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Abstract

The present work aims to introduce a new interval order relation and generalized arithmetic mean-
geometric mean (AM-GM) inequality for interval numbers. Again, this work tries to implement this
generalized AM-GM inequality in the extended Harris-Wilson’s EOQ model to derive the optimal policy.
The Harris-Wilson’s model is extended by taking interval-valued demand rate, holding cost, and ordering
cost as interval-valued instead of real-valued. Finally, the optimality condition of the extended EOQ
model is validated by some numerical examples.

1 Introduction

Interval order relation plays a vital role in solving the real-life decision-making problems (optimization
problems) under interval uncertainty. Thus, interval order relation is intimately involved with the interval
optimization problems. Moore [1] first proposed the idea of interval order relation. After that, Ishibuchi
and Tanaka [2] introduced a number of definitions of interval order relations. Succeeding them, Hu and
Wang [3], Mahato and Bhunia [4], Bhunia and Samanta [5], and others proposed several types of interval
order relations. According to Bhunia and Samanta [5], the interval order relation proposed by them is more
significant than the others. Although Bhunia and Samanta’s [5] interval order relations are widely used in
the research works on inventory control problems under interval uncertainty, their proposed definitions have
some drawbacks. And these are pointed out in the later section of this manuscript.
On the other hand, arithmetic mean-geometric mean (AM-GM) inequality also works as a derivative

free optimizer tool. In the area of inventory control, Grubbstrom [6] first used the AM-GM inequality to
derive the optimal policy of the classical Harris-Wilson EOQ model (Harris [7]). After that, Grubbsrom and
Erdem [8] again used the AM-GM inequality to find the optimality conditions of extended EOQ model by
allowing the shortages. Cardenas-Barron [9] also used the same appeoach for finding the optimal policy of the
classical economic production quantity (EPQ) model. Also, to study the optimal policy of the EOQ model
under uncertainty, Gani et al. [10] considered all the uncertain inventory parameters as fuzzy numbers and
used the AM-GM inequality to find the optimality conditions. On the other hand, few works on inventory
problems with interval uncertainty are available in the literature. Among those, some notable works were
reported by Rahman et al. ([11]—[13]), Manna et al. [14], Das et al. [15] and others. However, till now, no
one used the AM-GM approach to obtain the optimal policy of the EOQ model under interval uncertainty.
In the present work, a new interval order relation is proposed. And with the help of the proposed

interval order relation, the generalized AM-GM inequality for interval numbers is derived. After that, this
generalized AM-GM inequality is applied in the classical inventory model under interval uncertainty to obtain
the optimal cycle length, optimal economic order quantity, and optimal average cost. Finally, the optimal
policy of the said inventory model is illustrated with the help of some numerical examples.
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2 Basic Concepts of Interval

An interval number is defined by the closed and bounded interval as A = [aL, aU ] = {x : aL ≤ x ≤ aU},
where aL and aU are lower and upper bounds respectively. Any real number can be expressed as an interval
number [x, x] as degenerate with zero width. Also, interval number can be expressed in terms of centre and
radius form as

A = 〈ac, ar〉 = {x : ac − ar 6 x 6 ac + ar, x ∈ R} ,

where

ac =
aU + aL

2
and ar =

aU − aL
2

.

2.1 Different Arithmetic Operations

Let us consider A = [aL, aU ] and B = [bL, bU ] be any two interval numbers. Then arithmetical operations
such as addition, subtraction, scalar multiplication, multiplication and division of interval numbers are given
below:

(i) Addition:
A+B = [aL, aU ] + [bL, bU ] = [aL + bL, aL + bU ] .

(ii) Subtraction:
A−B = [aL, aU ]− [bL, bU ] = [aL − bU , aU − bL] .

(iii) Scalar multiplication:

λA = λ [aL, aU ] =

{
[λaL, λaU ] , if λ > 0,
[λaU , λaL] , if λ < 0.

(iv) Multiplication:

AB = [min {aLbL, aLbU , aUbL, aUbU} ,max {aLbL, aLbU , aUbL, aUbU}] .

(v) Division:
A

B
= A×

(
1

B

)
= [aL, aU ]×

[
1

bU
,
1

bL

]
, 0 /∈ B.

(vi) n-th power:
An = [anL, a

n
U ] , aL > 0, n ∈ N.

(vii) n-th root:

A1/n =
[
a
1/n
L , a

1/n
U

]
, for aL > 0, n ∈ N.

3 Interval Order Relation

The definitions of interval order relations between two interval numbers have been proposed by several
researchers. Here, Bhunia and Samanta’s approach [5] of interval order relations along with our proposed
approach are discussed.
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3.1 Bhunia and Samanta’Approach [5]

Bhunia and Samanta [5] proposed the definitions of interval order relations for maximization problems and
minimization problems separately.

Definition 1 Let A = [aL, aU ] = 〈ac, ar〉 andB = [bL, bU ] = 〈bc, br〉 be two intervals. Then, the interval
order relation >max between two intervals A and B for maximization problems is as follows:

A >maxB ⇔
{
ac > bc, if ac 6= bc,

ar 6 br, if ac = bc.

Definition 2 The interval order relation 6min between two intervals A and B for minimization problems is
as follows:

A 6minB ⇔
{
ac 6 bc, if ac 6= bc,

ar 6 br, if ac = bc.

Remark 1 In the definition of interval order relation of Bhunia and Samanta [5], it is observed that two
different order relations are introduced for maximization problem and minimization problem separately. But
order relation should not vary from problem to problem, i.e., it should be problem independent.

3.2 Proposed Approach

In this subsection, we propose the definition of interval order relation that can be used in both maximization
and minimization problems.

Definition 3 Let A = [aL, aU ] = 〈ac, ar〉 & B = [bL, bU ] = 〈bc, br〉 be two intervals. Then A is greater than
or equal to B if

A >UC B ⇔
{
ac > bc, if ac 6= bc,

aU > bU , if ac = bc.

Definition 4 Let A and B be two intervals. Then A 6UC B iff B >UC A.

3.3 Comparison of Proposed Definition with Bhunia and Samanta’s Definition

To illustrate the proposed definition of interval order relation and to compare with the Bhunia and Samanta’s
definition [5], three pairs of numerical examples for A and B are considered by assuming disjoint, partial over
lapping and fully over lapping cases. The illustrations and comparisons are presented in the Table 1. From
the case III, it is observed that A is selected for both the maximization and minimization case according to
the Bhunia and Samanta’s definition. In reality, it does never happen for any complete order relation. So,
it is a drawback of this definition. However, our proposed definition recovers this drawback.

4 Generalised Arithmetic Mean (AM) and Geometric Mean (GM)
Inequality for Intervals

In this section, arithmetic and geometric mean inequality for interval numbers has been derived. The
definitions of arithmetic and geometric mean for interval numbers are similar to the usual definitions.

Theorem 1 Let {Ai = [aiL, aiU ] : aiL > 0, i = 1, 2, ..., n} be the set of n non-negative interval numbers.
Then, A1+A2+...+An

n >UC n
√
A1A2...An and the equality holds iff A1 = A2 = ... = An.
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Case Considered Ex-
amples

Bhunia and Samanta’s de-
finition

Proposed definition Remarks

I A = [4, 8] and
B = [10, 12]

Since ac = 6 < 11 = bc,
A ≤minB, B ≥maxA

Since ac = 6 <
11 = bc, A ≤UC
B, B ≥UC A

Each definition
gives the same
results

II A = [4, 8] and
B = [7, 11]

Since ac = 6 < 9 = bc,
A ≤minB, B ≥maxA

Since ac = 6 < 9 =
bc, A ≤UC B, B ≥UC
A

Each definition
gives the same
results

III A = [4, 8] and
B = [5, 7]

Since ac = 6 = bc and
ar = 2 > 1 = br,
A ≤minB, A ≥maxB

Since ac = 6 = bc
and aU = 8 < 12 =
bc, A ≤UC B, B ≥UC
A

Bhunia and
Samanta’s defi-
nition selects the
same interval for
both maximization
and minimization
case. But our
proposed definition
selects A for mini-
mization case and
B for maximization
case.

Table 1: Comparison of proposed definition with Bhunia and Samanta’s definition

Proof. Using the addition and scalar multiplication of interval numbers,A1+A2+...+An

n can be written as,

A1 +A2 + ...+An
n

=

[
a1L + a2L + ...+ anL

n
,
a1U + a2U + ...+ anU

n

]
.

Again, using the multiplication and n-th root of interval numbers, n
√
A1A2...An can be written as follows:

n
√
A1A2...An =

n
√
[a1La2L...anL, a1Ua2U ...anU ] = [ n

√
a1La2L...anL, n

√
a1Ua2U ...anU ] , since, aiL > 0.

Now, applying AM>GM on the sets of non-negative real numbers, {a1L, a2L, ..., anL} and {a1U , a2U , ..., anU},
we get

a1L + a2L + ...+ anL
n

> n
√
a1La2L...anL and

a1U + a2U + ...+ anU
n

> n
√
a1Ua2U ...anU (1)

and the equality holds iff
a1L = a2L = ... = anL& a1U = a2U = ... = anU . (2)

Now, (1) implies

a1L+a2L+...+anL
n + a1U+a2U+...+anU

n

2
>

n
√
a1La2L...anL + n

√
a1Ua2U ...anU

2
.

Now, two cases may arise:

Case I: If
a1L+a2L+...+anL

n + a1U+a2U+...+anU
n

2
6=

n
√
a1La2L...anL + n

√
a1Ua2U ...anU

2
,

then (2) implies
A1 +A2 + ...+An

n
>UC n

√
A1A2...An, for all n ∈ N.
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Case II: If

a1L+a2L+...+anL
n + a1U+a2U+...+anU

n

2
=

n
√
a1La2L...anL + n

√
a1Ua2U ...anU

2
,

then
a1U + a2U + ...+ anU

n
> n
√
a1Ua2U ...anU

which implies,
A1 +A2 + ...+An

n
>UC n

√
A1A2...An, for all n ∈ N.

Hence, combining both cases we get A1+A2+...+An

n >UC n
√
A1A2...An, for all n ∈ N.

Now, the equality holds iff

a1L+a2L+...+anL
n = n

√
a1La2L...anL and a1U+a2U+...+anU

n = n
√
a1Ua2U ...anU

⇔ a1L = a2L = · · · = anL and a1U = a2U = · · · = anU

⇔ [a1L, a1U ] = [a2L, a2U ] = · · · = [anL, anU ]

⇔ A1 = A2 = · · · = An.

This completes the proof.

5 Application in Classical EOQ Model

In this section, motivated by the works of Grubbstrom [6] and Grubbsrom and Erdem [8], we study the
optimal policy of the extended Harris-Wilson EOQ model in interval environment by using proposed gener-
alised AM-GM inequality for interval numbers. Apart from the Harris-Wilson assumptions, for this model,
we have considered the following assumptions and notation:

5.1 Assumptions and Notation

This model is developed under the following assumptions and notation:

5.1.1 Notation:

Notation : Description
[OL, OU ] : Ordering cost per order
[hL, hU ] : Carrying cost per unit per unit time
[DL, DU ] : Demand rate
[QL, QU ] : Ordering Quantity

T : Cycle length

5.1.2 Assumptions:

(i) The demand is interval-valued.

(ii) Holding/carrying cost and ordering cost/ set up cost are interval valued.

(iii) The inventory system deals with single item or product.

(iv) In the case of EOQ model, the inventory replenishment is made by giving single order.



M. S. Rahman 95

(v) Inventory planning/time horizon is infinite.

(vi) Shortages are not allowed.

(vii) Lead time is constant and known.

(viii) Purchase price and reorder costs do not vary with the quantity ordered.

5.2 Model Formulation

The amount of order quantity at time t = 0 is [QL, QU ] units and it becomes zero at time t = T due to
customer’s demand only. The extended EOQ model in interval environment is shown graphically in Figure
1.

5.pdf

Figure 1: Variation of Inventory level at any instant.

Clearly, from the Figure 1 we get,

QL = DLT, QU = DUT.

Therefore, the interval-valued initial order quantity is

[QL, QU ] = [DLT,DUT ] .

The related inventory costs corresponding to this model are presented below:

• Ordering cost: [OL, OU ] .

• Carrying cost: The bounds of interval-valued inventory carrying cost for the cycle can be calculated
as follows:

CHL = hL × area of the triangle OBA =
hLDLT

2

2
,

CHU = hU × area of the triangle OBC =
hUDT

2

2
.

Hence, [HCL, HCU ] =
[
hLDLT

2

2 , hUDUT
2

2

]
.
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Hence, the total cost of this model is as follows:

[TCL, TCU ] = [OL, OU ] + [HCL, HCU ] =

[
OL +

hLDLT
2

2
, OU +

hUDUT
2

2

]
.

Therefore, the average cost is given by

[ACL (T ) , ACU (T )] =
[TCL, TCU ]

T
=

[
OL
T
+
hLDLT

2
,
OU
T
+
hUDUT

2

]
.

5.3 Optimality Conditions

The interval valued average cost [ACL (T ) , ACU (T )] can be written as:

[ACL (T ) , ACU (T )] =

[
OL
T
+
hLDLT

2
,
OU
T
+
hUDUT

2

]
=

[
OL
T
,
OU
T

]
+

[
hLDLT

2
,
hUDUT

2

]
=

2
[
OL

T , OU

T

]
+ [hLDLT, hUDUT ]

2
.

Now, using generalised AM-GM inequality for interval numbers we get

[ACL (T ) , ACU (T )] =
2
[
OL

T , OU

T

]
+ [hLDLT, hUDUT ]

2
>UC

√
2

[
OL
T
,
OU
T

]
[hLDLT, hUDUT ],

i.e.,
[ACL (T ) , ACU (T )] >UC

√
[2hLDLQL, 2hUDUOU ]. (3)

Equality holds in (3), if 2
[
OL

T , OU

T

]
= [hLDLT, hUDUT ], i.e.,

2OL
T

= hLDLT,
2OU
T

= hUDUT,

i.e.,
hLDLT

2 = 2OL andhUDUT
2 = 2OU . (4)

Then, adding both components of equations (4) we get

(hLDL + hUDU )T
2 = 2 (OL +OU ) i.e., T =

√
2 (OL +OU )

(hLDL + hUDU )
.

Hence the optimal cycle length is

T ∗ =

√
2 (OL +OU )

(hLDL + hUDU )
. (5)

Hence the optimal interval valued order quantity is

[QL
∗, QU

∗] = [DLT
∗, DUT

∗] . (6)

And the optimal interval valued average cost is

[ACL (T
∗) , ACU (T

∗)] =
[√
2hLDLOL,

√
2hUDUOU

]
. (7)
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-20% -10% 0% 10% 20%
T -10.5573 -5.13167 0 4.8809 9.5445
QL -10.5573 -5.13167 0 4.8809 9.5445
QU -10.5573 -5.13167 0 4.8809 9.5445
ACL -10.5573 -5.13167 0 4.8809 9.5445
ACU -10.5573 -5.13167 0 4.8809 9.5445

Table 2: Sensitivity Analysis w.r.t [OL, OU ]

Remark 2 If all the inventory parameters are taken as real valued i.e., OL = OU = O, DL = DU = D and
hL = hU = h, then the optimal policy for this particular case can be described as follows:

T ∗ =

√
2 (O +O)

(hD + hD)
=

√
2O

hD
(8)

[QL
∗, QU

∗] = [DT ∗, DT ∗]↔ DT ∗ =

√
2OD

h
(9)

[ACL (T
∗) , ACU (T

∗)] =
[√
2hDO,

√
2hDO

]
↔
√
2hDO (10)

Which are the optimality conditions of classical EOQ model.

5.4 Numerical Illustrations

In this sub-section, the optimal policy of the proposed model is illustrated with the help of two numerical
examples.

Example 1 Find the optimal cycle length, interval-valued order quantity, and the corresponding average
cost of the proposed model subject to the values of interval-valued inventory parameters are considered as
follows:

[OL, OU ] = [300, 350] , [hL, hU ] = [3, 6] , and [DL, DU ] = [700, 1000] .

Solution 1 The optimal cycle length, order quantity, average cost for Example 1 is calculated by the formula
(5)—(7) and their optimal values are as follows:
T ∗ = 0.401Year, [QL

∗, QU
∗] = [280.432, 401] units, [ACL (T ∗) , ACU (T ∗)] = [$1122.497, $2049.39].

Example 2 The values of the interval-valued inventory parameters considered from the crisp environment
are given below to validate the optimal results in interval environment: [OL, OU ] = [O,O] = [325, 325] , [hL, hU ] =
[h, h] = [4, 4] , and [DL, DU ] = [D,D] = [850, 850] .

Solution 2 The optimal cycle length, order quantity, and average cost for Example 2 are calculated by the
formula (8)—(10), and their optimal values are as follows:
T ∗ = 0.437Year, [QL

∗, QU
∗] = [371.652, 371.652] units, [ACL (T ∗) , ACU (T ∗)] = [$1486.61, $1486.61] .

5.5 Sensitivity Analysis

In this section, the effects of the interval-valued ordering costs, demand rate, and holding costs on the
optimal policy of the present model in Example 1 are studied by sensitivity analyses. The change of each
parameter is with −20%, −10%, +10%, +20% by keeping the remaining parameters fixed. Tables 2—4 show
the corresponding results.
From Tables (2-4), it is observed that
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-20% -10% 0% 10% 20%
T 11.8034 5.4093 0 -4.6537 -8.7129
QL -10.5573 -5.13167 0 4.8809 9.5445
QU -10.5573 -5.13167 0 4.8809 9.5445
ACL -10.5573 -5.13167 0 4.8809 9.5445
ACU -10.5573 -5.13167 0 4.8809 9.5445

Table 3: Sensitivity Analysis w.r.t [DL, DU ]

-20% -10% 0% 10% 20%
T 11.8034 5.4093 0 -4.6537 -8.7129
QL 11.8034 5.4093 0 -4.6537 -8.7129
QU 11.8034 5.4093 0 -4.6537 -8.7129
ACL -10.5573 -5.13167 0 4.8809 9.5445
ACU -10.5573 -5.13167 0 4.8809 9.5445

Table 4: Sensitivity Analysis w.r.t [hL, hU ]

• the cycle length (T ) is moderately sensitive with respect to bounds of [OL, OU ] , moderately sensitive
with reverse effect with the change of the bounds of [DL, DU ] and [hL, hU ].

• the bounds of the interval valued order quantity [QL, QU ] is similarly effective as cycle length (T ) with
respect to the same parameters.

• the bounds of the interval valued average inventory cost [ACL, ACU ] is moderately sensitive with
respect to bounds of [OL, OU ], [DL, DU ] and [hL, hU ].

From the previously mentioned discussions, it is observed that the bounds of the average inventory cost
are significantly effective with change of the inventory cost factors. Thus, it is recommended the decision
maker/ manager to take more care about these factors for optimal decision making.

5.6 Limitations of the Work

Though this work has discussed an alternative approach for finding the optimal policy of a classical EOQ
model, its scope is limited. This approach does not apply to studying the optimal policy of any inventory
model with more realistic assumptions (viz., non-linear demand rate, deterioration rate, production rate,
etc.).

6 Conclusion

This work has introduced a new interval order relation which performed comparatively better/equally than
the other order relations. And as an application, the generalized arithmetic mean-geometric mean (AM-GM)
inequality for interval numbers is derived by the proposed interval order relation. Then, the optimal policy
of classical Harris-Wilson’s EOQ model in the interval environment is studied using the proposed generalized
AM-GM inequality and illustrated with the help of numerical examples.
For future investigation, one may try to obtain the optimal policy of the EOQ model with shortages and

the EPQ model with interval uncertainty by using this generalized AM-GM approach. Also, the same work
can be extended under Type-2 interval uncertainty.
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