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Abstract

In this work, we study a quasi-linear parabolic equation with a weak-viscoelastic term of the form

A(t)|ut|m−2ut + ∆2u− α(t)(g ∗∆2u) = |u|p−2u,

in a bounded domain Ω in Rn where m, p ≥ 2 and A(t) is a bounded and positive definite matrix. By
using the perturbed energy functional technique, we establish global existence and a general decay result,
which depends on the behavior of both α and g.

1 Introduction

In this paper, we deal with the following quasi-linear parabolic system with a weak-viscoelastic term
A(t)|ut|m−2ut + ∆2u− α(t)(g ∗∆2u) = |u|p−2u, (x, t) ∈ Ω× R+,

u = ∂u
∂ν = 0, (x, t) ∈ ∂Ω× R+,

u(x, 0) = u0(x), x ∈ Ω,

(1)

where Ω is a bounded domain in Rn(n ≥ 1) with suffi ciently smooth boundary ∂Ω, ν represents the unit
outer normal to ∂Ω. The values of u are taken in Rn(n ≥ 1) and A ∈ C(R+) is a bounded square matrix
satisfying

(A(t)v, v) ≥ c0|v|2, ∀t ∈ R+, v ∈ Rn, (2)

where (., .) is the inner product in Rn and c0 > 0. The parameter m ≥ 2 and p satisfies

2 ≤ p < 2(n− 2)

n− 4
if n ≥ 5; 2 < p <∞ if n ≤ 4. (3)

The term (g ∗∆2u) is defined by

(g ∗∆2u)(x, t) =

∫ t

0

g(t− s)∆2u(x, s)ds.

On the mathematical analysis of equations which model the motions of materials with memory, we refer
to [3, 16, 19] and references therein. Yin in [19] considered a general equation of the form

ut = divA(x, t, u, ux) + a(x, t, u, ux) +

∫ t

0

divB(x, t, τ , u, ux)dτ.

Under some conditions on A, B, and a, similarly to the case of parabolic, the existence of a unique weak
solution is established.
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Regarding the heat equations without the memory term, study of global existence and finite time blow-up
of solutions for the following initial boundary value problem

ut − div(|∇u|p−2∇u) + f(u) = 0, (x, t) ∈ Ω× (0,∞),

u(x, t) = 0, (x, t) ∈ ∂Ω× (0,∞)

u(x, 0) = u0(x), x ∈ Ω,

has attracted a great deal of people. The obtained results show that global existence and nonexistence
depend roughly on p, the degree of nonlinearity in f , the dimension n and the size of the initial data. See for
example, the works of Levine et al. [10, 11], Kalantarov and Ladyzhenskaya [8] and Messaoudi [14]. Also,
concerning the asymptotic behavior of the solution, see [1, 17]. Pucci and Serrin [17] studied the following
equation with homogenous Dirichlet boundary condition

A(t)|ut|m−2ut −∆u+ f(x, u) = 0. (4)

They proved that the strong solution tends to zero when t→∞ under the condition (f(x, u), u) > 0, but did
not give the decay rate. Berrimi and Messaoudi [1] proved that if bounded square matrix A(t) in equation
(4) satisfying (2), then the solution with small energy decays exponentially for m = 2 and polynomially for
m > 2.
In the presence of the memory term in the heat equations, Messaoudi and Tellab [15] considered the

following quasi-linear parabolic system

A(t)|ut|m−2ut −∆u+

∫ t

0

g(t− s)∆u(s) = 0, (5)

with Dirichlet boundary condition and proved a general decay result which depends on the behavior of the
function g. Ferhat and Hakem [4] considered the quasi-linear parabolic system

A(t)|ut|m−2ut − Lu+

∫ t

0

g(t− s)Lu(s) = 0,

where

Lu = −div(M∇u) = −
N∑

i,j=1

∂

∂xi

(
aij(x)

∂u

∂xi

)
.

They improved the result obtained by Messaoudi and Tellab [15] and proved a general decay result. Later,
Youkana et al. [20] studied the equation (5) where the relaxation function satisfies g

′
(t) ≤ −ξ(t)gp(t),

for all t ≥ 0, 1 ≤ p < 3
2 and established a general and optimal decay result. Recently, Youkana and

Messaoudi [21] considered the equation (5) under a general assumption on the relaxation functions satisfying
g
′
(t) ≤ −ξ(t)H(g(t)), where H is an increasing convex function and ξ is a nonincreasing function. In the

case of viscoelastic heat equations with source term, Liu and Chen [12] considered the following quasilinear
parabolic system

A(t)|ut|m−2ut −∆u+

∫ t

0

g(t− s)∆u(s)ds = |u|p−2u,

and they proved a general decay of the energy function for the global solution and a blow-up result for the
solution with both positive and negative initial energy under suitable conditions on g and p. In another
study, Di et al. [7] investigated a nonlinear pseudo-parabolic equation

ut −∆u−∆ut +

∫ t

0

g(t− τ)∆u(τ)dτ = |u|pu.

They obtained finite-time blow-up results for the solutions with initial data at non-positive energy level as
well as arbitrary positive energy level and give some upper bounds for the blow-up time T ∗ depending on
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the sign and size of initial energy E(0). For more information in this regards we refer to [2, 6, 9, 18, 21] and
references therein.
Motivated by the above mentioned papers, our purpose in this research is to investigate the global

existence and general decay of solutions to the initial boundary value problem (1).
The rest of this article is organized as follows. In Section 2, we give some materials to be used for the main

results. In Section 3, we prove the global existence of weak solutions by introducing a suitable functional to
obtain the potential well. Finally, general decay result for the global solutions of the problem (1) has been
proved in Section 4.

2 Preliminaries

We give some materials that will be needed in the proof of our results. We use the standard Lebesgue space
Lp(Ω) and Sobolev space H2

0 (Ω) with their usual scalar products and norms.
We introduce the Sobolev’s embedding inequality: assume p is a constant which satisfies (3), then

H2
0 (Ω) ↪→ Lp(Ω) continuously, and

‖u‖p ≤ Cp‖∆u‖2, for u ∈ H2
0 (Ω), (6)

where Cp is the optimal embedding constant.

For the relaxation function g and the potential α, we assume

(G1) g, α : R+ → R+ are nonincreasing differentiable functions satisfying

g(0) > 0, α(t) > 0, 1− α(t)

∫ t

0

g(s)ds ≥ ` > 0,

∫ +∞

0

g(s)ds <
(p− 2)`

2pα(0)
.

In addition, we assume that there exists a positive constant α0 such that α(t) ≥ α0.

(G2) There exists a nonincreasing differentiable function ξ : R+ → R+ satisfying

ξ(t) > 0, g′(t) ≤ −ξ(t)g(t) for t ≥ 0, lim
t→+∞

−α′(t)
ξ(t)α(t)

= 0.

Remark 1 Note that (G1) and (G2) imply that limt→+∞
−α′(t)
α(t) = 0.

We introduce the functional

J(u(t)) =
1

2
(1− α(t)

∫ t

0

g(s)ds)‖∆u‖22 +
1

2
α(t)(g ◦∆u)(t)− 1

p
‖u‖pp, (7)

as the energy functional associated to problem (1) where

(g ◦∆u)(t) =

∫ t

0

g(t− s)‖∆u(t)−∆u(s)‖22ds.

Lemma 1 Suppose (2) and assumption (G1) hold. Let u be the solution of (1). Then, the energy satisfies

J(u(t)) =

∫ t

0

(
−
∫

Ω

A(τ)|uτ |mdx+
1

2
α
′
(τ)(g ◦∆u)(τ) +

1

2
α(τ)(g

′
◦∆u)(τ)

−1

2
α(τ)g(τ)‖∆u‖22 +

1

2
(−α

′
(τ)

∫ τ

0

g(s)ds)‖∆u‖22
)
dτ + J(u(0))

≤ −
∫ t

0

(
c0‖uτ‖mm −

1

2
α(τ)(g

′
◦∆u)(τ) +

1

2
(α
′
(τ)

∫ τ

0

g(s)ds)‖∆u‖22
)
dτ

+J(u(0)). (8)
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Proof. By multiplying the equation (1) by ut, integrating over Ω×(0, t) we get (8), after some manipulations.

To illustrate the main results of this paper, we introduce the definition of weak solutions.

Definition 1 Let u0 ∈ H2
0 (Ω). A function u is called a weak solution of the problem (1) defined on [0, T ) if

u ∈ C
(
[0, T ); [H2

0 (Ω)]n
)
∩ C1 ([0, T ); [Lm(Ω)]n)

satisfies
(A(t)|ut|m−2ut, φ) + (∆u,∆φ)− α(t)((g ∗∆2u), φ) = (|u|p−2u, φ),

for all t ∈ [0, T ) and φ ∈ C
(
[0, T ); [H2

0 (Ω)]n
)
.

Let Tmax := sup{T > 0}. The problem (1) admits weak solution on [0, T ). If Tmax <∞, then u is called
a local weak solution; if Tmax =∞, u is called a global weak solution of problem (1) for 0 ≤ t <∞.

Remark 2 Similar to [17], we assume the existence of solution. For the linear case (m = 2), one can easily
establish the existence of a weak solution by the Galerkin method. In the one-dimensional case (n = 1), the
existence is established, in a more general setting, by Yin [19].

3 Global Existence

We define the following functional in order to obtain the potential well.

I(u(t)) =

(
1− α(t)

∫ t

0

g(s)ds

)
‖∆u‖22 − ‖u‖pp. (9)

From (7) and (9) it tells us that

J(u(t)) =
1

p
I(u(t)) +

p− 2

2p

(
1− α(t)

∫ t

0

g(s)ds

)
‖∆u‖22 +

1

2
α(t)(g ◦∆u)(t). (10)

Lemma 2 Assume p satisfies (3) and assumption (G1) holds. Let u0 ∈ H2
0 (Ω) satisfy

Cpp

(
4p

(p− 2)`
J(u(0))

) p−2
2

< `; I(u(0)) > 0. (11)

Then, I(u(t)) > 0 for all t ∈ [0, Tmax), where Cp is the optimal constant of the embedding H2
0 (Ω) ↪→ Lp(Ω),

and

J(u(0)) =
1

p
I(u(0)) +

p− 2

2p
‖∆u0‖22, I(u(0)) = ‖∆u0‖22 − ‖u0‖pp.

Proof. Let u be a weak solution of problem (1). By definition of functional I(u(t)) in (9) we know
I ∈ C[0, Tmax). Suppose that there exists t0 ∈ [0, Tmax) such that I(u(t0)) ≥ 0 if the conclusion is not true,
so there exists an interval [t0, t1] ∈ [0, Tmax) such that I(u(t0)) = 0 and I(u(t)) < 0 for all t ∈ (t0, t1]. From
first inequality of (11) then we obtain that for ε > 0 suffi ciently small such that

Cpp

(
4p

(p− 2)`
(J(u(0)) + ε)

) p−2
2

≤ `, (12)

there exists t̃ ∈ (t0, t1] satisfying
I(u(t̃)) = −pε < 0. (13)
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Therefore, from assumption (G1), using (8), (10) and (13), we have

J(u(t̃)) ≤ J(u(0)) +
α(0)

2

(∫ +∞

0

g(s)ds

)
‖∆u(t̃)‖22

≤ J(u(0)) +
(p− 2)`

4p
‖∆u(t̃)‖22, (14)

and

J(u(t̃)) ≥ −ε+
(p− 2)`

2p
‖∆u(t̃)‖22. (15)

Combining (14) with (15), we arrive at

‖∆u(t̃)‖22 ≤
4p

(p− 2)`
(J(u(0)) + ε) . (16)

Therefore, it follows from (6) and (16) that

‖u(t̃)‖pp ≤
Cpp
`
‖∆u(t̃)‖p−2

2 `‖∆u(t̃)‖22 ≤
Cpp
`

(
4p

(p− 2)`
(J(u(0)) + ε)

) p−2
2

`‖∆u(t̃)‖22. (17)

Then, by the definition of functional (9), using (12) and (17), we get

I(u(t̃))=

(
1− α(t̃)

∫ t̃

0

g(s)ds

)
‖∆u(t̃)‖22 − ‖u(t̃)‖pp ≥ `‖∆u(t̃)‖22 − `‖∆u(t̃)‖22 = 0,

which contradicts (13). Then the conclusion of Lemma is true.

Theorem 1 Assume p satisfies (3) and assumption (G1) holds. Let u0 ∈ H2
0 (Ω). Then the local weak

solution u exists globally.

Proof. To show Tmax =∞, it suffi ces to show there exists a constant C > 0 such that

sup
t∈[0,Tmax)

‖∆u‖22 ≤ C. (18)

By virtue of Lemma 2 and assumption (G1), using (8) and (10), we get

J(u(0)) +
(p− 2)`

4p
‖∆u‖22 ≥ 1

p
I(u(t)) +

p− 2

2p
(1− α(t)

∫ t

0

g(s)ds)‖∆u‖22 +
1

2
α(t)(g ◦∆u)(t)

≥ (p− 2)`

2p
‖∆u‖22.

Therefore,

‖∆u‖22 ≤
4p

(p− 2)`
J(u(0)).

So let

C =
4p

(p− 2)`
J(u(0)),

then (18) holds and consequently the solution is global.
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4 General Decay

In this section, we prove a general decay result for the solution energy. Our main result in this section reads
in the following theorem.

Theorem 2 Given u0 ∈ H2
0 (Ω). Assume that (2) and (G1), (G2) hold. Then, there exist two positive

constants k and K, depending only on the initial data that the solution of (1) satisfies

J(u(t)) ≤ Ke−k
∫ t
0
α(s)ξ(s)ds, ∀t ≥ 0. (19)

To prove above theorem, we need the following technical Lemmas. First, we state an important Lemma
by Martinez [13].

Lemma 3 Let E : R+ → R+ be a non-increasing function and ψ : R+ → R+ be a C2-increasing function
with ψ(0) = 0 and limt→∞ ψ(t) = +∞. Assume that there exist c > 0 for which∫ +∞

a

E(t)ψ′(t)dt ≤ cE(a)∀a ≥ 0.

Then,
E(t) ≤ γe−ωψ(t),∀t ≥ 0

where γ and ω are positive constants.

Lemma 4 Suppose that (G1) and (G2) hold and the initial data u0 ∈ H2
0 (Ω). Then J(u(t)) is a non-

increasing function satisfying

J(u(t)) ≤
∫ t

0

(
−
∫

Ω

A(t)|uτ |mdx+
1

2
α(τ)(g′ ◦∆u)(τ)

)
dτ + J(u(0)) ≤ J(u(0)). (20)

Proof. Taking (8) in (0, t̃) for |t− t̃| < δ0 and using assumption (G2), we get for δ0 small enough

J(u(t̃)) ≤
∫ t̃

0

α(t)

(
− 1

α(t)

∫
Ω

A(t)|ut|mdx+ (g′ ◦∆u)(t) +
1

2
(
−α′(t)
α(t)

∫ t

0

g(s)ds)‖∆u‖22
)
dt+ J(u(0)).

From the fact that limt→∞
−α′(t)
α(t) = 0 for t̃ belonging to some small neighborhood of t = 0, that is (20)

obtained for t > t̃ > 0.

Proof of Theorem 2. By multiplying the equation in (1) by α(t)ξ(t)u and integrating over Ω× (a, Tmax)
and using the boundary data, we get∫ Tmax

a

α(t)ξ(t)

(∫
Ω

A(t)|ut|m−2utudx+ (1− α(t)

∫ t

0

g(s)ds)‖∆u‖22 − ‖u‖pp
)
dt

=

∫ Tmax

a

α(t)ξ(t)

(
α(t)

∫
Ω

∆u(t)

∫ t

0

g(t− s)(∆u(s)−∆u(t))dsdx

)
dt. (21)

Adding α(t)(g ◦∆u)(t) to both sides of (21) and taking (7) into account, we get

2

∫ Tmax

a

α(t)ξ(t)J(u(t))dt

≤
∫ Tmax

a

α(t)ξ(t)α(t)(g ◦∆u)(t)dt+
p− 2

p

∫ Tmax

a

α(t)ξ(t)‖u‖ppdt

−
∫ Tmax

a

α(t)ξ(t)

∫
Ω

A(t)|ut|m−2utudxdt

+

∫ Tmax

a

α(t)ξ(t)

(
α(t)

∫
Ω

∆u(t)

∫ t

0

g(t− s)(∆u(s)−∆u(t))dsdx

)
dt. (22)
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Thanks to the Young’s inequality, (2), assumptions (G1), (G2), the boundedness of matrix A and using the
fact that, α′(t) ≤ 0 for all t > 0, we get for δ > 0∣∣∣∣−∫

Ω

A(t)|ut|m−2utudx

∣∣∣∣ ≤ δ‖u‖mm + Cδ‖ut‖mm, (23)

and

α(t)

∫
Ω

∆u(t)

∫ t

0

g(t− s)(∆u(s)−∆u(t))dsdx ≤ δα(0)‖∆u‖22 +

∫ +∞
0

g(s)ds

4δ
α(t)(g ◦∆u)(t)

≤ δα(0)‖∆u‖22 +
(p− 2)`

8pδα(0)
α(t)(g ◦∆u)(t). (24)

By combining (22)—(24) and using

ξ(t)α(t)(g ◦∆u)(t) ≤ −α(t)(g′ ◦∆u)(t),

we arrive at

2

∫ Tmax

a

α(t)ξ(t)J(u(t))dt ≤ α(0)ξ(0)Cδ

∫ Tmax

a

‖ut‖mmdt

−α(0)

(
1 +

(p− 2)`

8pδα(0)

)∫ Tmax

a

α(t)(g′ ◦∆u)(t)dt

+δ

∫ Tmax

a

α(t)ξ(t)‖u‖mmdt+
p− 2

p

∫ Tmax

a

α(t)ξ(t)‖u‖ppdt

+δα(0)

∫ Tmax

a

α(t)ξ(t)‖∆u‖22dt. (25)

By recalling (8), we deduce from the first two integrals on the right-hand side of (25) that

α(0)ξ(0)Cδ

∫ Tmax

a

‖ut‖mmdt− α(0)

(
1 +

(p− 2)`

8pδα(0)

)∫ Tmax

a

α(t)(g′ ◦∆u)(t)dt

≤
(
Cδ
2c0

+ α(0)(1 +
(p− 2)`

8pδα(0)
)α(t)ξ(t)

)∫ Tmax

a

(
α′(t)

ξ(t)α(t)

∫ t

0

g(s)ds

)
dt

−γ0

∫ Tmax

a

J ′(u(t))dt, (26)

where

γ0 :=
α(0)ξ(0)Cδ

c0
+ 2α(0)

(
1 +

(p− 2)`

8pδα(0)

)
.

By exploiting Lemma 4 and using limt→+∞
−α′(t)
ξ(t)α(t) = 0 to choose t > t̃ > 0, (26) takes the form

α(0)ξ(0)Cδ

∫ Tmax

a

‖ut‖mmdt− α(0)

(
1 +

(p− 2)`

8pδα(0)

)∫ Tmax

a

α(t)(g′ ◦∆u)(t)dt ≤ γ0J(u(a)).

Therefore, (25) yields that

2

∫ Tmax

a

α(t)ξ(t)J(u(t))dt− γ0J(u(a))

≤ δ

∫ Tmax

a

α(t)ξ(t)‖u‖mmdt+
p− 2

p

∫ Tmax

a

α(t)ξ(t)‖u‖ppdt

+δα(0)

∫ Tmax

a

α(t)ξ(t)‖∆u‖22dt. (27)



F. Tahamtani and M. Shahrouzi 367

Since g is positive, we have, for any t0 > 0∫ t

0

g(s)ds ≥
∫ t0

0

g(s)ds := g0 > 0, ∀t ≥ t0. (28)

To estimate the last integrals in the right-hand side of (27), we use (28), assumption (G1), (6), (10), (11)
and repeatedly embedding inequalities as follows

J(u(t)) =
1

p
I(u(t)) +

p− 2

2p
(1− α(t)

∫ t

0

g(s)ds)‖∆u‖22 +
1

2
α(t)(g ◦∆u)(t)

≥ p− 2

2p
(1− α(t)

∫ t

0

g(s)ds)‖∆u‖22

≥ (p− 2)`

2p
‖∆u‖22, (29)

‖u‖pp ≤ Cpp‖∆u‖
p−2
2 ‖∆u‖22

≤
Cpp
`

(
4p

(p− 2)`
J(u(0))

) p−2
2

`‖∆u‖22

≤ (1− α(t)

∫ t

0

g(s)ds)‖∆u‖22

≤ (1− α0g0)‖∆u‖22

≤ 2p(1− α0g0)

(p− 2)`
J(u(t)), (30)

where Cp is the optimal constant of the embedding H2
0 (Ω) ↪→ Lp(Ω), and

‖u‖mm ≤ Cmm‖∆u‖m−2
2 ‖∆u‖22

≤ Cmm
(

4p

(p− 2)`
J(u(0))

)m−2
2

‖∆u‖22

≤ γ1J(u(t)), (31)

where Cm is the optimal constant of the embedding H2
0 (Ω) ↪→ Lm(Ω), and

γ1 =
2pCmm

(p− 2)`

(
4p

(p− 2)`
J(u(0))

)m−2
2

.

Inserting (29)—(31) in (27) the estimate

(1− δγ1

2
− δpα(0)

(p− 2)`
− 1− α0g0

`
)

∫ Tmax

a

α(t)ξ(t)J(u(t))dt ≤ γ0

2
J(u(a)),

is established.
At this point, we pick α0 >

1−`
g0

and choose δ small enough, to have

λ := 1− δγ1

2
− δpα(0)

(p− 2)`
− 1− α0g0

`
> 0.

Thanks to the Lemma 3, by taking ψ(t) =
∫ t

0
α(s)ξ(s)ds and letting Tmax goes to infinity, we obtain the

desired result in (19) and the proof is completed.
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