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Abstract

In this paper, we consider a and b two nonnegative real numbers such that a+ b = 2 and prove that
the inequality arb+bra ≤ 2− ((a−b)/2)2 holds for 1/2 ≤ r ≤ 2 and also prove that the reverse inequality
holds for 0 < r ≤ 1/3. In addition, two new conjectures are presented.

1 Introduction

Researches of the inequalities with the power exponential functions are one of the areas that have been
actively studied in recent years. Many of the inequalities are different from the simplicity of appearance, and
the proof is complicated. In [2], Coronel and Huancas describe the history of the inequalities, including many
interesting power exponential functions, and their literature reviews (see also [1] and [12]). In this paper, we
consider the inequalities including power exponential function arb + bra, and such inequalities appeared in
[3] and [4], where Cîrtoaje proved some results about the inequality ara + brb ≥ arb + bra, for positive real
numbers a, b and r. Cîrtoaje, in [3] proved the following theorem.

Theorem 1 (i) Let a, b and r be positive real numbers. If ara + brb ≥ arb + bra holds for r = r0, then it
holds for any 0 < r ≤ r0.

(ii) If a and b are positive real numbers such that max{a, b} ≥ 1, then the inequality ara + brb ≥ arb + bra

holds for any positive real number r.

(iii) If 0 < r ≤ 2, then the inequality ara + brb ≥ arb + bra holds for all positive real numbers a and b.

(iv) If a and b are positive real numbers such that either a ≥ b ≥ 1
r or

1
r ≥ a ≥ b, then the inequality

ara + brb ≥ arb + bra holds for any positive real number r ≤ e.

(v) If r > e, then the inequality ara + brb ≥ arb + bra does not hold for all positive real numbers a and b.

A few years later, in [4], Cîrtoaje proved the following theorem.

Theorem 2 If a and b are positive real numbers such that 0 < b ≤ 1
e ≤ a ≤ 1, then the inequality

ara + brb ≥ arb + bra holds.

From Theorems 1 and 2, Cîrtoaje provided a complete proof of the inequality ara+ brb ≥ arb+ bra. Also,
in [3] and [4], Cîrtoaje posted some conjectures on the inequality with power exponential function arb + bra

as follows.

Theorem 3 Let r be a positive real number. The inequality arb + bra ≤ 2 holds for all nonnegative real
numbers a and b with a+ b = 2 if and only if r ≤ 3.
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Theorem 4 If a, b ∈ (0, 1] and r ∈ (0, e], then the inequality 2
√
arabrb ≥ arb + bra holds.

Theorem 3 is Conjecture 4.6 in [3] and Theorem 4 is Conjecture 2.1 in [4], and both theorems have been
proved by Matejíčka [5], [6] and [7]. An extension of Theorem 3 for the case of r < 0 was recently introduced
in [1]. The following theorems are known for inequalities with the power exponential function arb+ bra when
r is a constant. For r = 1 Nishizawa [11] proved the following.

Theorem 5 If a and b are nonnegative real numbers with a+ b = 2, then the inequality

2−
(
|a− b|
2

)α
≤ ab + ba ≤ 2−

(
|a− b|
2

)β
holds, where the constants α = ln 2 ∼= 0.693147 and β = 2 are the best possible.

For r = 2 the following inequalities are known.

Theorem 6 If a and b are nonnegative real numbers such that a+ b = 1, then the inequality a2b + b2a ≤ 1
holds.

Theorem 7 If a and b are nonnegative real numbers with a+ b = c, then the inequality a2b + b2a ≤ 1 holds
for 1/2 ≤ c ≤ 1.

Theorem 8 If a and b are nonnegative real numbers such that a + b = 1, then the inequality a2b + b2a >
6083/6144 ∼= 0.990072 holds.

Theorem 9 If a and b are nonnegative real numbers with a+ b = 2, then the inequality

a2b + b2a ≤ 2−
(
a− b
2

)2
holds.

Theorem 6 is Conjecture 4.8 in [3] and have been proved by Cîrtoaje [4] and Theorems 7 and 8 have been
proved by Nishizawa [9] and [10]. Theorem 9 is Proposition 4.5 in [3]. If r = 3, then Miyagi and Nishizawa
[8] proved the following result, which is Conjecture 4.7 in [3].

Theorem 10 If a and b are nonnegative real numbers such that a+ b = 2, then the inequality

a3b + b3a ≤ 2−
(
a− b
2

)4
holds.

In this paper, we describe an inequality that compares the power exponential function arb + bra and(
a−b
2

)2
. Our main results are the following.

Theorem 11 If a and b are nonnegative real numbers with a+ b = 2, then the inequality

arb + bra ≥ 2−
(
a− b
2

)2
holds for 0 < r ≤ 1

3 .

Theorem 12 If a and b are nonnegative real numbers with a+ b = 2, then the inequality

arb + bra ≤ 2−
(
a− b
2

)2
holds for 1

2 ≤ r ≤ 2.
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2 Proof of Theorem 11 and Theorem 12

We will give a sequence of lemmas needed to prove Theorem 11.

Lemma 1 For 0 < t < 1, we have
(1− t)−1+t > (1 + t)−1−t.

Proof. We set

f(t) = ln(1− t)−1+t − ln (1 + t)−1−t = (−1 + t) ln(1− t)− (−1− t) ln(1 + t)

and reduce the proof to get that f(t) > 0 on (0, 1). We observe that the derivatives of f are given by

f ′(t) = 2 + ln (1− t) + ln (1 + t)

and

f ′′(t) = − 2t

(1− t)(1 + t) < 0.

Hence f is concave on (0, 1) or equivalently f(t) > (f(1) − f(0))t + f(0) = (2 ln 2) t > 0 for all t ∈ (0, 1),
since f(0) = 0 and f(1) = limt→1−0 f(t) = 2 ln 2 ∼= 1.38629.

Lemma 2 For 0 < t < 1, we have

(1− t) 13 (1+t) > (1− t)
(
1 +

2

3
t+

2

9
t2 +

t3

18

)
.

Proof. We set

f(t) = ln(1− t) 13 (1+t) − ln
(
(1− t)

(
1 +

2

3
t+

2

9
t2 +

t3

18

))
=
1 + t

3
ln(1− t)− ln (1− t)− ln

(
1 +

2

3
t+

2

9
t2 +

t3

18

)
and the derivatives of f(t) are

f ′(t) =
1

3
ln(1− t) + t(−18− 11t− 7t2 + t3)

3(t− 1)(18 + 12t+ 4t2 + t3)

and

f ′′(t) =
t(288 + 600t+ 108t2 + 141t3 + 70t4 + 17t5 + t6)

3(t− 1)2(18 + 12t+ 4t2 + t3)2 .

We note that f ′′(t) > 0 for 0 < t < 1. Thus, f ′(t) is strictly increasing for 0 < t < 1 and f ′(t) > f ′(0) = 0.
From f(t) is strictly increasing for 0 < t < 1 and f(t) > f(0) = 0, we have f(t) > 0 for 0 < t < 1.

Lemma 3 For 0 < t < 1, we have

(1 + t)
1
3 (1−t) > 1 +

t

3
− 4
9
t2 +

t3

18
+
t4

18
.

Proof. By Taylor expansion, if 0 < t < 1 and 0 < p < 1, then there is u in (0, t) such that we have

(1 + t)p = 1 + pt+
1

2
p(p− 1)t2(1 + u)p−2 ≥ 1 + pt+ 1

2
p(p− 1)t2 .
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Therefore, the following inequality holds.

(1 + t)
1
3 (1−t) ≥ 1 + t

3
(1− t)− t2

18
(1− t)(2 + t) = 1 + t

3
− 4
9
t2 +

t3

18
+
t4

18
.

Proof of Theorem 11. If (a, b) = (1, 1), (0, 2), (2, 0), then the equality occurs, so we consider the case of
0 < a < 1 < b < 2. Without loss of generality, we may assume that a = 1− t and b = 1 + t, then we have

arb + bra = (1− t)r(1+t) + (1 + t)r(1−t) = f(r, t),

where 0 < t < 1. The derivatives of f(r, t) by r are

∂f

∂r
(r, t) = (1− t)r(1+t)(1 + t) ln(1− t) + (1− t)(1 + t)r(1−t) ln(1 + t)

and
∂2f

∂r2
(r, t) = (1− t)r(1+t)(1 + t)2 (ln(1− t))2 + (1− t)2(1 + t)r(1−t) (ln(1 + t))2 .

It is clear that ∂2f
∂r2 (r, t) is positive for any positive r and any t ∈ (0, 1). Therefore,

∂f
∂r (r, t) is strictly

increasing for r > 0 and we have

∂f

∂r
(r, t) ≤ ∂f

∂r

(
1

2
, t

)
= (1− t) 12 (1+t)(1 + t) ln(1− t) + (1− t)(1 + t) 12 (1−t) ln(1 + t)

= (1− t)(1 + t)
(
(1− t) 12 (−1+t) ln(1− t) + (1 + t) 12 (−1−t) ln(1 + t)

)
for 0 < r < 1

2 . From Lemma 1 and 0 < ln(1 + t) < t and ln(1− t) < −t < 0 for 0 < t < 1, we have

∂f

∂r
(r, t) ≤ ∂f

∂r

(
1

2
, t

)
≤ (1− t)(1 + t)t

(
−(1− t)

−1+t
2 + (1 + t)

−1−t
2

)
< 0.

Thus, f(r, t) is strictly decreasing for 0 < r < 1
2 . By Lemmas 2 and 3, we have

f(r, t) ≥ f
(
1

3
, t

)
= (1− t) 13 (1+t) + (1 + t) 13 (1−t)

≥ (1− t)
(
1 +

2

3
t+

2

9
t2 +

t3

18

)
+ 1 +

t

3
− 4
9
t2 +

t3

18
+
t4

18

= 2− 8
9
t2 − t3

9
> 2− 8

9
t2 − t2

9
= 2− t2.

Thus, we obtain f(r, t) ≥ 0 for 0 < r ≤ 1
3 and 0 < t < 1. Therefore, the proof of Theorem 11 is complete.

Proof of Theorem 12. If (a, b) = (1, 1), (0, 2), (2, 0), then the equality occurs, so we consider the case of
0 < a < 1 < b < 2. Without loss of generality, we may assume that a = 1 − t and b = 1 + t, then we have
arb + bra = (1− t)r(1+t) + (1 + t)r(1−t) = f(r, t), where 0 < t < 1. The derivatives of f(r, t) by r are

∂f

∂r
(r, t) = (1− t)r(1+t)(1 + t) ln(1− t) + (1− t)(1 + t)r(1−t) ln(1 + t)

and
∂2f

∂r2
(r, t) = (1− t)r(1+t)(1 + t)2 (ln(1− t))2 + (1− t)2(1 + t)r(1−t) (ln(1 + t))2 .

We observe that ∂2f
∂r2 (r, t) is positive for any positive r and any t ∈ (0, 1). Therefore, for fixed t in (0, 1),

f(r, t) is convex. From (1 + t)p ≤ 1 + pt and (1− t)p ≤ 1− pt for 0 < t ≤ 1 and 0 ≤ p ≤ 1, we have

f

(
1

2
, t

)
= (1− t) 12 (1+t) + (1 + t) 12 (1−t) ≤ 1− 1

2
t(1 + t) + 1 +

1

2
t(1− t) = 2− t2.

Also, by Theorem 9, we have f(2, t) ≤ 2 − t2. Therefore, we obtain f(r, t) ≤ 2 − t2 for 0 < t < 1 and
1
2 ≤ r ≤ 2. Hence, the proof of Theorem 12 is complete.
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3 Conjectures

We will present two conjectures regarding the inequalities with power exponential function arb + bra. Thus,
for a positive real number r close to 3 and greater than 3, the same inequality as that in Theorem 11 may
hold. It is also known that Theorem 10 holds for r = 3. The same inequality may hold not only for r = 3,
but also for an interval of r that contains 3. Based on careful analysing of the two-variable functions

(a, r) 7→ ar(2−a) + (2− a)ra − 2 + (a− 1)2

and
(a, r) 7→ ar(2−a) + (2− a)ra − 2 + (a− 1)4

running over Maple Software (version 2021.0) we guess that:

Conjecture 1 If a and b are nonnegative real numbers with a+ b = 2, then the inequality

arb + bra ≥ 2−
(
a− b
2

)2
holds for r ≥ 2

ln 2
∼= 2.88539.

Conjecture 2 If a and b are nonnegative real numbers with a+ b = 2, then the inequality

arb + bra ≤ 2−
(
a− b
2

)4
holds for 1

2 ≤ r ≤ 3.
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