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Abstract

In this study, we find all Fibonacci numbers Fk and Lucas numbers Lk which are products of two
Jacobsthal-Lucas numbers. More generally, taking k,m, n as nonnegative integers, we proved that

Fk = jmjn = (2
m + (−1)m) · (2n + (−1)n)

implies that
(k,m, n) = (1, 1, 1) , (2, 1, 1), (3, 0, 1), (5, 1, 2), (9, 0, 4)

and Lk = jmjn implies that

(k,m, n) = (3, 0, 0), (0, 0, 1), (1, 1, 1), (4, 1, 3).

As a result of this study, we showed that the largest Fibonacci number and Lucas number which can
be written in the form

(2m + (−1)m) · (2n + (−1)n)
are F9 = 34 = 2 · 17 = (20 + (−1)0) · (24 + (−1)4) and L4 = 7 = 1 · 7 = (21 + (−1)1) · (23 + (−1)3),
respectively. Moreover the largest Fibonacci number and Lucas number which can be written in the form

2n + (−1)n

are F5 = 5 = 22 + (−1)2 and L4 = 7 = 23 + (−1)3, respectively. As a result, it is shown that the only
Fermat numbers in the Fibonacci sequence are F3 = 3 and F5 = 5 and the only Fermat number in the
Lucas sequence is L2 = 3. The proofs depend on lower bounds for linear forms and some tools from
Diophantine approximation.

1 Introduction

Let (Fn) and (Ln) be the sequences of Fibonacci numbers and Lucas numbers given by F0 = 0, F1 = 1,
L0 = 2, L1 = 1, Fn = Fn−1 + Fn−2 and Ln = Ln−1 + Ln−2 for n ≥ 2, respectively (sequences A000045 and
A000032 in [9]). Binet formulas for Fibonacci and Lucas numbers are

Fn =
αn − βn√

5
and Ln = αn + βn,

where

α =
1 +
√

5

2
and β =

1−
√

5

2
,

which are the roots of the characteristic equations x2−x−1 = 0. It can be seen that 1 < α < 2, −1 < β < 0,
and αβ = −1. The relation between n-th Fibonacci number Fn and α is given by

αn−2 ≤ Fn ≤ αn−1 (1)
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for n ≥ 1. Also, the relation between n-th Lucas number Ln and α is given by

αn−1 ≤ Ln ≤ 2αn (2)

for n ≥ 0. The sequence of Jacobsthal-Lucas numbers (jn) satisfies recurrence relation jn = jn−1+2jn−2 for
n ≥ 2 with initial conditions j0 = 2, j1 = 1 (sequence A014551 in [9]). jn is called the n-th Jacobsthal-Lucas
number. We have the Binet formula

jn = 2n + (−1)
n
, (3)

where 2 and −1 are the roots of the characteristic equation x2 − x− 2 = 0. It is clear that

2n−1 ≤ jn ≤ 2n+1 (4)

for all n ≥ 0. In [4], the authors have found all Fibonacci numbers or Pell numbers which are products
of two numbers from the other sequence. In [10], Şiar found all Lucas numbers which are products of two
balancing numbers. In [6], we have found all Fibonacci numbers or balancing numbers which are products
of two numbers from the other sequence. In [7], we also solved the equations

Fk = JmJn

and
Jk = FmFn,

where (Jn) is the Jacobsthal sequence defined by J0 = 0, J1 = 1 and Jn = Jn−1 + 2Jn−2 for n ≥ 2 (sequence
A001045 in [9]). In this study, we determine all solutions of the equations

Fk = jmjn (5)

and
Lk = jmjn (6)

in nonnegative integers k,m, n. In particular, we showed that the largest Fibonacci number and Lucas number
which can be written in the form

(2m + (−1)m) · (2n + (−1)n)

are F9 = 34 = 2 ·17 = (20+(−1)0) · (24+(−1)4) and L4 = 7 = 1 ·7 = (21+(−1)1) · (23+(−1)3), respectively.
Moreover the largest Fibonacci number and Lucas number which can be written in the form

2n + (−1)n

are F5 = 5 = 22 + (−1)2 and L4 = 7 = 23 + (−1)3, respectively. As a result, it is shown that the only
Fermat numbers in the Fibonacci sequence are F3 = 3 and F5 = 5 and the only Fermat number in the Lucas
sequence is L2 = 3.
Our study can be viewed as a continuation of the previous work on this subject. We follow the approach

and the method presented in [4]. In Section 2, we introduce necessary lemmas and theorems. Then in Section
3, we prove our main theorems.

2 Auxiliary Results

In [4], [10], and [6], in order to solve Diophantine equations of the form (5) and (6), the authors have used
Baker’s theory of lower bounds for a nonzero linear form in logarithms of algebraic numbers. Since such
bounds are of crucial importance in effectively solving Diophantine equations of the similar form, we start
with recalling some basic notions from algebraic number theory.
Let η be an algebraic number of degree d with minimal polynomial

a0x
d + a1x

d−1 + ...+ ad = a0

d∏
i=1

(
x− η(i)

)
∈ Z[x],
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where the ai’s are relatively prime integers with a0 > 0 and the η(i)’s are conjugates of η. Then

h(η) =
1

d

(
log a0 +

d∑
i=1

log
(

max
{
|η(i)|, 1

}))
(7)

is called the logarithmic height of η. In particular, if η = a/b is a rational number with gcd(a, b) = 1 and
b ≥ 1, then h(η) = log (max {|a|, b}) .
The following properties of logarithmic height are found in many works stated in the references:

h(η ± γ) ≤ h(η) + h(γ) + log 2, (8)

h(ηγ±1) ≤ h(η) + h(γ), (9)

h(ηm) = |m|h(η). (10)

Now we give a theorem which is deduced from Corollary 2.3 of Matveev [8] and provides a large upper bound
for the subscript n in the equations (5) and (6)(also see Theorem 9.4 in [3]).

Theorem 1 Assume that γ1, γ2, ..., γt are positive real algebraic numbers in a real algebraic number field K
of degree D, b1, b2, ..., bt are rational integers, and

Λ := γb11 · · · γ
bt
t − 1

is not zero. Then

|Λ| > exp
(
−1.4 · 30t+3 · t4.5 ·D2(1 + logD)(1 + logB)A1A2 · · ·At

)
,

where

B ≥ max {|b1|, ..., |bt|} ,

and Ai ≥ max {Dh(γi), | log γi|, 0.16} for all i = 1, ..., t.

The following lemma is given in [2]. This lemma is an immediate variation of the result due to Dujella
and Pethő from [5], which is a version of a lemma of Baker and Davenport [1]. This lemma will be used to
reduce the upper bound for the subscript n in the equations (5) and (6). Let ||x|| denote the distance from
x to the nearest integer. That is, ||x|| = min {|x− n| : n ∈ Z} for any real number x. Then we have

Lemma 1 Let M be a positive integer, let p/q be a convergent of the continued fraction of the irrational
number γ such that q > 6M, and let A,B, µ be some real numbers with A > 0 and B > 1. Let ε :=
||µq|| −M ||γq||. If ε > 0, then there exists no solution to the inequality

0 < |uγ − v + µ| < AB−w,

in positive integers u, v, and w with

u ≤M and w ≥ log(Aq/ε)

logB
.

The proof of the following lemma is easy and will be omitted.

Lemma 2 If the real numbers x and r satisfy |ex − 1| < r < 3
4 , then |x| < 2r.
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3 Main Theorems

Theorem 2 The Diophantine equation Fk = jmjn = (2m + (−1)m) · (2n + (−1)n) has only the solutions

(k,m, n) = (1, 1, 1), (2, 1, 1), (3, 0, 1), (5, 1, 2), (9, 0, 4)

in nonnegative integers.

Proof. Assume that the equation Fk = jmjn holds. We assume that 0 ≤ m ≤ n ≤ 69. Then, by using the
Mathematica program, we see that k ≤ 200. In this case, with the help of Mathematica program, we obtain
only the solutions

1 = F1 = F2 = j1j1 = 1 · 1,
2 = F3 = j0j1 = 2 · 1,
5 = F5 = j1j2 = 1 · 5,

34 = F9 = j0j4 = 2 · 17,

in the range 0 ≤ m ≤ n ≤ 69. From now on, assume that n ≥ 70 and m ≥ 2. Using the inequality (1) and
(4), we get the inequality

αk−2 ≤ Fk = jmjn ≤ 22n+2 < α4n+4,

which yields to k < 4n+ 6. On the other hand, the inequality

2n−1 < jmjn = Fk ≤ αk−1 < 2k,

implies that k > n− 1 > 69. Since

αk − βk√
5

= Fk = jmjn = 2n+m + (−1)
n+m

+ 2n (−1)
m

+ 2m (−1)
n
, (11)

it is seen that
αk√

5
− 2n+m =

βk√
5

+ 2n (−1)
m

+ 2m (−1)
n

+ (−1)
n+m

.

Taking absolute values, we obtain ∣∣∣∣ αk√5
− 2n+m

∣∣∣∣ ≤ |β|k√5
+ 2n + 2m + 1.

Dividing both sides of this inequality by 2n+m, we obtain∣∣∣∣αk · 2−(n+m)√
5

− 1

∣∣∣∣ ≤ |β|k

2n+m ·
√

5
+

1

2m
+

1

2n
+

1

2n+m
<

2.1

2m
, (12)

where we have used the fact that (√
5 + |β|k√

5 · 2n
+ 2

)
≤ 2.1

for k > 69 and n ≥ 70. Now, let us apply Theorem 1 with γ1 := 1/
√

5, γ2 := α, γ3 := 2 and b1 := 1, b2 :=
k, b3 := −(n+m). Note that the numbers γ1, γ2, and γ3 are positive real numbers and elements of the field
K = Q(

√
5). It is obvious that the degree of the field K is 2. So D = 2. Now, we show that

Λ1 :=
αk · 2−(n+m)√

5
− 1

is nonzero. For, if Λ1 = 0, then we get
αk = 2n+m

√
5.
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That is, α2k∈ Q, which is impossible for any k > 0. Since

h(γ1) = h(1/
√

5) ≤ h(
√

5) =
log 5

2
< 0.81

and

h(γ2) =
logα

2
< 0.25, h(γ3) = log 2 < 0.7

by (7) and (9), we can take A1 := 1.62, A2 := 0.5, and A3 := 1.4. Also, since k < 4n + 6, we can take
B := max {1, |k|, | − (n+m)|} = 4n + 6. Taking into account the inequality (12) and using Theorem 1, we
obtain

2.1

2m
> |Λ1| > exp (C(1 + log (4n+ 6)) (1.62) (0.5) (1.4)) ,

where C = −1.4 · 306 · 34.5 · 22 · (1 + log 2). By a simple computation, it follows that

m log 2 < 1.1 · 1012(1 + log (4n+ 6)) + log(2.1). (13)

Now, rearranging the equation Fk = jmjn as

αk

jm
√

5
− 2n =

βk

jm
√

5
+ (−1)n,

and taking absolute values, we obtain ∣∣∣∣ αk

jm
√

5
− 2n

∣∣∣∣ ≤ |β|k

jm
√

5
+ 1.

Dividing both sides of the above inequality by 2n, it is seen that∣∣∣∣2−n · αkjm
√

5
− 1

∣∣∣∣ < |β|k

2njm
√

5
+

1

2n
<

1.1

2n
, (14)

where we used the fact that (
|β|k

jm
√

5
+ 1

)
< 1.1

for k > 69. Let γ1 := α, γ2 := 2, γ3 := jm
√

5, and b1 := k, b2 := −n, b3 := −1. Then, we can apply
Theorem 1. The numbers γ1, γ2, and γ3 are positive real numbers and elements of the field K = Q(

√
5) and

so D = 2. In a similar manner, one can verify that

Λ2 = αk2−n/jm
√

5− 1 6= 0.

Since h(γ1) =
logα

2
< 0.25 and h(γ2) = log 2 < 0.7 by (7), we can take A1 := 0.5 and A2 := 1.4. Using the

properties (7), (9), and (10), it is seen that

h(γ3) = h(jm
√

5) ≤ h(jm) + h(
√

5)

≤ log 2m+1 +
log 5

2
< 1.5 +m log 2,

by (4). So we can takeA3 := 3+2m log 2. Since k < 4n+6, it follows thatB := 4n+6 > max {|k|, | − n|, |−1|} .
Thus, taking into account the inequality (14) and using Theorem 1, we obtain

1.1

2n
> |Λ2| > exp (C(1 + log (4n+ 6))(0.5) (1.4) (3 + 2m log 2)) ,
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or
n log 2− log 1.1 < 6.79 · 1011(1 + log (4n+ 6)) (3 + 2m log 2) , (15)

where C = −1.4 · 306 · 34.5 · 22 · (1 + log 2). Inserting the inequality (13) into the last inequality, a computer
search with Mathematica gives us that n < 9.63 · 1027.

Now, let us try to reduce the upper bound on n by applying Lemma 1. Let

z1 := k logα− (n+m) log 2 + log(1/
√

5).

Then
|ez1 − 1| < 2.1

2m

by (12). As m ≥ 2, we get |ez1 − 1| < 2.1
2m < 3/4 and therefore it is seen that

|z1| <
4.2

2m

by Lemma 2. That is,

0 <
∣∣∣k logα− (n+m) log 2 + log(1/

√
5)
∣∣∣ < 4.2

2m
.

Dividing this inequality by log 2, we get

0 <

∣∣∣∣∣k
(

logα

log 2

)
− (n+m) +

(
log(1/

√
5)

log 2

)∣∣∣∣∣ < 6.06 · 2−m. (16)

Let γ :=
logα

log 2
/∈ Q and M := 3.86 · 1028. Then we found that M > 4n+ 6 > k and q67, the denominator of

the 67 th convergent of γ exceeds 6M. Now take

µ :=
log(1/

√
5)

log 2
.

In this case, a quick computation with Mathematica gives us the inequality

ε = ||µq67|| −M ||γq67|| > 0.11.

Let A := 6.06, B := 2, and w := m in Lemma 1. Thus, with the help of Mathematica, we can say that the
inequality (16) has no solution for

m ≥ 103.5 >
log(Aq67/ε)

logB
.

So m ≤ 103. Substituting this upper bound for m into (15), we obtain n < 5.52 · 1015.
Now, let

z2 := k logα− n log 2 + log

(
1√
5jm

)
.

Then
|ez2 − 1| < 1.1

2n

by (14). Since (1.1)/2n < 3/4 for n ≥ 1, by Lemma 2, we get

|z2| <
2.2

2n
.

That is,

0 <

∣∣∣∣k logα− n log 2 + log

(
1√
5jm

)∣∣∣∣ < 2.2

2n
.
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Dividing both sides of the above inequality by log 2, we get

0 <

∣∣∣∣∣∣∣∣k
(

logα

log 2

)
− n+

log

(
1√
5jm

)
log 2

∣∣∣∣∣∣∣∣ < 3.1 · 2−n. (17)

Putting γ :=
logα

log 2
and taking M := 2.21 · 1016, we found that M > 4n+ 6 > k and q41, the denominator of

the 41 st convergent of γ exceeds 6M. Taking

µ :=

log

(
1√
5jm

)
log 2

and considering the fact that 2 ≤ m ≤ 103 by (15), a quick computation with Mathematica gives us the
inequality

ε = ||µq41|| −M ||γq41|| > 0.01.

Let A := 3.1, B := 2, and w := n in Lemma 1. Thus, with the help of Mathematica, we can say that the
inequality (17) has no solution for

n ≥ 68.23 >
log(Aq41/ε)

logB
.

Therefore n ≤ 68. This contradicts our assumption that n ≥ 70. Now let us consider the case m = 0 and
m = 1 for n ≥ 70. If we repeat the argument following (11), we find that n ≤ 54, a contradiction. This
completes the proof of the theorem.

Theorem 3 The Diophantine equation Lk = jmjn has only the solutions

(k,m, n) = (3, 0, 0), (0, 0, 1), (1, 1, 1), (4, 1, 3)

in nonnegative integers.

Proof. Assume that Lk = jmjn = (2m + (−1)m) · (2n + (−1)n) for some nonnegative integers k,m, n. Now
assume that 0 ≤ m ≤ n ≤ 99. Then, by using the Mathematica program, we see that k ≤ 285. In this case,
with the help of Mathematica program, we obtain

4 = L3 = j0j0 = 2 · 2,
2 = L0 = j0j1 = 2 · 1,
1 = L1 = j1j1 = 1 · 1,
7 = L4 = j1j3 = 1 · 7,

in the range 0 ≤ m ≤ n ≤ 99. From now on, we assume that n ≥ 100. Since

αk−1 ≤ Lk = jmjn ≤ 22n+2 < α4n+4

by (2) and (4), it is seen that k < 4n+ 5. On the other hand, the inequality

2n−1 ≤ jmjn = Lk ≤ 2αk < 2k+1,

implies that k ≥ n− 1 ≥ 99. Since Lk = jmjn, we get

αk + βk = Lk = jmjn = 2n+m + (−1)
n+m

+ 2n (−1)
m

+ 2m (−1)
n (18)
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or
αk − 2n+m = −βk + (−1)

n+m
+ 2n (−1)

m
+ 2m (−1)

n
.

Taking absolute values, it is seen that∣∣αk − 2n+m
∣∣ ≤ |β|k + 2n + 2m + 1.

Dividing both sides of this inequality by 2n+m, we obtain∣∣∣αk · 2−(n+m) − 1
∣∣∣ ≤ |β|k

2n+m
+

1

2m
+

1

2n
+

1

2n+m
<

2.1

2m
, (19)

where we used the fact that (
1 + |β|k

2n
+ 2

)
≤ 2.1

for k ≥ 99 and n ≥ 100. Let γ1 := α, γ2 := 2, b1 := k, b2 := −(n+m). The numbers γ1, γ2 are real numbers
and elements of the field K = Q(

√
5). So D = 2. Now we show that

Λ3 = αk · 2−(n+m) − 1

is nonzero. If it were, then αk = 2n+m, which is impossible for any k > 0. It can be seen that

h(γ1) = h(α) < 0.25, h(γ2) = h(2) < 0.7.

Thus, we can take A1 := 0.5, A2 := 1.4, and B := 4n + 5 ≥ max {|k|, | − (n+m)|} . Therefore, taking into
account the inequality (19) and using Theorem 1, we obtain

2.1

2m
> |Λ3| > exp ((C · (1 + log (4n+ 5)) · (0.5) · (1.4)) ,

and so
m log 2 < 3649404749 · (1 + log (4n+ 5)) + log (2.1) , (20)

where C = −1.4 · 305 · 24.5 · 22 · (1 + log 2). Now, writing the equation Lk = jmjn as

αk

jm
− 2n = −β

k

jm
+ (−1)

n ,

and taking absolute values, we get ∣∣∣∣αkjm − 2n
∣∣∣∣ ≤ |β|kjm + 1.

Dividing both sides of this inequality by 2n, we obtain∣∣∣∣αk · 2−njm
− 1

∣∣∣∣ < |β|k
2n · jm

+
1

2n
<

1.1

2n
, (21)

where we used the fact that (
|β|k
jm

+ 1

)
≤ 1.1

for k ≥ 99. Take γ1 := α, γ2 := 2, γ3 := jm, b1 := k, b2 := −n, b3 := −1. Clearly, the numbers γ1, γ2, γ3 are
real numbers and elements of the field K = Q(

√
5) and so D = 2. It can be seen that

Λ4 =
αk · 2−n
jm

− 1
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is nonzero. On the other hand,

h(γ1) = h(α) < 0.25, h(γ2) = h(2) < 0.7,

h(γ3) = log jm ≤ log 2m+1 < 0.7 +m log 2.

We can take A1 := 0.5, A2 := 1.4 and A3 := 1.4 + 2m log 2. Since k < 4n + 5, we can take B := 4n + 5 ≥
max {k, | − n|, | − 1|} . Using the inequality (21) and Theorem 1, we get

1.1

2n
> |Λ4| > exp

(
−1.4 · 306 · 34.5 · 22(1 + log 2)(1 + log (4n+ 5)) · (0.5) · (1.4) · (1.4 + 2m log 2)

)
or

n log 2− log 1.1 < 6.79× 1011 · (1 + log (4n+ 5)) · (1.4 + 2m log 2). (22)

Inserting the inequality (20) into the last inequality, a computer search with Mathematica gives us that
n < 2.66 · 1025. Now we reduce this bound to a size that can be easily dealt. In order to do this, we use
Lemma 1 again. Let

z3 = k logα− (n+m) log 2.

Then from the inequality (19), it follows that

|ez3 − 1| < 2.1

2m
.

Assume that m ≥ 2. Then |ez3 − 1| < 3/4 and this implies that

|z3| <
4.2

2m

by Lemma 2. That is,

|k logα− (n+m) log 2| < 4.2

2m
.

If we divide this inequality by (n+m) logα, we get

0 <

∣∣∣∣ k

n+m
− log 2

logα

∣∣∣∣ < 8.73

(n+m) · 2m . (23)

Assume that m ≥ 97. Then it can be seen that

2m

17.46
> 9.07 · 1027 > 2n ≥ n+m,

and so we have ∣∣∣∣ k

n+m
− log 2

logα

∣∣∣∣ < 8.73

(n+m) · 2m <
1

2 · (n+m)
2 .

From the known properties of continued fraction, it can be seen that the rational number k
n+m is a convergent

to γ = log 2
logα . Now let

pr
qr
be r-th convergent of the continued fraction of γ. Assume that k

n+m =
pt
qt
for some

t. Then we have q57 > 7 · 1025 > 2n ≥ n + m. Thus t ∈ {0, 1, 2, ..., 56}. Furthermore, aM = max{ai|i =
0, 1, 2, ..., 56} = 134. Again, from the known properties of continued fraction, we get∣∣∣∣γ − pt

qt

∣∣∣∣ > 1

(aM + 2)(n+m)2
≥ 1

136 · (n+m)2
,

Thus, from (23), we obtain
8.73

(n+m) · 2m >
1

136 · (n+m)2
.
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This shows that
5.51

1029
>

8.73

2m
>

1

136 · (n+m)
>

1

9.52 · 1027
,

a contradiction. Therefore m ≤ 96. Substituting this value of m into (22), we get n < 5.08 · 1015. Now, let

z4 := k logα− n log 2 + log(1/jm).

Then, from (21), we can write

|ez4 − 1| < 1.1

2n
.

Since (1.1)/2n < 3/4 for n ≥ 1, we get

|z4| <
2.2

2n

by Lemma 2. That is,

|k logα− n log 2 + log(1/jm)| < 2.2

2n
.

Dividing both sides of this inequality by log 2, we get

0 <

∣∣∣∣k logα

log 2
− n+

log(1/jm)

log 2

∣∣∣∣ < 3.18 · 2−n. (24)

Now, we apply Lemma 1. Let γ := logα/ log 2, µ := log(1/jm)/ log 2, A := 3.18, B := 2, w := n, and
M := 2.1 ·1016. It is seen thatM > 4n+5 > k and q53, the denominator of the 53 rd convergent of γ exceeds
6M. In this case, a quick computation with Mathematica gives us the inequality

ε := ||µq53|| −M ||γq53|| > 0.

Thus, with the help of Mathematica, we can say that the inequality (24) has no solution for

n ≥ 97.16 >
log(Aq53/ε)

logB
.

Therefore, n ≤ 97. But this contradicts the assumption that n ≥ 100. Now let us consider the case m = 0 and
m = 1 for n ≥ 100. If we repeat the argument following (18), we find that n ≤ 13 and n ≤ 12, respectively,
a contradiction. This completes the proof of the theorem.

Corollary 1 The largest Fibonacci number and Lucas number which can be written in the form

(2m + (−1)m) · (2n + (−1)n)

are F9 = 34 = 2 ·17 = (20+(−1)0) · (24+(−1)4) and L4 = 7 = 1 ·7 = (21+(−1)1) · (23+(−1)3), respectively.

Corollary 2 The largest Fibonacci number and Lucas number which can be written in the form

2n + (−1)n

are F5 = 5 = 22 + (−1)2 and L4 = 7 = 23 + (−1)3, respectively.

Corollary 3 The only Fermat numbers in the Fibonacci sequence are F3 = 3 and F5 = 5 and the only
Fermat number in the Lucas sequence is L2 = 3.
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