
Applied Mathematics E-Notes, 23(2023), 477-483 c© ISSN 1607-2510
Available free at mirror sites of http://www.math.nthu.edu.tw/∼amen/

On Nonnegative Loading Matrices: Two-Factor Case∗

Peter Zizler†, Shoba Ittyipe‡

Received 30 December 2022

Abstract

Factor analysis describes variability among observed variables in terms of a fewer unobserved variables,
referred to as factors. In the case of two independent factors we provide a straightforward condition when
the factor loading matrix has all of its entries nonnegative. Results on such loading matrices being unique
are established along with algorithms as how to find them.

1 Introduction

In general, factor loadings associated with the factor analysis problem are not unique which adds to the
richness of the subject. In our paper we address the case of a factor analysis problem with any number of
(observed) variables having two independent (unobserved) factor variables. We provide a straightforward
answer when such a factor analysis problem, under certain conditions on the covariance matrix, yields unique
loading matrices with all of their entries nonnegative with at least one entry being zero. This classification
condition, drawn from the singular value decomposition of the covariance matrix, is easily checked. We
provide an algorithm as how to construct these (unique) loading matrices.
For reader’s convenience, we introduce the main ideas behind the statistical procedure called the factor

analysis, an area to which our new results apply. For more detailed information on the foundations of factor
analysis we refer the reader to [1] or [2]. A study of nonnegativity of factor loadings can be found, among
others, in [4]. We motivate the reader by an example of a specific size (three variables and two factors) for
simplicity of notation. The general case of m variables and n factors follows readily. Let X1, X2 and X3 be
given random variables assumed to be of zero mean and variance one, in particular, the variables are the z
scores. Suppose the variability of these three variables are to be explained by two independent normalized
factors f1 and f2. In particular, we assume for i, j ∈ {1, 2}

〈fi, fj〉 = 0 if i 6= j and 〈fi, fi〉 = 1.

We determine the loadings on the factors f1 and f2 from the covariances among the variables {Xi}3i=1. In
particular, we write

X1 = λ11f1 + λ12f2 + ε1,

X2 = λ21f1 + λ22f2 + ε2,

X3 = λ31f1 + λ32f2 + ε3.

The random variables {εi}3i=1 are assumed to be independent, normally distributed random variables
with a certain variance 〈εi, εi〉 for each i ∈ {1, 2, 3}. We define

Λ =

 λ11 λ12

λ21 λ22

λ31 λ32

 , X =

 X1

X2

X3

 , f =

(
f1

f2

)
and ε =

 ε1
ε2
ε3

 .
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With this notation the above reads as
X = Λf + ε.

The matrix Λ is referred to as the loading matrix. To determine the loadings λij we will use the knowledge
of the covariances of the variables Xi and Xj , in particular, we form the matrix 〈X1, X1〉 〈X1, X2〉 〈X1, X3〉

〈X2, X1〉 〈X2, X2〉 〈X2, X3〉
〈X3, X1〉 〈X3, X2〉 〈X3, X3〉

 .

We assume the random variables {εi}3i=1 are independent of the factors, in particular we assume 〈εi, fj〉 = 0
for all i ∈ {1, 2, 3} and j ∈ {1, 2}.
The matrix ΛΛT has at most two nonzero (positive) eigenvalues, since the size of the matrix Λ is 3×2. This

observations comes from the singular value decomposition, see [3] for example. We seek to best approximation
in the least squares sense 〈X1, X1〉 〈X1, X2〉 〈X1, X3〉

〈X2, X1〉 〈X2, X2〉 〈X2, X3〉
〈X3, X1〉 〈X3, X2〉 〈X3, X3〉

 ≈ ΛΛT +

 〈ε1, ε1〉 0 0
0 〈ε2, ε2〉 0
0 0 〈ε3, ε3〉


or equivalently

ΛΛT ≈

 〈X1, X1〉 − 〈ε1, ε1〉 〈X1, X2〉 〈X1, X3〉
〈X2, X1〉 〈X2, X2〉 − 〈ε2, ε2〉 〈X2, X3〉
〈X3, X1〉 〈X3, X2〉 〈X3, X3〉 − 〈ε3, ε3〉

 = C.

To illustrate the above, set i = 2, j = 3, and we compute

〈X2, X3〉 = 〈λ21f1 + λ22f2 + ε2, λ31f1 + λ32f2 + ε3〉
= λ21λ31 〈f1, f1〉+ λ22λ32 〈f2, f2〉+ 〈ε2, ε3〉
= λ21λ31 + λ22λ32.

Similarly, set i = 1, j = 1, and we compute

〈X1, X1〉 = 〈λ11f1 + λ12f2 + ε1, λ11f1 + λ12f2 + ε1〉
= λ11λ11 〈f1, f1〉+ λ12λ12 〈f2, f2〉+ 〈ε1, ε1〉 .

Let m,n be natural numbers with m > n ≥ 2. We will assume C is a m×m symmetric matrix whose n
largest eigenvalues in absolute value are positive and distinct, listed in descending order

{
σ2
i

}n
i=1
. Let {ui}ni=1

be any choice of orthonormal eigenvectors corresponding to these eigenvalues, in particular Cui = σ2
iui for

i ∈ {1, 2, . . . , n}. Form the matrix
Un = [σ1u1, σ2u2, . . . , σnun]

the columns of Un are the vectors {ui}ni=1 scaled by σi. The eigenvectors are unique up to a sign switch due
to the assumption of distinct eigenvalues. It turns out the loading matrix can be attained as

Λ = UnV
T =

n∑
i=1

σiuiv
T
i

where V is an arbitrary n × n orthogonal matrix with {vi}ni=1, an orthonormal set of vectors in R
n, as

its columns. In many applications it is imperative we find factor loadings that are all nonnegative for the
factor analysis to be useful. We emphasize that when such factor loadings are found, if they exists, they
need not be unique. In the next section we address the question of existence and uniqueness of loading
matrices with all entries nonnegative pertaining to factor analysis problems with two independent factors
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and any number of (observed) variables. The order of the factors {f1, f2} can be permuted which results in
the column permutation in the matrix U2. When we say the matrix U2 is associated with the factor analysis
problem we understand the uniqueness of this matrix up to a column sign switch or column permutation.
We will assume the variances 〈εi, εi〉 are known for all i ∈ {1, 2, . . . ,m}, possibly estimated using available
statistical techniques, see [1] or [2].

2 Main Results

Consider a m × n real matrix Λ = Λm×n. We say that Λ is a m × n optimal loading matrix for C if the
following is minimized

minΛ||C − ΛΛT ||F .

Here the Frobenius norm of the matrix C = [cij ]i,j=1,2,...,m is given by ||C||2F =
∑

i,j=1,2,...,m |cij |2. We
observe that optimal loading matrices are not unique. The following is a well known result, we include its
proof for reader’s convenience. We refer the reader to [3] or [5] for a very nice exposition on the topic of a
singular value decomposition of a matrix.
Let C be a m × m symmetric matrix whose n largest eigenvalues in absolute value are positive and

distinct, listed in descending order
{
σ2
i

}n
i=1
. Any optimal m× n loading matrix for C is given by

Λ =

n∑
i

σiuiv
T
i

with {ui}ni=1 being the corresponding normalized eigenvectors, unique up to a sign. The vectors {vi}
n
i=1

form an arbitrary orthonormal basis for Rn.
To see this consider the singular value decomposition of the m×n matrix Λ written as Λ = UDV T where

U is a m×m orthogonal matrix, V is a n×n orthogonal matrix and D is a m×n diagonal matrix. Observe
that

ΛΛT =
(
UDV T

) (
UDV T

)T
= UDV TV DTUT = UD1U

T

with D1 being a m ×m diagonal matrix with the only possible nonzero entries being the first n diagonal
entries. To obtain a loading matrix that we seek, it follows from the properties of the singular value
decomposition that the optimal choice for the diagonal entries in D1 are the values

{
σ2
i

}n
i=1
. The vectors

{ui}ni=1 are the corresponding normalized eigenvectors. These normalized eigenvectors are unique up to a
sign since the matrix C is assumed to have the eigenvalues in question distinct.

If the matrix Λ, a m× n optimal loading matrix for C, has all of its entries nonnegative then we say we
have a nonnegative m×n optimal loading matrix for C. Given two vectors u and v in Rp the inner product
between these two vectors is denoted by 〈u,v〉.

Lemma 1 Let m > 2 be an arbitrary natural number and n = 2. Consider vectors {ui}mi=1 in R
2. The

property 〈ui,uj〉 ≥ 0 for all i, j ∈ {1, 2, . . . ,m} holds if and only if there exists an orthonormal basis {v1,v2}
for R2 with the property that 〈ui,vj〉 ≥ 0 for all i ∈ {1, 2, . . . ,m} and j ∈ {1, 2}. Furthermore, suppose
〈ui,uj〉 ≥ 0 for all i, j ∈ {1, 2, . . . ,m}. Then the above orthonormal basis is unique if and only if there exists
ui and uj such that 〈ui,uj〉 = 0. In such a case we have {v1,v2} = {ui,uj}.

Proof. Without loss of generality we can assume {ui}mi=1 are normalized. Suppose the property 〈ui,uj〉 ≥ 0
for all i, j ∈ {1, 2, . . . ,m} holds. Choose any {ui0 ,uj0} for which

〈ui0 ,uj0〉 = mini,j∈{1,2,...,m} {〈ui,uj〉} .

Let v1 = ui0 . The vector v1 is normalized and it will be the first vector in the orthonormal set we construct.
Note 〈ui,v1〉 ≥ 0 for all i. Define

V1 = v⊥1 =
{
u ∈ R2 | 〈u,v1〉 = 0

}
= span {w}
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for some unit vector w ∈ R2. Now observe that for all i ∈ {1, 2, . . . ,m} either

〈ui,w〉 ≥ 0 or 〈ui,−w〉 ≥ 0.

Choose v2 = w or v2 = −w as the second vector in the orthonormal set we construct, select the choice
that gives all inner products nonnegative. On the other hand, suppose there exists and orthonormal basis
{v1,v2} for R2 with the property that 〈ui,vj〉 ≥ 0 for all i ∈ {1, 2, . . . ,m} and j ∈ {1, 2}. Then we can
choose a rotation transformation to rotate the basis {v1,v2} to coincide with the standard basis (1, 0)T and
(0, 1)T . The inner products 〈ui,uj〉 for all i, j ∈ {1, 2, . . . ,m} are preserved upon rotation. The new rotated
vectors have all their entries nonnegative and hence the inner products among them are nonnegative. The
uniqueness result readily follows.

Theorem 1 Let C be a m ×m symmetric matrix whose two largest eigenvalues in absolute value are pos-
itive and distinct, denoted by

{
σ2

1, σ
2
2

}
in decreasing order. Let {u1,u2} be any corresponding normalized

eigenvectors in Rm. Define a m× 2 matrix

U2 =

[
σ1u1, σ2u2

]
.

Then there exists a m× 2 optimal loading matrix for C with all of its entries nonnegative if and only if the
matrix U2U

T
2 has all of its entries nonnegative. In this case the nonnegative m × 2 optimal loading matrix

for C is unique (up to permutation of columns) if and only if the matrix U2U
T
2 has a zero entry.

Proof. Since we assume the matrix C has the eigenvalues in question distinct, the corresponding normalized
eigenvectors {u1,u2} are unique up to a sign. As a result the matrix U2U

T
2 is the same matrix regardless of

the (sign) choice of {u1,u2}. We note the m× 2 optimal loading matrix for C is given by Λ = U2V
T where

V T is an arbitrary 2 × 2 orthogonal matrix. Invoking the Lemma above we observe the matrix U2U
T
2 has

all of its entries nonnegative if and only if there exists an orthogonal 2× 2 matrix V T such that the matrix
U2V

T has all of its entries nonnegative. The uniqueness result follows readily.

Corollary 1 Consider the m× 2 factor analysis problem

X = Λf + ε

as above. Let

C =

 〈X1, X1〉 − 〈ε1, ε1〉 〈X1, X2〉 〈X1, X3〉
〈X2, X1〉 〈X2, X2〉 − 〈ε2, ε2〉 〈X2, X3〉
〈X3, X1〉 〈X3, X2〉 〈X3, X3〉 − 〈ε3, ε3〉

 .

Assume C is a m × m symmetric matrix whose two largest eigenvalues in absolute value are positive and
distinct listed as

{
σ2

1, σ
2
2

}
in decreasing order. Let {u1,u2} be any corresponding normalized eigenvectors in

Rm. Then there exists a loading matrix Λ with all of its entries nonnegative if and only if the matrix U2U
T
2

has all of its entries nonnegative where

U2 =

[
σ1u1, σ2u2

]
.

Suppose the matrix U2U
T
2 has all of its entries nonnegative. Then

• We have a unique loading matrix Λ with all of its entries nonnegative (up to a factor permutation) if
and only if the matrix U2U

T
2 has a zero entry.

• If the matrix U2U
T
2 has all entries positive then there are just two possible loading matrices (up to a

factor permutation) with all of its entries nonnegative along with the further property of having at least
one zero entry in the loading matrix.
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Proof. Suppose U2U
T
2 has all of its entries nonnegative. The matrix U2U

T
2 has a zero entry if and only

if there exist two vectors in R2 extracted from the rows in U2 which when normalized are the unique
orthonormal columns in the matrix V T , unique up to a permutation of columns. Multiple zero entries in
U2U

T
2 yield the same matrix V T up to a column permutation. Now suppose the matrix U2U

T
2 has all of its

entries positive. Extract ui0 and uj0 , two rows in U2, such that〈
uTi0 ,u

T
j0

〉
= mini,j∈{1,2,...,m}

{〈
uTi ,u

T
j

〉}
where ui,uj are any rows in U2. Set v1 = uTi0 . Let v2 = (v1(2),−v1(1))

T . If 〈v2,ui〉 < 0 for some i
set v2 = −v2. Let V T be the matrix whose columns are v1 and v2. The loading matrix is obtained as
Λ1 = U2V

T . Similarly, set v1 = uj0 and generate Λ2 = U2V
T . These two loading matrices Λ1 and Λ2 are

unique matrices (up to column permutation) with all entries nonnegative with at least one zero entry.

3 Algorithm

The following is an algorithm to compute the loading matrices with all of their entries nonnegative with at
least one zero entry. We assume we have generated the matrix U2 from the singular value decomposition of
the covariance matrix under the assumptions in the Theorem.

• If the matrix U2U
T
2 has a negative entry, then no loading matrix with all entries nonnegative exists.

• Suppose the matrix U2U
T
2 has all of its entries nonnegative and some entries are zero. Pick any (i, j)

location for the zero entry. Select ui and uj , the corresponding rows in U2, normalize these vectors,
keeping the same notation for these now normalized vectors. Denote v1 = ui and v2 = uj . These are
(up to a column permutation) the columns in the desired (unique) matrix V T . The desired loading
matrix is obtained as Λ = U2V

T .

• Suppose the matrix U2U
T
2 has all of its entries positive. Extract the vectors {ui}mi=1 which are the

rows in U2 and normalized them. Observe 〈ui,uj〉 > 0 for all i, j ∈ {1, 2, · · · ,m}. We find the unique
vectors ui0 and uj0 (up to a permutation) such that

〈ui0 ,uj0〉 = mini,j∈{1,2,...,m} {〈ui,uj〉}

using the following algorithm

— Set i0 = 1 and j0 = 2. Select j = 3 and find k, l ∈ {i0, j0, j} so that

〈uk,ul〉 = min {〈ui0 ,uj0〉 , 〈ui0 ,uj〉 , 〈uj0 ,uj〉} .

—Update i0 = k and j0 = l. Set j = 4 and continue inductively until j = m.

• Let i0, j0 be the values generated above. Set v1 = ui0 . Let v2 = (v1(2),−v1(1))
T . If 〈v2,ui〉 < 0 for

some i then set v2 = −v2. Set V T to be the matrix whose columns are v1 and v2. The loading matrix
is obtained as Λ1 = U2V

T .

• Set v1 = uj0 , repeat as above, and generate Λ2 = U2V
T .

The loading matrices Λ1 and Λ2, generated above, are the two unique (up to a column permutation)
loading matrices with all of their entries nonnegative and with at least one entry being zero.
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4 Examples

Imagine we are given test scores, in the form of z scores, from a large group of students, their test scores in
chemistry, the vector X1, their test scores in biology, the vector X2, and their test scores in social science,
the vector X3. Consider the following hypothetical covariance matrix for the variables {Xi}3i=1 1.00 0.70 0.20

0.70 1.00 0.40
0.20 0.40 1.00

 .

For example, the entry value 0.7 in the (2, 1) entry in the covariance matrix measures the covariance between
the biology and chemistry test scores. Similarly, the entry value 0.4 in the (3, 2) entry in the covariance
matrix measures the covariance between the social science and biology test scores. Though hypothetical,
these covariances are not surprising, due to the nature of the subjects. Assume that 80 % of the test score
performance in the respective disciplines is determined by two unobserved variables (factors). These two
(unobserved) variables can be thought of as the quantitative ability factor and the qualitative ability factor.
The remaining 20 % of the test score performance in the respective disciplines is determined by random
outcomes. In particular, we assume 〈εi, εi〉 = 0.2 for i ∈ {1, 2, 3}. We have

C =

 1.00 0.70 0.20
0.70 1.00 0.40
0.20 0.40 1.00

−
 0.20 0.00 0.00

0.00 0.20 0.00
0.00 0.00 0.20

 =

 0.80 0.70 0.20
0.70 0.80 0.40
0.20 0.40 0.80

 .

The eigenvalues of C are {1.7023, 0.6306, 0.0671}. The largest two eigenvalues of C with a choice of corre-
sponding eigenvectors are

σ2
1 = 1.7023 ; σ2

2 = 0.6306

u1 = (0.6110, 0.6646, 0.4301)T ; u2 = (0.4663, 0.1369,−0.8740)T .

We set

U2 = [σ1u1, σ2u2] =

 0.7971 0.3703
0.8672 0.1087
0.5611 −0.6940


and obtain

U2U
T
2 =

 0.7725 0.7315 0.1903
0.7315 0.7638 0.4111
0.1903 0.4111 0.7966


which implies the existence of a loading matrix with all of its entries nonnegative. We obtain the following
two loading matrices with a zero entry (unique up to factor permutation)

Λ1 =

 0.8789 0.0000
0.8327 0.2668
0.2165 0.8658

 or Λ2 =

 0.2132 0.8526
0.4607 0.7427
0.8924 0.0000

 .

These loading matrices can be understood as follows. If we had to assign a full quantitative loading to one
discipline, it would be chemistry with the loading value of 0.8789. This yields the matrix Λ1. As a result
we have the unique consequences for the performance in biology with the quantitative loading of 0.8327 and
the qualitative loading of 0.2668. The social science performance has the quantitative loading of 0.2165 and
the qualitative loading of 0.8658. The smallest eigenvalue of C is significantly smaller than the largest two,
the use of two factors would be appropriate here.

If, on the other hand, we had to assign a full qualitative loading to one discipline it would be social
science with the loading value of 0.8924, this yields the matrix Λ2. The factors are permuted in the loading
matrix Λ2 with the first column representing the qualitative factor and the second column the quantitative
factor. In this instant we have the unique consequences for the performance in biology with the quantitative
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loading of 0.7427 and the qualitative loading of 0.4607. The chemistry performance has the quantitative
loading of 0.8526 and the qualitative loading of 0.2132.

Now consider the same example as above except with a different covariance matrix for the variables
{Xi}3i=1  1 0.01 0.02

0.01 1 0.05
0.02 0.05 1

 .

The variances for the random variables are 〈εi, εi〉 = 0.02 for all i ∈ {1, 2, 3}. We have

C =

 0.98 0.01 0.02
0.01 0.98 0.05
0.02 0.05 0.98

 .

The eigenvalues are C are {1.0378, 0.9732, 0.9289}. The largest two eigenvalues of C with a choice of corre-
sponding eigenvectors are

σ2
1 = 1.0378 ; σ2

2 = 0.9732

u1 = (0.3467, 0.6470, 0.6791)T ; u2 = (0.9259,−0.3517,−0.1376)T .

We set

U2 = [σ1u1, σ2u2] =

 0.3532 0.9135
0.6591 −0.3470
0.6919 −0.1357


and obtain

U2U
T
2 =

 0.9591 −0.0842 0.1204
−0.0842 0.5548 0.5031
0.1204 0.5031 0.4971


indicating the non-existence of a loading matrix with all of its entries nonnegative. The three eigenvalues
of C are close to each other, the use of two factors would not be appropriate here. Still it is of importance
to note, should two factors be used, the existence of a loading matrix with all its entries nonnegative is
impossible here.
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