′,α ≤
(

4cq,α
(q, q)∞

) 2
p−1

‖f‖q,p,α, (12)

where the numbers p and p′ above are conjugate exponents

1

p
+

1

p′
= 1.

Proof. This is an immediate consequence of (7), q-Plancherel formula (8), q-inversion formula (10) and the
Riesz-Thorin Theorem.

Proposition 2 If f in Dq(Rq), then for all n = 1, 2, ..., we have

Fq,αD (Λnq,αf)(λ) = (iλ)nFq,αD (f)(λ).

Proof. The proof is immediate by using the formulas (5), (6) and the proof by induction for n.

Proposition 3 For all f in Dq(Rq) (resp. Sq(Rq)), we have the following relations

Fq,αD (f)(λ) = Fq,αD (f̌)(λ), ∀λ ∈ Rq, (13)

Fq,αD (f)(λ) = Fq,αD (f̌)(−λ), ∀λ ∈ Rq, (14)

where f̌ is the function defined by
f̌(x) = f(−x), ∀x ∈ Rq.

Proof. For all f in Dq(Rq), it immediately follows from i) of the Theorem 1 and (6) that

Fq,αD (f)(λ) = cq,α

∫ +∞

−∞
f(x)Ψq,α(−λx)|x|2α+1dqx

= cq,α

∫ +∞

−∞
f(x)Ψq,α(λx)|x|2α+1dqx

= cq,α

∫ +∞

−∞
f̌(x)Ψq,α(−λx)|x|2α+1dqx

= Fq,αD (f̌)(λ).

Then the formula (13) is proved. In the same way, we prove (14).

Definition 2 The generalized q-Dunkl translation operator is defined for f ∈ L2
q,α(Rq) and x, y ∈ Rq by

T q,αx (f)(y) = cq,α

∫ +∞

−∞
Fq,αD (f)(λ)Ψq,α(λx)Ψq,α(λy)|λ|2α+1dqλ

and
T q,α0 (f) = f.

In particular the product formula

T q,αx (Ψq,α(λ·))(y) = Ψq,α(λx)Ψq,α(λy), ∀x, λ, y ∈ Rq

holds.
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Proposition 4 If f ∈ L2
q,α(Rq), then T q,αx (f) ∈ L2

q,α(Rq) and we have

‖T q,αx (f)‖q,2,α ≤
4

(q, q)∞
‖f‖q,2,α, ∀x ∈ Rq. (15)

Proof. See [2, Proposition 2].

Proposition 5 The q-Dunkl translation operator checks the following statements:

i) For f ∈ L2
q,α(Rq) and x, y ∈ Rq, we have

Fq,αD (T q,αx f)(λ) = Ψq,α(λx)Fq,αD (f)(λ). (16)

ii) For all f ∈ L2
q,α(Rq) and x, y ∈ Rq, we have

T q,αx (f)(y) = T q,αy (f)(x) (17)

and
T q,αx (f)(y) = T q,αx (f)(y). (18)

Proof. See [2, Proposition 2].
The generalized q-Dunkl translation operators allow us to define a q-Dunkl convolution product ∗q,α:

Definition 3 For all f, g ∈ Sq(Rq), we have

f ∗q,α g(x) = cq,α

∫ ∞
−∞

T q,αx (f)(−y)g(y)|y|2α+1dqy, ∀x, y ∈ Rq, (19)

provided the q-integral exists.

Theorem 2 For f, g ∈ Sq(Rq), we have

i) Fq,αD (f ∗q,α g) = Fq,αD (f).Fq,αD (g).

ii) f ∗q,α g = g ∗q,α f .

iii) (f ∗q,α g) ∗q,α h = f ∗q,α (g ∗q,α h).

iv) f ∗q,α g ∈ Sq(Rq). Moreover,∫ ∞
−∞
|f ∗q,α g(x)|2|x|2α+1dqx =

∫ ∞
−∞
|Fq,αD (f)(x)|2|Fq,αD (g)(x)|2|x|2α+1dqx.

Proof. See [2, Proposition 3 and Proposition 4].

Proposition 6 Let p, r, s ≥ 1 such that
1

p
+

1

r
− 1 =

1

s
.

Given two functions f ∈ Lpq,α(Rq) and g ∈ Lrq,α(Rq). Then f ∗q,α g exists and we have

f ∗q,α g ∈ Lsq,α(Rq), Fq,αD (f ∗q,α g) = Fq,αD (f)Fq,αD (g). (20)

Moreover, if s ≥ 2, then

‖f ∗q,α g‖q,s,α ≤
4cq,α

(q, q)∞
‖f‖q,p,α‖f‖q,r,α. (21)



Tyr et al. 27

Proof. Using similar ideas as in the proof for Theorem 5 in [8].
In the sequel, we need some technical Propositions.

Proposition 7 For all f, g ∈ L2
q,α(Rq) and all ϕ ∈ Sq(Rq), we have the identity∫ +∞

−∞
f ∗q,α g(x)(Fq,αD )−1(ϕ)(x)|x|2α+1dqx =

∫ +∞

−∞
Fq,αD (f)(λ)Fq,αD (g)(λ)ϕ(λ)|λ|2α+1dqλ.

Proof. Fix g ∈ L2
q,α(Rq) and ϕ ∈ Sq(Rq). For f ∈ L2

q,α(Rq), we put

J1 =

∫ +∞

−∞
f ∗q,α g(x)(Fq,αD )−1(ϕ)(x)|x|2α+1dqx

and

J2 =

∫ +∞

−∞
Fq,αD (f)(λ)Fq,αD (g)(λ)ϕ(λ)|λ|2α+1dqλ.

By using the formula (21), Hölder’s inequality and q-Plancherel formula (8), we have

|J1| ≤ ‖f ∗q,α g‖q,∞‖(Fq,αD )−1(ϕ)‖q,1,α

≤ 4cq,α
(q, q)∞

‖f‖q,2,α‖g‖q,2,α‖Fq,αD (ϕ)‖q,1,α

≤
(

4cq,α
(q, q)∞

)(
4cq,α

(q, q)∞

) 2
∞−1

‖f‖q,2,α‖g‖q,2,α‖ϕ‖q,∞

= ‖f‖q,2,α‖g‖q,2,α‖ϕ‖q,∞ <∞

and

|J2| ≤ ‖Fq,αD (f)Fq,αD (g)‖q,1,α‖ϕ‖q,∞
≤ ‖Fq,αD (f)‖q,2,α‖Fq,αD (g)‖q,2,α‖ϕ‖q,∞
= ‖f‖q,2,α‖g‖q,2,α‖ϕ‖q,∞ <∞,

which shows that these two integrals are well defined. Furthermore, by formulas (20) and q-Parseval’S
formula (9), we get∫ +∞

−∞
f ∗q,α g(x)(Fq,αD )−1(ϕ)(x)|x|2α+1dqx =

∫ +∞

−∞
Fq,αD (f ∗q,α g)(λ)ϕ(λ)|λ|2α+1dqλ

=

∫ +∞

−∞
Fq,αD (f)(λ)Fq,αD (g)(λ)ϕ(λ)|λ|2α+1dqλ.

Then, Proposition 7 is proved.

Proposition 8 Let f, g ∈ L2
q,α(Rq). Then f ∗q,α g belongs to L2

q,α(Rq) if and only if Fq,αD (f)Fq,αD (g) ∈
L2
q,α(Rq) and we have

Fq,αD (f ∗q,α g) = Fq,αD (f)×Fq,αD (g),

in the L2
q,α(Rq)-case.

Proof. Suppose f ∗q,α g ∈ L2
q,α(Rq). By Proposition 7 and q-Parseval’S formula (9), we have for any

ϕ ∈ Sq(Rq)∫ +∞

−∞
Fq,αD (f)(λ)Fq,αD (g)(λ)ϕ(λ)|λ|2α+1dqλ =

∫ +∞

−∞
f ∗q,α g(x)(Fq,αD )−1(ϕ)(x)|x|2α+1dqx

=

∫ +∞

−∞
Fq,αD (f ∗q,α g)(λ)ϕ(λ)|λ|2α+1dqλ,
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which shows that Fq,αD (f ∗q,α g) = Fq,αD (f)Fq,αD (g). Conversely, if Fq,αD (f)Fq,αD (g) ∈ L2
q,α(Rq) then by

Proposition 7 again and q-Parseval’S formula (9), we have for any ϕ ∈ Sq(Rq):∫ +∞

−∞
f ∗q,α g(x)(Fq,αD )−1(ϕ)(x)|x|2α+1dqx

=

∫ +∞

−∞
Fq,αD (f)(λ)Fq,αD (g)(λ)ϕ(λ)|λ|2α+1dqλ

=

∫ +∞

−∞
(Fq,αD )−1(Fq,αD (f)Fq,αD (g))(x)(Fq,αD )−1(ϕ)(x)|x|2α+1dqx,

which shows, that f ∗q,α g = (Fq,αD )−1(Fq,αD (f)Fq,αD (g)). This achieves the proof of Proposition 8.

3 q-Dunkl Two-Wavelet Theory

The concept of "wavelets" or "ondelettes" started to appear in the literature only in the early 1980’s.
This new concept can be viewed as a synthesis of various ideas which orginated from different disciplines
including mathematics, physics and engineering. In 1982, Jean Morlet a French geophysicist engineer, first,
introduced the idea of wavelets transform as a new mathematics tool for seismic signal analysis. The
mathematical foundations were given by Grossmann and Morlet [17]. The harmonic analyst Meyer and
many other mathematicians became aware of this theory and they recognized many classical results inside
it (see [18, 21]).
Next, the theory of wavelets and continuous wavelet transform has been extended to the harmonic analysis

associated with a class of singular differential operators (see [10]). Recently Trimèche [24], with the aid of
the harmonic analysis associated to the Dunkl theory, has defined and studied the Dunkl wavelet transform.
In the same paper [24], Trimèche has proved for this transform the Plancherel and inversion formulas.
In this Section, we define and study the q-Dunkl two wavelet and the continuous q-wavelet transform

associated with the q-Dunkl operator and we establish a Plancherel formula and an inversion theorem for
this transform.

Notations: We denote by

(i) R2
q,+ = R+

q × Rq.

(ii) Lpq,α(R2
q,+), p ∈ [1,+∞], the space of measurable functions on R2

q,+ for which

‖f‖µq,α,p =


(∫

R2q,+
|f(a, x)|pdµq,α(a, x)

)1/p

< +∞ if 1 ≤ p < +∞,
sup

(a,x)∈R2q,+
|f(a, x)| < +∞ if p = +∞,

where the measure µq,α is defined by

dµq,α(a, x) =
|x|2α+1dqxdqa

a2α+3
, ∀(a, x) ∈ R2

q,+.

Definition 4 ([27]) A q-wavelet associated with the q-Dunkl operator Λq,α, is a square q-integrable function
h on Rq satisfying the following admissibility condition

0 < Cα,h =

∫ +∞

0

|Fq,αD (h)(a)|2 dqa
a

=

∫ +∞

0

|Fq,αD (h)(−a)|2 dqa
a

<∞.

Remark 1 For all λ ∈ Rq, we have

Cα,h =

∫ +∞

0

|Fq,αD (h)(aλ)|2 dqa
a
.
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Definition 5 Let u and v be in L2
q,α(Rq). We say that the pair (u, v) is a q-Dunkl two-wavelet on Rq if the

following integral, noted by Cα,u,v, ∫ +∞

0

Fq,αD (v)(aλ)Fq,αD (u)(aλ)
dqa

a
(22)

is constant for almost all λ ∈ Rq. We call the number Cα,u,v, the q-Dunkl two-wavelet constant associated to
the functions u and v.

Remark 2 It is obvious that if u is a q-Dunkl wavelet then the pair (u, u) is a q-Dunkl two-wavelet, and
Cα,u,u coincides with Cα,u.

Let a > 0, a ∈ R+
q and h ∈ L2

q,α(Rq). We consider the function ha defined by

ha(x) =
1

a2α+2
h
(x
a

)
, ∀x ∈ Rq.

Proposition 9 (i) For all function h belongs to L2
q,α(Rq). We have

‖ha‖q,2,α =
1

aα+1
‖h‖q,2,α. (23)

(ii) Let h be in L1
q,α(Rq)

⋃
L2
q,α(Rq). Then, we get

Fq,αD (ha)(λ) = Fq,αD (h)(aλ), ∀a ∈ R+
q , : ∀λ ∈ Rq. (24)

Proof. The change of variables u =
x

a
gives the result.

Remark 3 Let h ∈ Lpq,α(Rq), p ∈ [1,+∞]. The function ha belongs to Lpq,α(Rq) and we have

‖ha‖q,p,α = a(2α+2)( 1p−1)‖h‖q,p,α.

Proposition 10 Let h be a q-Dunkl wavelet in L2
q,α(Rq). Then, for all x ∈ R̂q and a ∈ R+

q , the function
ha,x, defined by

ha,x(λ) = aα+1T q,αx (ha)(λ) (25)

is a q-Dunkl wavelet in L2
q,α(Rq) and we have

Cα,ha,x = a2α+2

∫ +∞

0

∣∣∣∣Ψq,α

(
λx

a

)∣∣∣∣2 |Fq,αD (h)(λ)|2 dqλ
λ
,

with T q,αx is the generalized q-Dunkl translation operator defined by Definition 2.
Proof. Let h ∈ L2

q,α(Rq). We first ascertain that ha,x is in L2
q,α(Rq). Indeed, in view of formulas (15), (23),

we have

‖ha,x‖2q,2,α = a2α+2

∫ +∞

−∞
|T q,αx (ha)(λ)|2|λ|2α+1dqλ

≤ 16a2α+2

(q; q)2
∞
‖ha‖2q,2,α

=
16

(q; q)2
∞
‖h‖2q,2,α.

Then
‖ha,x‖q,2,α ≤

4

(q; q)∞
‖h‖q,2,α <∞. (26)
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On other hand, it follows from (16) and (24) that

Cα,ha,x =

∫ +∞

0

|Fq,αD (ha,x)(λ)|2 dqλ
λ

= a2α+2

∫ +∞

0

|Ψq,α(λx)|2|Fq,αD (h)(aλ)|2 dqλ
λ

= a2α+2

∫ +∞

0

∣∣∣∣Ψq,α

(
λx

a

)∣∣∣∣2 |Fq,αD (h)(λ)|2 dqλ
λ
.

Moreover, we have

0 < Cα,ha,x ≤
16a2α+2

(q; q)2
∞

∫ +∞

0

|Fq,αD (h)(λ)|2 dqλ
λ

=
16a2α+2

(q; q)2
∞
Cα,h <∞.

So, the essential is proved.

Definition 6 Let h be a q-Dunkl wavelet on Rq in L2
q,α(Rq). We define the continuous q-wavelet transform

associated with the q-Dunkl operator for all f ∈ L2
q,α(Rq) by

ψα,Dq,h (f)(a, x) = cq,α

∫ +∞

−∞
f(λ)ha,x(λ)|λ|2α+1dqλ (27)

= 〈f, ha,x〉q,α.

Remark that (27) is equivalent to

ψα,Dq,h (f)(a, x) = cq,α

∫ +∞

−∞
f(λ)ha,x(λ)|λ|2α+1dqλ

= cq,αa
α+1

∫ +∞

−∞
f(λ)T q,αx (ha)(λ)|λ|2α+1dqλ

= cq,αa
α+1

∫ +∞

−∞
f̌(λ)T q,αx (ha)(−λ)|λ|2α+1dqλ

= aα+1f̌ ∗q,α ha(x), (28)

and also equivalent to

ψα,Dq,h (f)(a, x) = aα+1Fq,αD
[
Fq,αD (f̌ ∗q,α ha)

]
(−x)

= aα+1Fq,αD
[
Fq,αD (f̌).Fq,αD (ha)

]
(−x)

= cq,αa
α+1

∫ +∞

−∞
Fq,αD (f̌)(λ)Fq,αD (ha)(λ)Ψq,α(λx)|λ|2α+1dqλ

= cq,αa
α+1

∫ +∞

−∞
Fq,αD (f)(λ)Fq,αD (h)(aλ)Ψq,α(−λx)|λ|2α+1dqλ.

Proposition 11 Let h be a q-Dunkl wavelet in L2
q,α(Rq). Then for all f in L2

q,α(Rq), we have

‖ψα,Dq,h (f)‖µq,α,∞ ≤
4cq,α

(q; q)∞
‖f‖q,2,α‖h‖q,2,α.

Proof. Suppose that f ∈ L2
q,α(Rq), x ∈ R̂q and a ∈ R+

q , it follows from (26), (27) and the Cauchy-Schwartz
inequality that

|ψα,Dq,h (f)(a, x)| ≤ cq,α

∫ +∞

−∞
|f(λ)||ha,x(λ)||λ|2α+1dqλ

≤ cq,α‖f‖q,2,α‖ha,x‖q,2,α

=
4cq,α

(q; q)∞
‖f‖q,2,α‖h‖q,2,α.
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Then, the necessity is proved.

Theorem 3 (Parseval formula) Let (u, v) be a q-Dunkl two-wavelet. Then for all f and g in L2
q,α(Rq),

there holds ∫ +∞

0

∫ +∞

−∞
ψα,Dq,u (f)(a, x)ψα,Dq,v (g)(a, x)dµq,α(a, x) = Cα,u,v

∫ +∞

−∞
f(x)g(x)|x|2α+1dqx, (29)

where

Cα,u,v =

∫ +∞

0

Fq,αD (v)(aλ)Fq,αD (u)(aλ)
dqa

a
.

Proof. Using Fubini’s Theorem, formula (28) and Parseval’s formula (9), we get∫ +∞

0

∫ +∞

−∞
ψα,Dq,u (f)(a, x)ψα,Dq,v (g)(a, x)dµq,α(a, x)

=

∫ +∞

0

a2α+2

∫ +∞

−∞
f̌ ∗q,α ua(x)ǧ ∗q,α va(x)dµq,α(a, x)

=

∫ +∞

0

∫ +∞

−∞
f̌ ∗q,α ua(x)ǧ ∗q,α va(x)|x|2α+1 dqxdqa

a

=

∫ +∞

0

∫ +∞

−∞
Fq,αD (f̌)(λ)Fq,αD (ǧ)(λ)Fq,αD (ua)(λ)Fq,αD (va)(λ)‖λ|2α+1 dqλdqa

a

=

∫ +∞

−∞
Fq,αD (f̌)(λ)Fq,αD (ǧ)(λ)

(∫ +∞

0

Fq,αD (u)(aλ)Fq,αD (v)(−aλ)
dqa

a

)
|λ|2α+1dqλ.

On the other hand using the formulas (13) and (14), we deduce that∫ +∞

0

∫ +∞

−∞
ψα,Dq,u (f)(a, x)ψα,Dq,v (g)(a, x)dµq,α(a, x)

=

∫ +∞

−∞
Fq,αD (f)(λ)Fq,αD (g)(λ)

(∫ +∞

0

Fq,αD (u)(aλ)Fq,αD (v)(aλ)
dqa

a

)
|λ|2α+1dqλ

= Cα,u,v
∫ +∞

−∞
Fq,αD (f)(λ)Fq,αD (g)(λ)|λ|2α+1dqλ

= Cα,u,v
∫ +∞

−∞
f(x)g(x)|x|2α+1dqx,

which completes the proof.

Remark 4 The previous theorem generalizes the Parseval formula for the continuous Dunkl wavelet trans-
form proved by Trimèche [24].

Theorem 4 (Plancherel formula) Let u be a q-Dunkl wavelet. Then for all f in L2
q,α(Rq), we have

1

Cα,u

∫ +∞

0

∫ +∞

−∞

∣∣∣ψα,Dq,u (f)(a, x)
∣∣∣2 dµq,α(a, x) =

∫ +∞

−∞
|f(x)|2|x|2α+1dqx,

where

Cα,u =

∫ +∞

0

|Fq,αD (u)(λa)|2 dqa
a
. (30)
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Proof. Taking on account the result of Theorem 3. If u = v is a q-Dunkl wavelet and f = g, we obtain∫ +∞

0

∫ +∞

−∞

∣∣∣ψα,Dq,u (f)(a, x)
∣∣∣2 dµq,α(a, x) = Cα,u

∫ +∞

−∞
|f(x)|2|x|2α+1dqx,

where

Cα,u = Cα,u,u =

∫ +∞

0

|Fq,αD (u)(λa)|2 dqa
a
.

Corollary 1 Let (u, v) be a q-Dunkl two-wavelet. We have the following: if Cα,u,v = 0, then ψα,Dq,u (L2
q,α(Rq))

and ψα,Dq,v (L2
q,α(Rq)) are orthogonal.

Proof. This immediately follows from (29).

Theorem 5 (Inversion formula) Let (u, v) be a q-Dunkl two-wavelet. For all f in L1
q,α(Rq) (resp. L2

q,α(Rq))
such that Fq,αD (f) belongs to L1

q,α(Rq) (resp. L1
q,α(Rq)

⋂
L∞q,α(Rq)), we have

f(λ) =
cq,α
Cα,u,v

∫ +∞

0

∫ +∞

−∞
ψα,Dq,u (f)(a, x)va,x(λ)dµq,α(a, x), a.e., (31)

where for each λ ∈ Rq, both the inner integral and the outer integral are absolutely convergent, but eventually
not the double integral.

Proof. In view of formulas (16), (17), (18), (25), (28) and the q-Parseval formula (9) for the q-Dunkl
transform Fq,αD , we deduce that∫ +∞

−∞
ψα,Dq,u (f)(a, x)va,x(λ)|x|2α+1dqx

= a2α+2

∫ +∞

−∞
f̌ ∗q,α ua(x)T q,αx (va)(λ)|x|2α+1dqx

= a2α+2

∫ +∞

−∞
f̌ ∗q,α ua(x)T q,αλ (va)(x)|x|2α+1dqx

= a2α+2

∫ +∞

−∞
f̌ ∗q,α ua(x)T q,αλ (va)(x)|x|2α+1dqx

= a2α+2

∫ +∞

−∞
Fq,αD (f̌)(ξ)Fq,αD (ua)(ξ)Ψq,α(λξ)Fq,αD (va)(ξ)|ξ|2α+1dqξ

= a2α+2

∫ +∞

−∞
Fq,αD (f)(−ξ)Fq,αD (ua)(−ξ)Ψq,α(−λξ)Fq,αD (va)(−ξ)|ξ|2α+1dqξ

= a2α+2

∫ +∞

−∞
Fq,αD (f)(ξ)Fq,αD (ua)(ξ)Ψq,α(λξ)Fq,αD (va)(ξ)|ξ|2α+1dqξ.

Therefore, by using the formula (24), we have∫ +∞

−∞
ψα,Dq,u (f)(a, x)va,x(λ)|x|2α+1dqx

= a2α+2

∫ +∞

−∞
Fq,αD (f)(ξ)Ψq,α(λξ)Fq,αD (u)(aξ)Fq,αD (v)(aξ)|ξ|2α+1dqξ.
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Taking into account the q-inversion formula (10) and integrating both sides of this equality over R+
q with

respect to the measure dqa/a2α+3, we get

cq,α
Cα,u,v

∫ +∞

0

(∫ +∞

−∞
ψα,Dq,u (f)(a, x)va,x(λ)|x|2α+1dqx

)
dqa

a2α+3

=
cq,α
Cα,u,v

∫ +∞

−∞
Fq,αD (f)(ξ)Ψq,α(λξ)

(∫ +∞

0

Fq,αD (u)(aξ)Fq,αD (v)(aξ)
dqa

a

)
|ξ|2α+1dqξ.

= cq,α

∫ +∞

−∞
Fq,αD (f)(ξ)Ψq,α(λξ)|ξ|2α+1dqξ = f(λ).

Then, the proof of this theorem is finished.

4 Calderón’s Type Reproducing Formula in the Context of the
q-Dunkl Two-Wavelet

In this Section, we will prove a Calderón-reproducing formula for the continuous q-wavelet transform in the
context of the q-Dunkl two-wavelet. More precisely, we prove the following theorem:

Theorem 6 (Calderón’s type formula) Let u and v be two q-Dunkl wavelets in L2
q,α(Rq) such that (u, v)

is a q-Dunkl two-wavelet, Cα,u,v 6= 0, and Fq,αD (u) and Fq,αD (v) both belong to L∞q,α(Rq). Then, for all f in
L2
q,α(Rq) and 0 < ε < δ <∞, the function

fε,δ(λ) =
cq,α
Cα,u,v

∫ δ

ε

∫ +∞

−∞
ψα,Dq,u (f)(a, x)va,x(λ)|x|2α+1dqx

dqa

a2α+3
(32)

belongs to L2
q,α(Rq), and satisfies

lim
ε→0, δ→∞

‖fε,δ − f‖q,2,α = 0. (33)

To prove this theorem we need the following lemmas:

Lemma 1 Let u and v be two q-Dunkl wavelets satisfying the conditions of Theorem 6 and f in L2
q,α(Rq).

Then,

(i) The functions (f̌ ∗q,α ua)ˇ and (f̌ ∗q,α ua)ˇ∗q,α va are in L2
q,α(Rq), and we have

Fq,αD ((f̌ ∗q,α ua)ˇ∗q,α va)(λ) = Fq,αD (f)(λ)Fq,αD (ua)(λ)Fq,αD (va)(λ), ∀λ ∈ Rq. (34)

(ii) The following inequality is checked

‖(f̌ ∗q,α ua)ˇ∗q,α va‖q,2,α ≤ ‖Fq,αD (u)‖q,∞‖Fq,αD (v)‖q,∞‖f‖q,2,α. (35)

Proof. Taking on account the relations (13) and (14) of Proposition 3, we have

Fq,αD ((f̌ ∗q,α ua)ˇ)(λ) = Fq,αD (f̌ ∗q,α ua)(−λ)

= Fq,αD (f̌)(−λ)Fq,αD (ua)(−λ)

= Fq,αD (f)(λ)Fq,αD (ǔa)(−λ).

Therefore,
Fq,αD ((f̌ ∗q,α ua)ˇ)(λ) = Fq,αD (f)(λ)Fq,αD (ua)(λ). (36)
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Furthermore, we put
w(x) = (f̌ ∗q,α ua)ˇ(x), x ∈ Rq.

Thus,
Fq,αD ((f̌ ∗q,α ua)ˇ∗q,α va)(λ) = Fq,αD (w ∗q,α va)(λ).

By using Proposition 8, we deduce that the function w belongs to L2
q,α(Rq), and we have

Fq,αD (w ∗q,α va)(λ) = Fq,αD (w)(λ)Fq,αD (va)(λ). (37)

We deduce (34) from (36) and (37).
From (i) we have ∫ +∞

−∞
|Fq,αD ((f̌ ∗q,α ua)ˇ∗q,α va)(λ)|2|λ|2α+1dqλ

=

∫ +∞

−∞
|Fq,αD (f)(λ)|2|Fq,αD (ua)(λ)|2|Fq,αD (va)(λ)|2|λ|2α+1dqλ.

Then, from the Plancherel formula (8) and the fact that Fq,αD (ua) and Fq,αD (va) both belong to L∞q,α(Rq), we
obtain

‖(f̌ ∗q,α ua)ˇ∗q,α va‖q,2,α ≤ ‖Fq,αD (ua)‖q,∞‖Fq,αD (va)‖q,∞‖f‖q,2,α. (38)

We deduce the result from the relation (24).

Lemma 2 Let u and v be two q-Dunkl wavelets satisfying the conditions of Theorem 6. Then, the function
Kε,δ defined by

Kε,δ(λ) =
1

Cα,u,v

∫ δ

ε

Fq,αD (ua)(λ)Fq,αD (va)(λ)
dqa

a
, (39)

satisfies, for almost all λ ∈ Rq:

0 < |Kε,δ(λ)| <
√
Cα,uCα,v
|Cα,u,v|

(40)

and
lim

ε→0, δ→∞
Kε,δ(λ) = 1.

Proof. From the Cauchy-Schwarz inequality and the relation (30), for almost all λ ∈ Rq, we have

|Kε,δ(λ)| ≤ 1

|Cα,u,v|

(∫ δ

ε

|Fq,αD (ua)(λ)|2 dqa
a

)1/2(∫ δ

ε

|Fq,αD (va)(λ)|2 dqa
a

)1/2

≤ 1

|Cα,u,v|

(∫ +∞

0

|Fq,αD (u)(aλ)|2 dqa
a

)1/2(∫ +∞

0

|Fq,αD (v)(aλ)|2 dqa
a

)1/2

≤
√
Cα,uCα,v
|Cα,u,v|

.

On the other hand, for almost all λ ∈ Rq, we have

lim
ε→0,:δ→∞

Kε,δ(λ) = 1.

This completes the proof.
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Lemma 3 Let (u, v) be a q-Dunkl two-wavelet satisfying the admissibility condition (22). Then for all
f ∈ L1

q,α(Rq)
⋂
L2
q,α(Rq), we have

f(λ) =
1

Cα,u,v

∫ +∞

0

((f̌ ∗q,α ua)ˇ∗q,α va)(λ)
dqa

a
.

Proof. From Theorem 5, the formulas (25) and (28), we have

f(λ) =
cq,α
Cα,u,v

∫ +∞

0

∫ +∞

−∞
ψα,Dq,u (f)(a, x)va,x(λ)dµq,α(a, x)

=
cq,α
Cα,u,v

∫ +∞

0

∫ +∞

−∞
f̌ ∗q,α ua(x)T q,αx (va)(λ)|x|2α+1dqx

dqa

a

=
cq,α
Cα,u,v

∫ +∞

0

∫ +∞

−∞
(f̌ ∗q,α ua)ˇ(x)T q,αλ (va)(−x)|x|2α+1dqx

dqa

a
.

By Proposition 6, we see that (f̌ ∗q,α ua) belong to L2
q,α(Rq) for each f ∈ L1

q,α(Rq). Hence also (f̌ ∗q,α ua)ˇ

is in L2
q,α(Rq). Then (f̌ ∗q,α ua)ˇ∗q,α va exists and we have

(f̌ ∗q,α ua)ˇ∗q,α va(λ) = cq,α

∫ +∞

−∞
(f̌ ∗q,α ua)ˇ(x)T q,αλ (va)(−x)|x|2α+1dqx.

Then

f(λ) =
1

Cα,u,v

∫ +∞

0

((f̌ ∗q,α ua)ˇ∗q,α va)(λ)
dqa

a
.

Lemma 4 We consider the functions u, v and f satisfying the conditions of Theorem 6. Then the function
fε,δ defined by the relation (32) belongs to L2

q,α(Rq) and satisfies

Fq,αD (fε,δ)(ξ) = Kε,δ(ξ)Fq,αD (f)(ξ), : ∀ξ ∈ Rq, (41)

where Kε,δ is the function given by the relation (39).

Proof. We first prove that the function fε,δ belongs to L2
q,α(Rq). From Lemma 3, we have

fε,δ(λ) =
1

Cα,u,v

∫ δ

ε

((f̌ ∗q,α ua)ˇ∗q,α va)(λ)
dqa

a
.

By using Hölder’s inequality for the measure
dqa

a
, we get

|fε,δ(λ)|2 ≤ 1

|Cα,u,v|2

(∫ δ

ε

dqa

a

)∫ δ

ε

|(f̌ ∗q,α ua)ˇ∗q,α va(λ)|2 dqa
a
.

So, by applying Fubini-Tonelli’s theorem, we obtain∫ +∞

−∞
|fε,δ(λ)|2|λ|2α+1dqλ ≤ 1

|Cα,u,v|2

(∫ δ

ε

dqa

a

)

×
∫ δ

ε

(∫ +∞

−∞
|(f̌ ∗q,α ua)ˇ∗q,α va(λ)|2|λ|2α+1dqλ

)
dqa

a
.
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From the Parseval formula (9) and the relation (34), we deduce that∫ +∞

−∞
|fε,δ(λ)|2|λ|2α+1dqλ ≤ 1

|Cα,u,v|2

(∫ δ

ε

dqa

a

)∫ +∞

−∞
|Fq,αD (f)(ξ)|2

×
(∫ δ

ε

|Fq,αD (ua)(ξ)|2|Fq,αD (va)(ξ)|2 dqa
a

)
|ξ|2α+1dqξ.

On the other hand, from the relations (24) and (30), we have∫ δ

ε

|Fq,αD (ua)(ξ)|2|Fq,αD (va)(ξ)|2 dqa
a
≤ Cα,v‖Fq,αD (u)‖2q,∞.

Thus, ∫ +∞

−∞
|fε,δ(λ)|2|λ|2α+1dqλ ≤

Cα,v
|Cα,u,v|2

(∫ δ

ε

dqa

a

)
‖Fq,αD (u)‖2q,∞‖F

q,α
D (f)‖2q,2,α,

and the Plancherel formula (8) implies∫ +∞

−∞
|fε,δ(λ)|2|λ|2α+1dqλ ≤

Cα,v
|Cα,u,v|2

(∫ δ

ε

dqa

a

)
‖Fq,αD (u)‖2q,∞‖f‖2q,2,α <∞.

Then, fε,δ belongs to L2
q,α(Rq).

We now prove the formula (41). Let ϕ in Sq(Rq). We have the function (Fq,αD )−1(ϕ) is in Sq(Rq). From
the Lemma 3, we have∫ +∞

−∞
fε,δ(λ)(Fq,αD )−1(ϕ)(λ)|λ|2α+1dqλ (42)

=

∫ +∞

−∞

(
1

Cα,u,v

∫ δ

ε

(f̌ ∗q,α ua)ˇ∗q,α va(λ)
dqa

a

)
(Fq,αD )−1(ϕ)(λ)|λ|2α+1dqλ.

We consider ∣∣∣∣ 1

Cα,u,v

∣∣∣∣ ∫ +∞

−∞

∫ δ

ε

|(f̌ ∗q,α ua)ˇ∗q,α va(λ)(Fq,αD )−1(ϕ)(λ)|dqa
a
|λ|2α+1dqλ

=

∣∣∣∣ 1

Cα,u,v

∣∣∣∣ ∫ δ

ε

[∫ +∞

−∞
|(f̌ ∗q,α ua)ˇ∗q,α va(λ)||(Fq,αD )−1(ϕ)(λ)||λ|2α+1dqλ

]
dqa

a
.

By applying Hölder’s inequality to the second member, we get∣∣∣∣ 1

Cα,u,v

∣∣∣∣ ∫ δ

ε

[∫ +∞

−∞
|(f̌ ∗q,α ua)ˇ∗q,α va(λ)||(Fq,αD )−1(ϕ)(λ)||λ|2α+1dqλ

]
dqa

a

≤
∣∣∣∣ 1

Cα,u,v

∣∣∣∣ ∫ δ

ε

‖(f̌ ∗q,α ua)ˇ∗q,α va‖q,2,α‖(Fq,αD )−1(ϕ)‖q,2,α
dqa

a
.

In view of formula (35) and the q-Plancherel formula (8), we obtain∣∣∣∣ 1

Cα,u,v

∣∣∣∣ ∫ δ

ε

[∫ +∞

−∞
|(f̌ ∗q,α ua)ˇ∗q,α va(λ)||(Fq,αD )−1(ϕ)(λ)||λ|2α+1dqλ

]
dqa

a

≤
∣∣∣∣ 1

Cα,u,v

∣∣∣∣
(∫ δ

ε

dqa

a

)
‖Fq,αD (u)‖q,∞‖Fq,αD (v)‖q,∞‖f‖q,2,α‖ϕ‖q,2,α <∞.
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Then, from Fubini’s theorem, the second member of the formula (42) can also be written in the form

1

Cα,u,v

∫ δ

ε

(∫ +∞

−∞
(f̌ ∗q,α ua)ˇ∗q,α va(λ)(Fq,αD )−1(ϕ)(λ)|λ|2α+1dqλ

)
dqa

a
. (43)

Now, by using the q-Parseval formula (9) and the formula (34), the formula (43) becomes

1

Cα,u,v

∫ δ

ε

(∫ +∞

−∞
Fq,αD (f)(ξ)Fq,αD (ua)(ξ)Fq,αD (va)(ξ)ϕ(ξ)|ξ|2α+1dqξ

)
dqa

a
.

By applying Fubini’s theorem to this integral, it takes the form∫ +∞

−∞
Fq,αD (f)(ξ)

(
1

Cα,u,v

∫ δ

ε

Fq,αD (ua)(ξ)Fq,αD (va)(ξ)
dqa

a

)
ϕ(ξ)|ξ|2α+1dqξ

=

∫ +∞

−∞
Fq,αD (f)(ξ)Kε,δ(ξ)ϕ(ξ)|ξ|2α+1dqξ. (44)

On the other hand, by applying the q-Parseval formula (9) to the first member of the formula (42), we get∫ +∞

−∞
Fq,αD (fε,δ)(ξ)ϕ(ξ)|ξ|2α+1dqξ. (45)

From the formulas (44) and (45), we obtain for all ϕ in Sq(Rq):∫ +∞

−∞
(Fq,αD (fε,δ)(ξ)−Fq,αD (f)(ξ)Kε,δ(ξ))ϕ(ξ)|ξ|2α+1dqξ = 0.

Hence,
Fq,αD (fε,δ)(ξ) = Kε,δ(ξ)Fq,αD (f)(ξ), : ∀ξ ∈ Rq.

This puts the end of the desired proof.

Proof of Theorem 6. From Lemma 4, the function fε,δ belongs to L2
q,α(Rq). By using the q-Plancherel

formula (8) and Lemma 4, we obtain

‖fε,δ − f‖q,2,α =

∫ +∞

−∞
|Fq,αD (fε,δ − f)(ξ)|2|ξ|2α+1dqξ

=

∫ +∞

−∞
|Fq,αD (ξ)(Kε,δ(ξ)− 1)|2|ξ|2α+1dqξ

=

∫ +∞

−∞
|Fq,αD (ξ)|2|1−Kε,δ(ξ)|2|ξ|2α+1dqξ.

Furthermore, from Lemma 4 again and formula (40), for almost all ξ ∈ Rq, we have

lim
ε→0, δ→∞

|Fq,αD (ξ)|2|1−Kε,δ(ξ)|2 = 0,

and

|Fq,αD (ξ)|2|1−Kε,δ(ξ)|2 ≤ |Fq,αD (ξ)|2(1 + |Kε,δ(ξ)|)2

≤ C|Fq,αD (ξ)|2,

where

C =

(
1 +

√
Cα,uCα,v
|Cα,u,v|

)2
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is a positive constant.
Moreover, since the function ξ 7→ |Fq,αD (ξ)|2 is in L2

q,α(Rq). The dominated convergence theorem yields
(33).
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