
Applied Mathematics E-Notes, 23(2023), 544-559 c© ISSN 1607-2510
Available free at mirror sites of http://www.math.nthu.edu.tw/∼amen/

Bifurcation Curves In Minkowski-Curvature Problem With
Nonlinearity up + u∗†

Shao-Yuan Huang‡

Received 1 December 2023

Abstract
We study the exact shapes of bifurcation curve of positive solutions for Minkowski-curvature problem{

−
(
u′/
√
1− u′2

)′
= λ(up + u), in (−L,L) ,

u(−L) = u(L) = 0,

where λ,L > 0, and p > 1. In 2018, Huang gave a conjecture for the shape of bifurcation curve and
further proved some part of the conjecture, c.f. [2, 3]. In this paper, we prove the remaining part of
the conjecture. In addition, we point out the wrong result appeared in [5, Commun. Contemp. Math.,
2019], see Remark 2.

1 Introduction and Main Result

In this paper, we study the exact shapes of bifurcation curves of positive solutions for Minkowski-curvature
problem {

−
(
u′/
√

1− u′2
)′

= λ(up + u), in (−L,L) ,

u(−L) = u(L) = 0,
(1)

where λ > 0 is a bifurcation parameter, L > 0 is an evolution parameter, and p > 1. For L > 0, we define
the bifurcation curve SL of (1) on the (λ, ‖u‖∞)-plane by

SL ≡ {(λ, ‖uλ‖∞) : λ > 0 and uλ is a positive solution of (1)} . (2)

It is easy to prove that SL is increasing for all L > 0 when 0 < p ≤ 1, c.f. [2]. Thus we consider the case
that p > 1 in this paper. Before going into further discussions on problem (1), we give some terminologies
in this paper for the shapes of bifurcation curves SL on the (λ, ‖u‖∞)-plane.

⊂-like shaped: We say that, on the (λ, ‖u‖∞)-plane, the bifurcation curve SL is ⊂-like shaped if SL initially
continues to the left and eventually continues to the right.

⊂-shaped: We say that, on the (λ, ‖u‖∞)-plane, the bifurcation curve SL is ⊂-shaped if SL is ⊂-like shaped
and has exactly one turning point.

S-like shaped: We say that, on the (λ, ‖u‖∞)-plane, the bifurcation curve SL is S-like shaped if SL initially
continues to the right (or starts from (0, 0)), eventually continues to the right and has a turning point
which turns to the left.

S-shaped: We say that, on the (λ, ‖u‖∞)-plane, the bifurcation curve SL is S-shaped if SL is S-like shaped
and has exactly two turning points.

In [2], Huang gave a conjecture for the problem (1), see Conjecture 1.
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Figure 1: (i) ⊂-like shaped. (ii) ⊂-shaped. (iii) S-like shaped. (iv) S-shaped.

Conjecture 1 ([2, Remark 1], see Figure 1) Consider (1). Then the following statements (i)—(iii) hold.

(i) If 1 < p < 3, the bifurcation curve SL is ⊂-shaped for all L > 0.

(ii) If p = 3, the bifurcation curve SL is from increasing to ⊂-shaped with varying L > 0.

(iii) If p > 3, the bifurcation curve SL is from increasing to S-shaped with varying L > 0.

Grpahs of bifurcation curve SL. (i) 1 < p < 3. (ii) p = 3. (iii) p > 3.

In 2018, Huang proved the following theorem in order to solve the Conjecture 1.

Theorem 1 ([2, 3]) Consider (1). Then the following statements (i)—(iv) hold.

(i) If 1 < p ≤ 2, the bifurcation curve SL is ⊂-shaped for all L > 0.

(ii) If 2 < p < 3, the bifurcation curve SL is ⊂-like shaped for all L > 0;

(iii) If p = 3, the bifurcation curve SL is increasing for 0 < L ≤ π/(2
√

2) and ⊂-like shaped for L >
π/(2
√

2); and

(iv) If p > 3, there exists L̃p > 0 such that the bifurcation curve SL is increasing for 0 < L ≤ L̃p and S-like
shaped for L > L̃p.

By Theorem 1, it is obvious that Conjecture 1 is only resolved when 1 < p ≤ 2. Thus we intend to further
study the exact shape of SL when p > 2. The following Theorem 2 is our main result.

Theorem 2 (See Figure 2) Consider (1) with p > 2. Then there exists L̄p > 0 such that

(i) if 2 < p < 3, the bifurcation curve SL is ⊂-shaped for L > L̄p;
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(ii) if p = 3, the bifurcation curve SL is ⊂-shaped for L > π/(2
√

2); and

(iii) if p > 3, the bifurcation curve SL is S-shaped for L > L̄p.

Remark 1 By Theorems 1(iii) and 2(ii), we see that Conjecture 1(ii) has been solved. In addition, we
know that it is not easy to prove that the bifurcation curve is S-shaped for Minkowski-curvature problem.
Fortunately, we have the result for the S-shaped curve for (1) under p > 3.

Remark 2 In [5, Theorem 3.6], Zhang and Feng proved that if p > 2, then there exists λ∗∗ > 0 such that
(1) has no positive solutions for 0 < λ < λ∗∗ and exactly one positive solution for λ ≥ λ∗∗. Obviously, this
result is wrong by Theorems 1 and 2.

As a comparison, we consider the semilinear problem{
−u′′ = λ(up + u), in (−1, 1) ,
u(−1) = u(1) = 0,

(3)

and the prescribed mean curvature problem{
−
(
u′/
√

1 + u′2
)′

= λ(up + u), in (−L,L) ,

u(−L) = u(L) = 0.
(4)

By [4, 6], the corresponding bifurcation curves of (3) and (4) may be decreasing, increasing or reversed
⊂-shaped, see Figure 3. Obviously, the shapes of bifurcation curve SL of (1) are more complex than the
shapes for (3) and (4).

2 Lemmas

To prove Theorem 2, we first introduce the time-map method used in Corsato [1, p. 127]. We define the
time-map formula for (1) by

Tλ(α) ≡
∫ α

0

λ [F (α)− F (u)] + 1√
{λ [F (α)− F (u)] + 1}2 − 1

du for α > 0 and λ > 0. (5)

where F (u) ≡
∫ u

0
f(t)dt and f(u) ≡ up + u. Observe that positive solutions uλ ∈ C2(−L,L) ∩ C[−L,L] for

(1) correspond to
‖uλ‖∞ = α and Tλ(α) = L.

So by definition of SL in (2), we have that

SL = {(λ, α) : Tλ(α) = L for some α, λ > 0} . (6)

Thus, it is important to understand fundamental properties of the time-map Tλ(α) on (0,∞) in order to
study the shape of the bifurcation curve SL of (1) for any fixed L > 0. Note that it can be proved that
Tλ(α) is a twice continuously differentiable function of α > 0 and λ > 0. The proofs are easy but tedious
and hence we omit them. Then we compute

T ′λ(α) =
1

α

∫ α

0

λ3B3 + 3λ2B2 + λ (2B −A)(
λ2B2 + 2λB

)3/2 du (7)

and

T ′′λ (α) =
1

α2

∫ α

0

(
3A2B −B2C − 2AB2

)
λ3 +

(
3A2 − 4AB − 2BC

)
λ2[

λ2B2 + 2λB
]5/2 du (8)

where A = αf(α)− uf(u), B = F (α)− F (u) and C = α2f ′(α)− u2f ′(u).
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Figure 2: Graphs of bifurcation curve SL of (1). (i) 1 < p ≤ 2. (ii) 2 < p < 3. (iii) p = 3. (iv) p > 3. Notice
that the black curves are the known results, the blue curves are obtained in this paper, and the exact shapes
of the green curves have yet to be solved.

Figure 3: Figures (i)—(ii) are the graphs of bifurcation curve of (3) where (i) 0 < p < 1. (ii) p ≥ 1. Figures
(iii)—(iv) are the graphs of bifurcation curve of (4) where (iii) 0 < p < 1. (iv) p ≥ 1.
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Lemma 1 ([3, Lemmas 4.1]) Consider (1) with p > 2. For any λ > 0, then

lim
α→0+

Tλ(α) =
π

2
√
λ
, lim

α→∞
Tλ(α) =∞,

lim
α→0+

T ′λ(α) = 0 and lim
α→0+

T ′′λ (α) =


−∞ if 2 < p < 3,

3π
16
√
λ

(λ− 2) if p = 3,

3π
16

√
λ if p > 3.

Lemma 2 Consider (1) with p > 2. Let X = αp+1 − up+1 and Y = α2 − u2. Then

αp−1 <
X

Y
<
p+ 1

2
αp−1

and

A = X + Y > 0, B =
X

p+ 1
+
Y

2
> 0 and C = pX + Y > 0 (9)

for 0 < u < α.

Proof. We obtain (9) by definitions of X, Y , A, B and C. Then we compute

∂

∂u

X

Y
=

uV (u)

(α2 − u2)
2 , (10)

where V (u) = (p+ 1)
(
up+1 − α2up−1

)
+ 2

(
αp+1 − up+1

)
. Since

V ′(u) = −
(
p2 − 1

) (
α2 − u2

)
up−2 < 0 for 0 < u < α,

we see that V (u) > V (α) = 0 for 0 < u < α. So by (10), we observe that

αp−1 = lim
u→0+

X

Y
<
X

Y
< lim
u→α−

X

Y
=
p+ 1

2
αp−1 for 0 < u < α.

The proof is complete.

Lemma 3 Consider (1) with p > 2. Then

∂

∂λ
Tλ(α) < 0 and

∂

∂λ

√
λT ′λ(α) > 0 for α > 0 and λ > 0.

Proof. By (5), (7) and (9), we observe that

∂

∂λ
Tλ(α) =

1

α

∫ α

0

−B(
λ2B2 + 2λB

)3/2 du < 0

and
∂

∂λ

√
λT ′λ(α) =

1

α

∫ α

0

B2
(
B3λ2 + 5B2λ+ 3A+ 6B

)
2 (λB2 + 2B)

5/2
du > 0

for α > 0 and λ > 0. The proof is complete.

In order to prove Lemma 4, we need the following Dini’s Theorem.
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Theorem 3 (Dini’s Theorem) Assume that the monotone sequence of continuous real-valued functions
on compact space converges pointwise to a continuous function. Then the convergence is uniform.

Lemma 4 Consider (1) with p > 2. For any ρ2 > ρ1 > 0, then there exists λ̃(p, ρ1, ρ2) > 0 such that

T ′λ(α) < 0 for ρ1 ≤ α ≤ ρ2 and 0 < λ < λ̃(p, ρ1, ρ2).

Proof. Let

g0(α) =
1

2
√

2α

∫ α

0

2B −A
B3/2

du and gλ(α) =
√
λT ′λ(α) (11)

for ρ1 ≤ α ≤ ρ2 and λ > 0. By (9), we obtain

2B −A = −p− 1

p+ 1
X < 0 for 0 < u < α.

So by (11), we see that

g0(α) =
1

2
√

2α

∫ α

0

2B −A
B3/2

du < 0 for α > 0. (12)

By Lemma 3, {gλ} is an increasing sequence. Clearly, gλ and g0 are continuous on (0,∞) and

lim
λ→0+

gλ(α) = g0(α) < 0 for α > 0. (13)

Then by Theorem 3, gλ uniformly converges to g0 on [ρ1, ρ2]. So by (13), there exists λ̃(p, ρ1, ρ2) > 0 such
that gλ(α) < 0 for ρ1 ≤ α ≤ ρ2 and 0 < λ < λ̃(p, ρ1, ρ2). It implies that T ′λ(α) < 0 for ρ1 ≤ α ≤ ρ2 and
0 < λ < λ̃(p, ρ1, ρ2). The proof is complete.

Lemma 5 Consider (1) with p > 2. Let δp ≡ (p− 2)
1/(p−1). Then T ′′λ (α) > 0 for α ≥ δp and λ > 0.

Proof. By (9), we obtain

3A2 − 4AB − 2BC =
XY (p− 1)

p+ 1
R1(

X

Y
) (14)

and

3A2B −B2C − 2AB2 =
2XY 2 + (1 + p)Y 3

4 (p+ 1)
2 R2(

X

Y
), (15)

where R1(t) = t− p+ 2 and R2(t) = 2 (2p+ 1) t2 +
(
−p2 + 9p+ 4

)
t+ 3 (p+ 1). Since

R2(p− 2) = 3 (p+ 1) (p− 1)
2
> 0 and R′2(p− 2) = (7p+ 4) (p− 1) > 0,

we observe that
R1(t) > 0 and R2(t) > 0 for t > p− 2. (16)

By Lemma 2, then
X

Y
> αp−1 ≥ (δp)

p−1
= p− 2 for 0 < u < α and α ≥ δp.

So by (16), we see that

R1(
X

Y
) > 0 and R2(

X

Y
) > 0 for 0 < u < α and α ≥ δp. (17)

By (8), (14), (15) and (17), T ′′λ (α) > 0 for α ≥ δp and λ > 0. The proof is complete.
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Lemma 6 Consider (1) with p > 3. Then there exists ξp > 0 such that T ′′′λ (α) < 0 for 0 < α ≤ ξp and
λ > 0.

Proof. Let E = α2f ′′(α)− u2f ′′(u). Clearly, E = p (p− 1)X. Then by (8), we compute

T ′′′λ (α) =
1

α3

∫ α

0

λ3
[
M2 (Bλ)

2
+M1Bλ+M0

]
[
λ2B2 + 2λB

]7/2 du, (18)

where
M2 = 9A2B − 3B2C −B2E − 12A3 + 9ABC,

M1 = 27A2B − 12B2C − 4B2E − 24A3 + 27ABC

and
M0 = 18A2B − 12B2C − 4B2E − 15A3 + 18ABC.

We divide this proof into the following three steps.
Step 1. We prove that there exists ξ1,p > 0 such that M2 < 0 for 0 < u < α ≤ ξ1,p. By (9), we see that

M2 =
Y 3

4 (p+ 1)
2P1(

X

Y
), (19)

where

P1(t) = −4 (2p+ 3) (2p+ 1) t3 + 2
(
7p3 − 33p2 − 49p− 15

)
t2

+ (p+ 1)
(
−p3 + 15p2 − 74p− 30

)
t− 15 (p+ 1)

2
.

Since P1(0) = −15 (p+ 1)
2
< 0, there exists κ1,p > 0 such that P1(t) < 0 for 0 < t ≤ κ1,p. Let

ξ1,p =

(
2κ1,p

p+ 1

) 1
p−1

.

By Lemma 2, then

0 <
X

Y
<
p+ 1

2
αp−1 ≤ p+ 1

2
ξp−1

1,p = κ1,p for 0 < u < α ≤ ξ1,p.

It follows that P1(X/Y ) < 0 for 0 < u < α ≤ ξ1,p. So by (19), M2 < 0 for 0 < u < α ≤ ξ1,p.
Step 2. We prove that there exists ξ2,p > 0 such that M2

1 − 4M2M0 < 0 for 0 < u < α ≤ ξ2,p. By (9),
we see that

M2
1 − 4M2M0 =

3XY 3(X + Y )2(p− 1)

4 (p+ 1)
2 P2(

X

Y
), (20)

where

P2(t) = −20 (p+ 3) t3 + 20
(
5p2 − 8p− 9

)
t2 +

(
7p3 + 99p2 − 79p− 267

)
t

−20 (p− 2) (p− 3) (p+ 1) .

Since P2(0) = −20 (p− 2) (p− 3) (p+ 1) < 0, there exists κ2,p > 0 such that P2(t) < 0 for 0 < t ≤ κ2,p. Let

ξ2,p =

(
2κ2,p

p+ 1

) 1
p−1

.

By Lemma 2, then

0 <
X

Y
<
p+ 1

2
αp−1 ≤ p+ 1

2
ξp−1

2,p = κ2,p for 0 < u < α ≤ ξ2,p.
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It follows that P2(X/Y ) < 0 for 0 < u < α ≤ ξ2,p. So by (20), M
2
1 − 4M2M0 < 0 for 0 < u < α ≤ ξ2,p.

Step 3. We prove Lemma 6. Let ξp = min{ξ1,p, ξ2,p}. By Steps 1—2, we see that

M2t
2 +M1t+M0 < 0 for t ∈ R and 0 < u < α ≤ ξp. (21)

It follows that M2 (Bλ)
2

+M1Bλ+M0 for 0 < u < α ≤ ξp and λ > 0. So by (18), we obtain T ′′′λ (α) < 0 for
0 < α ≤ ξp and λ > 0.

The proof is complete.

Lemma 7 Consider (1) with p > 2. Then there exists λ̄p > 0 such that, for 0 < λ ≤ λ̄p, the following
statements (i)—(ii) hold:

(i) If 2 < p < 3, then there exists ᾱλ > 0 such that

T ′λ(α)

 < 0 for 0 < α < ᾱλ,
= 0 for α = ᾱλ,
> 0 for α > ᾱλ.

(22)

Furthermore, Tλ(ᾱλ) is strictly decreasing for 0 < λ ≤ λ̄p.

(ii) If p > 3, then there exist α2,λ > α1,λ > 0 such that

T ′λ(α)

 < 0 for α1,λ < α < α2,λ,
= 0 for α = α1,λ and α = α2,λ,
> 0 for 0 < α < α1,λ and α > α2,λ.

(23)

Furthermore, Tλ(α1,λ) and Tλ(α2,λ) are strictly decreasing for 0 < λ ≤ λ̄p.

Proof. (I) Assume that 2 < p < 3. By Lemma 1, there exists τp ∈ (0, δp) such that T ′1(α) < 0 for 0 < α ≤ τp
where δp is defined in Lemma 5. Then by Lemma 3, we see that

√
λT ′λ(α) ≤ T ′1(α) < 0 for 0 < α ≤ τp and

0 < λ ≤ 1. It implies that
T ′λ(α) < 0 for 0 < α ≤ τp and 0 < λ ≤ 1. (24)

Let λ̄p = min
{

1, λ̃(p, τp, δp)
}
where λ̃(p, τp, δp) is defined in Lemma 4. It follows that

T ′λ(α) < 0 for τp ≤ α ≤ δp and 0 < λ ≤ λ̄p. (25)

So by (24) and (25), we obtain that T ′λ(α) < 0 for 0 < α ≤ δp and 0 < λ ≤ λ̄p. Let λ ∈ (0, λ̄p] be given.
Since lim

α→∞
Tλ(α) =∞, and by Lemma 5, there exists ᾱλ ∈ (δp,∞) such that (22) holds.

Since ᾱλ ∈ (δp,∞), and by Lemma 5, we have T ′′λ (ᾱλ) > 0. So by implicit function theorem, ᾱλ is a
continuously differentiable function with respective to λ ∈ (0, λ̄p]. Since T ′λ(ᾱλ) = 0, and by Lemma 3, we
observe that

∂

∂λ
Tλ(ᾱλ) =

[
∂

∂λ
Tλ(α)

]
α=ᾱλ

+ T ′λ(ᾱλ)
∂ᾱλ
∂λ

=

[
∂

∂λ
Tλ(α)

]
α=ᾱλ

< 0 for 0 < λ ≤ λ̄p.

So the statement (i) holds.
(II) Assume that p > 3. Let λ̄p = λ̃(p, ξp, δp) where δp and ξp are defined in Lemmas 5 and 6, respectively.

By Lemma 4, then
T ′λ(α) < 0 for ξp ≤ α ≤ δp and 0 < λ ≤ λ̄p. (26)

Let λ ∈ (0, λ̄p] be given. By Lemma 1, we see that

T ′λ(α) > 0 for all suffi ciently small α > 0. (27)
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By Lemma 6, T ′λ(α) is concave for 0 < α ≤ ξp. So by (26) and (27), there exists α1,λ ∈
(
0, ξp

)
such that

T ′λ(α)


> 0 for 0 < α < α1,λ,
= 0 for α = α1,λ,
< 0 for α1,λ < α ≤ ξp,

and T ′′λ (α1,λ) < 0. (28)

Since lim
α→∞

Tλ(α) =∞, and by (26) and Lemma 5, there exists α2,λ ∈ (δp,∞) such that

T ′λ(α)

 < 0 for δp < α < α2,λ,
= 0 for α = α2,λ,
> 0 for α > α2,λ,

and T ′′λ (α2,λ) > 0. (29)

By (28), (29) and implicit function theorem, we observe that (23) holds, and α1,λ and α2,λ are continuously
differentiable functions with respective to λ ∈ (0, λ̄p]. By Lemma 3, we see that

∂

∂λ
Tλ(αi,λ) =

[
∂

∂λ
Tλ(α)

]
α=αi,λ

+ T ′λ(αi,λ)
∂αi,λ
∂λ

=

[
∂

∂λ
Tλ(α)

]
α=αi,λ

< 0

for 0 < λ ≤ λ̄p and i = 1, 2. So the statement (ii) holds.
The proof is complete.

Lemma 8 Consider (1) with p = 3. Then the following statements (i)—(iii) hold:

(i) αT ′′λ (α)− T ′λ(α) > 0 for 0 < α ≤ 1 and 0 < λ ≤ 1.

(ii) T ′′′λ (α) > 0 for 0 < α ≤ 1/2 and 1 ≤ λ ≤ 2.

(iii) αT ′′′λ (α) + 2T ′′λ (α) > 0 for 1/2 < α ≤ 1 and 1 ≤ λ ≤ 2.

Proof. This proof is easy but tedious. So we put it in Appendix.

Lemma 9 Consider (1) with p = 3. Then the following statements (i)—(ii) hold:

(i) If λ ≥ 2, then T ′λ(α) > 0 for α > 0.

(ii) If 0 < λ < 2, then there exists ᾱλ > 0 such that

T ′λ(α)

 < 0 for 0 < α < ᾱλ,
= 0 for α = ᾱλ,
> 0 for α > ᾱλ.

(30)

Furthermore, Tλ(ᾱλ) is strictly decreasing for 0 < λ < 2.

Proof. (I) By [3, (5.21)], we have T ′λ=2(α) > 0 for α > 0. So by Lemma 3,

√
λT ′λ(α) ≥

√
2T ′λ=2(α) > 0 for α > 0 and λ ≥ 2.

It implies that statement (i) holds.
(II) By Lemma 1, we have

lim
α→∞

Tλ(α) =∞, lim
α→0+

T ′λ(α) = 0 and lim
α→0+

T ′′λ (α) =
3π

16
√
λ

(λ− 2) < 0 (31)
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for 0 < λ < 2. By Lemmas 5, we have

T ′′λ (α) > 0 for α ≥ δp=3 = 1 and λ > 0. (32)

Then we consider two cases:
Case 1. Assume that 0 < λ ≤ 1. If T ′λ(α) has a zero β1 on (0,∞), by (32) and Lemma 8(i), we see that

T ′′λ (β1) > 0. So T ′λ(α) has at most one zero on (0,∞). Then by (31), we observe that T ′λ(α) has exactly one
zero ᾱλ on (0,∞). Moreover, (30) holds.
Case 2. Assume that 1 < λ < 2. If T ′′λ (α) has a zero β2 on (0, 1], by Lemma 8(ii)(iii), we observe that

T ′′′λ (β2) > 0. Thus
T ′′λ (α) has at most one zero on (0, 1]. (33)

By (31)—(33), there exists α1 > 0 such that

T ′′λ (α)

 < 0 for 0 < α < α1,
= 0 for α = α1,
> 0 for α > α1.

Then by (31), there exists ᾱλ > 0 such that (30) holds.
Finally, by similar argument in the proof of Lemma 7, we obtain Tλ(ᾱλ) is strictly decreasing for 0 <

λ < 2. So the statement (ii) holds.
The proof is complete.

Lemma 10 ([3, Lemma 4.5]) Consider (1) with fixed L > 0. Then the following assertions (i)—(iii) hold:

(i) there exists a positive function λL(α) ∈ C1(0, L) such that TλL(α)(α) = L for α > 0. Moreover, the
bifurcation curve SL = {(λL(α), α) : 0 < α < L} is continuous on the (λ, ‖u‖∞)-plane.

(ii) sgn(λ′L(α)) = sgn(T ′λL(α)(α)) for α > 0 where sgn(u) is the signum function.

(iii)

lim
α→0+

λL(α) =
π2

4L2
and lim

α→L−
λL(α) =∞.

3 Proof of Theorem 2

(I) Assume that 2 < p < 3. Let

Lp =
π

2
√
λ̄p

,

where λ̄p is defined in Lemma 7. Let L > Lp be given. From the proof of [2, Theorem 2.1, p5999-p6000], we
find that there exists δ > 0 such that

λ′L(α) < 0 for 0 < α < δ. (34)

We assert that
λL(α) has exactly one critical point α∗ on (0, L). (35)

By Lemma 10(iii), (34) and (35), we obtain

λ′L(α)

 < 0 on (0, α∗) ,
= 0 for α = α∗,
> 0 on (α∗, L) .
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Thus Theorem 2(i) holds.
Next, we prove assertion (35). By Lemma 10(iii) and (34), λL(α) has at least one critical point on (0, L).

Suppose λL(α) has two critical points α1 and α2 on (0, L). Let λ1 = λL(α1) and λ2 = λL(α2). Since
λ′L(α1) = λ′L(α2) = 0, and by Lemma 10, we obtain

Tλ1(α1) = Tλ2(α2) = L and T ′λ1(α1) = T ′λ2(α2) = 0. (36)

Since
L > Lp =

π

2
√
λ̄p

,

and by Lemmas 1 and 7(i), there exist λ∗ ∈ (0, λ̄p) and α∗ ∈ (ᾱλ∗ ,∞) such that

L =
π

2
√
λ∗

= lim
α→0+

Tλ∗(α) = Tλ∗(α∗), (37)

see Figure 4(i). By Lemmas 3 and 7(i), we observe that

Figure 4: The graph of Tλ∗(α). (i) 2 < p ≤ 3. (ii) p > 3.

√
λT ′λ(α) ≥

√
λ∗T

′
λ∗(α) > 0 for α ≥ α∗ and λ ≥ λ∗. (38)

If λ1 ≥ λ∗, by (36) and (38), we observe that 0 < α1 < α∗. Then by (36), Lemma 3 and (37), we see that

L = Tλ1(α1) ≤ Tλ∗(α1) < Tλ∗(α∗) = L,

which is a contradiction. Thus 0 < λ1 < λ∗. Similarly, we obtain 0 < λ2 < λ∗. Since 0 < λ1, λ2 < λ̄p, and
by Lemma 7(i) and (36), we observe that

α1 = ᾱλ1 , α2 = ᾱλ2 and Tλ1(ᾱλ1) = Tλ2(ᾱλ2) = L.

Since Tλ(ᾱλ) is strictly decreasing for 0 < λ ≤ λ̄p, we see that λ1 = λ2 and α1 = α2. Thus assertion (35)
holds.

(II) Assume that p = 3. Let L > π/(2
√

2) be given. By Lemma 1, we see that

L >
π

2
√

2
= lim
α→0+

T2(α).

Suppose λL(α) has two critical points α1 and α2 on (0, L). Let λ1 = λL(α1) and λ2 = λL(α2). Since
λ′L(α1) = λ′L(α2) = 0, and by Lemma 10, we obtain

Tλ1(α1) = Tλ2(α2) = L and T ′λ1(α1) = T ′λ2(α2) = 0. (39)
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By Lemma 9(i) and (39), we see that 0 < λ1, λ2 < 2. By Lemma 9(ii) and (39), we observe that

α1 = ᾱλ1 , α2 = ᾱλ2 and Tλ1(ᾱλ1) = Tλ2(ᾱλ2) = L.

Since Tλ(ᾱλ) is strictly decreasing for 0 < λ < 2, we further observe that λ1 = λ2 and α1 = α2. Thus λL(α)
has at most one critical point on (0, L). By Theorem 1(iii) and Lemma 10(i), λL(α) has exactly one critical
point, a local minimum, on (0, L). So Theorem 2(ii) holds.

(III) Assume that p > 3. We let

Lp = max
{
Tλ̄p(α1,λ̄p), L̃p

}
+ 1,

where λ̄p and α1,λ̄p are defined in Lemma 7, and L̃p is defined in Theorem 1(iv). Let L > Lp be given. We
assert that

λL(α) has exactly two critical points α1 and α2 on (0, L). (40)

By Theorem 1(iv), Lemma 10 and (40), we obtain

λ′L(α)

 < 0 on (α1, α2) ,
= 0 for α = α1 and α = α2,
> 0 on (0, α1) ∪ (α2, L) ,

(41)

which implies that Theorem 2(iii) holds.
Next, we prove assertion (40). Since Lp > L̃p, and by Theorem 1(iv) and Lemma 10(i), λL(α) has two

distinct critical points α1 and α2 on (0, L). Suppose λL(α) has a critical point α3 on (0, L) such that α3 6= α1

and α3 6= α2. Let λi = λL(αi) for i = 1, 2, 3. Since λ′L(αi) = 0 for i = 1, 2, 3, and by Lemma 10(ii), we
obtain

Tλ1(α1) = Tλ2(α2) = Tλ3(α3) = L and T ′λ1(α1) = T ′λ2(α2) = T ′λ3(α3) = 0. (42)

If λ1 > λ̄p, by Lemmas 3 and (42), then

Tλ̄p(α1) > Tλ1(α1) = L > Lp > Tλ̄p(α1,λ̄p).

So by Lemma 7(ii), we see that α1 > α2,λ̄p . Furthermore, T
′
λ̄p

(α1) > 0. So by (42) and Lemmas 3, we see
that

0 =
√
λ1T

′
λ1(α1) >

√
λ̄pT

′
λ̄p

(α1) > 0,

which is a contradiction. Thus λ1 ≤ λ̄p. Similarly, we obtain λ2 ≤ λ̄p and λ3 ≤ λ̄p. By Lemma 7(ii) and
(42), we observe that, for i = 1, 2, 3,

either (αi = α1,λi and Tλi(α1,λi) = L) or (αi = α2,λi and Tλi(α2,λi) = L). (43)

Since Tλ(α1,λ) and Tλ(α2,λ) are strictly decreasing for 0 < λ ≤ λ̄p, and by (43), we observe that one of
α1 = α2, α1 = α3 and α2 = α3 holds. It is a contradiction. Thus λL(α) has exactly two critical points α1

and α2. Thus assertion (40) holds.
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4 Appendix

In this section, we prove Lemma 8.

Proof of Lemma 8(i). By (7) and (8), we obtain

αT ′′λ (α)− T ′λ(α) =
1

α

∫ α

0

λ2φ1(λ)(
λ2B2 + 2λB

)5/2 du, (44)

where

φ1(λ) = −B5λ3 − 5B4λ2 +B
(
−AB −BC + 3A2 − 8B2

)
λ

−2AB − 2BC + 3A2 − 4B2.

By Lemma 2, it is easy to see that

φ1(0) =
3

4
X2 > 0 for 0 < u < α. (45)

We assert that
φ1(1) > 0 for 0 < u < α ≤ 1. (46)

Since φ′′1(λ) = −6B5λ− 10B4 < 0 for 0 < u < α and λ > 0, and by (45) and (46), we see that φ1(λ) > 0 for
0 < u < α ≤ 1 and 0 < λ ≤ 1. Then Lemma 8(i) holds by (44).

Next, we prove assertion (46). By Lemma 2, we compute that

φ1(1) = Y 2φ̄1(Y,
X

Y
) , (47)

where

φ̄1(s, t) = − 1

1024
(t+ 2)

5
s3 − 5

256
(t+ 2)

4
s2 +

3

8
t (t+ 2) (t+ 1) s+

3

4
t2.
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It is easy to see that

φ̄1(0, t) > 0 and
∂2

∂s2
φ̄1(s, t) < 0 for s, t > 0. (48)

By applying Maple soft, we observe that

φ̄1(t, t) =
1

1024
t2
(
−t6 − 10t5 − 60t4 − 240t3 − 176t2 + 480t+ 1216

)
> 0 (49)

for 0 < t ≤ 1, and

φ̄1(1, t) = − 1

1024
t5 − 15

512
t4 +

23

128
t3 +

85

64
t2 +

3

64
t− 11

32
> 0 (50)

for 1 < t ≤ 2. So by (48)—(50), we obtain

φ̄1(s, t) > 0 for 0 < s ≤ t ≤ 1 (51)

and
φ̄1(s, t) > 0 for 0 < s ≤ 1 < t ≤ 2. (52)

In addition, since p = 3, and by Lemma 2, we observe that

0 < Y < α2 ≤ 1 and Y < α2 + u2 =
X

Y
< 2 for 0 < u < α ≤ 1.

So by (51) and (52), we obtain φ̄1(Y, XY ) > 0 for 0 < u < α ≤ 1. Then assertion (46) holds by (47).

Proof of Lemma 8(ii). We compute

T ′′′λ (α) =
1

α3

∫ α

0

λ3[
λ2B2 + 2λB

]7/2φ2(λ)du, (53)

where φ2(λ) = B2M2λ
2 + BM1λ + M0, and M2, M1 and M0 are defined in the proof of Lemma 6. Since

p = 3, and by Lemma 2, we observe that

0 < Y < α2 ≤ 1

4
and Y < α2 + u2 =

X

Y
<

1

2
for 0 < u < α ≤ 1

2
. (54)

Then by Lemma 2 and (54),

φ′′2(λ) = 2B2M2 = −
3
(
21X3 + 45X2Y + 48XY 2 + 20Y 3

)
8

B2 < 0 (55)

and

φ2(0) = M0 =
3

4
X2Y

(
3− X

Y

)
> 0 (56)

for 0 < u < α ≤ 1/2 and λ > 0. We assert that

φ2(2) > 0 for 0 < u < α ≤ 1

2
. (57)

By (55)—(57), we see that φ2(λ) > 0 for 0 < u < α ≤ 1/2 and 0 < λ ≤ 2. Then Lemma 8(ii) holds by (53).
Next, we prove assertion (57). By Lemma 2, we compute that

φ2(2) = Y 3φ̄2(Y,
X

Y
), (58)

where

φ̄2(s, t) = − 3

64

(
48t+ 45t2 + 21t3 + 20

)
(t+ 2)

2
s2 − 3

8
t (t+ 2)

(
t2 − 9t− 6

)
s− 3

4
t2 (t− 3) .
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It is easy to see that

φ̄2(0, t) > 0 and
∂2

∂s2
φ̄2(s, t) < 0 for 0 < s < t ≤ 2. (59)

By applying Maple soft, we observe that

φ̄2(t, t) =
3

64
t2
(
−21t5 − 129t4 − 320t3 − 336t2 − 96t+ 64

)
> 0 (60)

for 0 < t ≤ 1/4, and

φ̄2(
1

4
, t) =

3

1024

(
−21t5 − 161t4 − 344t3 + 1144t2 + 112t− 80

)
> 0 (61)

for 1/4 < t ≤ 1/2. By (59)—(61), we obtain

φ̄2(s, t) > 0 for 0 < s ≤ t ≤ 1

4
, (62)

and
φ̄2(s, t) > 0 for 0 < s ≤ 1

4
< t ≤ 1

2
. (63)

So by (54), (62) and (63), we obtain φ̄2(Y, XY ) > 0 for 0 < u < α ≤ 1/2. Then assertion (57) holds by (58).

Proof of Lemma 8(iii). We compute

αT
(3)
λ (α) + 2T ′′λ (α) =

1

α2

∫ α

0

λ3[
λ2B2 + 2λB

]7/2φ3(λ)du, (64)

where φ3(λ) = B2K2λ
2 +BK1λ+K0,

K2 = 15A2B − 4AB2 − 5B2C −B2E − 12A3 + 9ABC,

K1 = 45A2B − 16AB2 − 20B2C − 4B2E − 24A3 + 27ABC,

and
K0 = 30A2B − 16AB2 − 20B2C − 4B2E − 15A3 + 18ABC.

By Lemma 2, we compute and find that

φ′′3(λ) = 2B2K2 = 2B2

(
−49

16
X3 − 85

16
X2Y − 11

2
XY 2 − 9

4
Y 3

)
< 0 (65)

for 0 < u < α and λ > 0. We assert that

φ3(1) > 0 and φ3(2) > 0 for 0 < u < α and
1

2
< α ≤ 1. (66)

By (65) and (66), φ3(λ) > 0 for 0 < u < α, 1/2 < α ≤ 1 and 1 ≤ λ ≤ 2. So Lemma 8(iii) holds by (64).
Next, we prove assertion (66). By Lemma 2, we compute

φ3(1) = Y 3φ̄3(Y,
X

Y
) and φ3(2) = Y 3φ̃3(Y,

X

Y
), (67)

where

φ̄3(s, t) =

(
t

4
+

1

2

)2(
−49

16
t3 − 85

16
t2 − 11

2
t− 9

4

)
s2

+

(
t

4
+

1

2

)(
5

4
t3 +

53

4
t2 + 11t+ 3

)
s

+
137

2
t3 +

1111

4
t2 +

1371

4
t+

275

2
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and

φ̃3(s, t) =

(
t

2
+ 1

)2(
−49

16
t3 − 85

16
t2 − 11

2
t− 9

4

)
s2

+

(
t

2
+ 1

)(
5

4
t3 +

53

4
t2 + 11t+ 3

)
s

+
137

2
t3 +

1111

4
t2 +

1371

4
t+

275

2
.

It is easy to see that

φ̄3(0, t) > 0, φ̃3(0, t) > 0,
∂2

∂s2
φ̄3(s, t) < 0 and

∂2

∂s2
φ̃3(s, t) < 0 for t > 0. (68)

By applying Maple soft, we find that

φ̄3(1, t) = − 49

256
t5 − 201

256
t4 + 70t3 +

9097

32
t2 +

5553

16
t+

2215

16
> 0 (69)

and
φ̃3(1, t) = −49

64
t5 − 241

64
t4 +

533

8
t3 +

2281

8
t2 +

695

2
t+

553

4
> 0, (70)

for 1
4 < t < 2. So by (68)—(70), we observe that

φ̄3(s, t) > 0 and φ̃3(s, t) > 0 for 0 < s < 1 and
1

4
< t < 2. (71)

In addition, since p = 3, and by Lemma 2, we observe that

0 < Y < α2 ≤ 1 and
1

4
<
X

Y
< 2 for 0 < u < α and

1

2
< α ≤ 1. (72)

Then assertion (66) holds by (67), (71) and (72).
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