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Abstract
In this paper by using the notion of λ-density and (V, λ) -summability, we introduce the notion of λ-

statistical convergence of sequences in gradual normed linear spaces. Based on this concept, we introduce
a new sequence space Sλ(G) and investigate some of its properties. Also, we find its relations with S(G)
and [V, λ]G-summability. Finally, we introduce and investigate the concept of gradual λ-statistical Cauchy
sequences.

1 Introduction

The idea of fuzzy sets [32] was first introduced by Zadeh in the year 1965 which was an extension of the
classical set-theoretical concept. Nowadays it has wide applicability in different branches of science and
engineering. The term “fuzzy number”plays a crucial role in the study of fuzzy set theory. Fuzzy numbers
were basically the generalization of intervals, not numbers. Even fuzzy numbers do not obey a few algebraic
properties of the classical numbers. So the term “fuzzy number”:is debatable to many authors due to its
different behavior. The term “fuzzy intervals”:is often used by many authors instead of fuzzy numbers. To
overcome the confusion among the researchers, in 2008, Fortin et al. [16] introduced the notion of gradual
real numbers as elements of fuzzy intervals. Gradual real numbers are mainly known by their respective
assignment function which is defined in the interval (0, 1]. So in some sense, every real number can be
viewed as a gradual number with a constant assignment function. The gradual real numbers also obey
all the algebraic properties of the classical real numbers and have used in computation and optimization
problems.
In 2011, Sadeqi and Azari [25] first introduced the concept of gradual normed linear space. They studied

various properties of the space from both the algebraic and topological points of view. Further progress in
this direction has occurred due to Ettefagh et al. [13, 14], Choudhury and Debnath [8], and many others.
For an extensive study on gradual real numbers, one may refer to [1, 10, 22, 29] where many more references
can be found.
On the other hand, in 1951 Fast [15] and Steinhaus [28] introduced the idea of statistical convergence

independently using the idea of natural density [17]. Later on, it was further investigated and generalized
from the sequence space point of view by Fridy [18, 19], Salat [26], Rath and Tripathy [24], Tripathy [30, 31]
and many mathematicians [2, 4, 5, 6, 7, 20] across the globe.
In 2000, statistical convergence was extended to λ-statistical convergence by Mursaleen [23] as follows:

Let λ = (λn) be a non-decreasing sequence of positive numbers tending to ∞ such that

λn+1 − λn ≤ 1, λ1 = 1.

The generalized de la Valée-Pousin mean is defined by

tn((xk)) =
1

λn

∑
k∈In

xk,
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210 On λ-Statistical Convergence of Sequences

where In = [n−λn+1, n]. A sequence (xk) is said to be (V, λ)-summable to a number L (see [21] for details)
if,

tn((xk))→ L as n→∞.
We write

[V, λ] =

{
(xk) : lim

n→∞

(
1

λn

∑
k∈In

|xk − L|
)

= 0 for someL

}
for the sets of sequences (xk), which are strongly (V, λ)-summable to L, i.e., xk → L[V, λ].

A sequence (xk) is said to be λ-statistically convergent to L if for each ε > 0,

lim
n→∞

1

λn
|{k ∈ In :| xk − L |≥ ε}| = 0.

In this case, L is called the λ-statistical limit of the sequence (xk) and we write Sλ − limxk = L or
xk → L(Sλ). Here Sλ denotes the set of all λ-statistically convergent sequences. It is obvious that if λn = n,
then Sλ is coincident with S, where S is the set of all statistical convergent sequences (for more details one
may see [3, 9, 11, 12]).

2 Preliminaries

Definition 1 ([16]) A gradual real number r̃ is defined by an assignment function Ar̃ : (0, 1]→ R. The set
of all gradual real numbers is denoted by G(R). A gradual real number r̃ is said to be non-negative if for
every ξ ∈ (0, 1], Ar̃(ξ) ≥ 0. The set of all non-negative gradual real numbers is denoted by G∗(R).

In [16], the gradual operations between the elements of G(R) was defined as follows:

Definition 2 Let ∗ be any operation in R and suppose r̃1, r̃2 ∈ G(R) with assignment functions Ar̃1 and
Ar̃2 respectively. Then r̃1 ∗ r̃2 ∈ G(R) is defined with the assignment function Ar̃1∗r̃2 given by Ar̃1∗r̃2(ξ) =
Ar̃1(ξ) ∗Ar̃2(ξ), : ∀ξ ∈ (0, 1]. In particular, the gradual addition r̃1 + r̃2 and the gradual scalar multiplication
cr̃(c ∈ R) are defined as follows:

Ar̃1+r̃2(ξ) = Ar̃1(ξ) +Ar̃2(ξ) and Acr̃(ξ) = cAr̃(ξ), ∀ξ ∈ (0, 1].

Definition 3 ([25]) Let X be a real vector space. The function || · ||G : X → G∗(R) is said to be a gradual
norm on X, if for every ξ ∈ (0, 1], following conditions are true for any x, y ∈ X:

(G1) A||x||G(ξ) = A0̃(ξ) iff x = 0;

(G2) A||αx||G(ξ) = |α|A||x||G(ξ) for any α ∈ R;

(G3) A||x+y||G(ξ) ≤ A||x||G(ξ) +A||y||G(ξ).

The pair (X, || · ||G) is called a gradual normed linear space (GNLS).

Example 1 ([25]) Let X = Rm and for x = (x1, x2, ..., xm) ∈ Rm, ξ ∈ (0, 1], define || · ||G by

A||x||G(ξ) = eξ
m∑
i=1

|xi|.

Then, || · ||G is a gradual norm on Rm and (Rm, || · ||G) is a GNLS.

Definition 4 ([25]) Let (xk) be a sequence in the GNLS (X, || · ||G). Then, (xk) is said to be gradual
convergent to x ∈ X, if for every ξ ∈ (0, 1] and ε > 0, there exists N(= Nε(ξ)) ∈ N such that

A||xk−x||G(ξ) < ε, ∀k ≥ N.

Symbolically, xk
||·||G−−−→ x.
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Definition 5 ([14]) Let (X, || · ||G) be a GNLS. Then, a sequence (xk) in X is said to be gradual bounded
if for every ξ ∈ (0, 1], there exists M = M(ξ) > 0 such that A||xk||G(ξ) < M, ∀k ∈ N.

Definition 6 ([25]) Let (xk) be a sequence in the GNLS (X, ||·||G). Then, (xk) is said to be gradual Cauchy,
if for every ξ ∈ (0, 1] and ε > 0, there exists N(= Nε(ξ)) ∈ N such that A||xk−xj ||G(ξ) < ε, ∀k, j ≥ N .

Theorem 1 ([25, Theorem 3.6]) Let (X, || · ||G) be a GNLS. Then every gradual convergent sequence in
X is also a gradual Cauchy sequence.

Definition 7 ([27]) Let E ⊆ N, the set of all natural numbers and let λ = (λn) be a non-decreasing sequence
of positive numbers tending to ∞ such that λn+1 − λn ≤ 1, λ1 = 1. Then, the number

δλ(E) = lim
n→∞

|{k ∈ E : k ∈ In}|
λn

is said to be the λ-density of E. If λn = n, ∀ n ∈ N, then λ-density coincides with natural density.

We observed the following results related to λ-density:

i) λ-density of a finite subset of N is zero.

ii) λ-density of the set of all natural numbers is 1.

iii) λ-density of the set of all even natural numbers is 1
2 , if lim

n

n
λn
exists.

Throughout the paper, we use the following notation: If (xk) is a sequence such that xk satisfies a property
P ∀ k except for a set of λ-density zero, then we say that xk satisfies the property P for “almost all k”:and
we abbreviate this by “a.a.k.”

Definition 8 Let (X, || · ||G) be any GNLS. We define the new sequence space [V, λ]G as follows:

[V, λ]G =

{
(xk) : lim

n→∞

1

λn

(∑
k∈In

A||xk−x||G(ξ)

)
= 0 for some x ∈ X and all ξ ∈ (0, 1]

}
.

Definition 9 Let (xk) be a sequence in the GNLS (X, || · ||G). Then, (xk) is said to be gradual statistically
convergent to x ∈ X if for every ξ ∈ (0, 1] and ε > 0,

lim
n→∞

1

n

∣∣{k ∈ N : A||xk−x||G(ξ) ≥ ε
}∣∣ = 0.

Symbolically, xk
st−||·||G−−−−−→ x. The set S(G) denotes the set of all gradually statistical convergent sequences.

3 Main Results

Definition 10 Let (xk) be a sequence in the GNLS (X, ||·||G). Then, (xk) is said to be gradually λ-statistical
convergent to x ∈ X if for every ξ ∈ (0, 1] and ε > 0,

lim
n→∞

1

λn

∣∣{k ∈ In : A||xk−x||G(ξ) ≥ ε
}∣∣ = 0.

Or equivalently, A||xk−x||G(ξ) < ε a.a.k. In this case, x is called the gradual λ-statistical limit of the sequence
(xk) and we write

Sλ − || · ||G limxk = x or xk
Sλ−||·||G−−−−−−→ x.

We shall also use Sλ(G) to denote the set of all gradually λ-statistical convergent sequences.
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Example 2 Let X = Rm and || · ||G be the norm defined in Example 1. Consider the sequence (λn) defined
by

λn =

{
1, n = 1,
n
2 , n ≥ 2.

Then, the sequence (xk) in Rm defined as

xk =

{
(0, 0, ..., 0,m), if k = p2 and p ∈ N,
(0, 0, ....., 0, 0), otherwise,

is gradually λ-statistical convergent to 0 in Rm where 0 denotes the m-tuple (0, 0, ....0, 0).
Justification. We have

lim
n→∞

1

λn

∣∣{k ∈ In : A||xk−0||G(ξ) ≥ ε
}∣∣

= 2 lim
n→∞

1

n

∣∣∣{k ∈ [
n

2
+ 1, n] : A||xk−0||G(ξ) ≥ ε

}∣∣∣
≤ 2 lim

n→∞

1

n

∣∣{k ≤ n : A||xk−0||G(ξ) ≥ ε
}∣∣

≤ 2 lim
n→∞

[
√
n]

n
= 0

where [x] denotes the largest integer less than or equal to x. Hence, we conclude that xk
Sλ−||·||G−−−−−−→ 0.

Example 3 Let X = R and for any x ∈ R, let || · ||G be the norm defined as

A||x||G = eξ|x|.

Consider the sequence (λn) defined in Example 2. Then, the sequence (xk) in X defined as xk = k2 is not
gradually λ-statistical convergent.
Justification. For any x ∈ R, we have x ≤ 0 or x > 0. Then, for each of the following cases, (xk) will

not gradually λ-statistical convergent to x.
Case-I: If x ≤ 0, we choose ε = 1

2e
ξ. Then, we have

lim
n→∞

1

λn

∣∣{k ∈ In : A||xk−x||G(ξ) ≥ ε
}∣∣

= lim
n→∞

2

n

∣∣∣∣{k ∈ [
n

2
+ 1, n] : A||k2−x||G(ξ) ≥ 1

2
eξ
}∣∣∣∣

=

{
limn→∞

2
n (n2 − 1) when n is even,

limn→∞
2
n (n+12 − 1) when n is odd,

= 1

6= 0.

Case-II: If x > 0, then there exists k0 ∈ N such that xk0−1 ≤ x ≤ xk0 .
Subcase-I: If 0 < x < 1, then choose ε = eξ

2 min{x, 1− x}. Then, it is easy to verify that

lim
n→∞

1

λn

∣∣{k ∈ In : A||xk−x||G(ξ) ≥ ε
}∣∣ = 1 6= 0.

Subcase-II: If x ≥ 1, then choose ε = eξ

2 min{x− xk0−1, xk0 − x}. Then, it is easy to verify that

lim
n→∞

1

λn

∣∣{k ∈ In : A||xk−x||G(ξ) ≥ ε
}∣∣ = 1 6= 0.
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From the above case study, we can conclude that (xk) is not gradually λ-statistical convergent.

Lemma 1 Let p ≥ 2 be a fixed natural number and B = {n ∈ N : n
1
p ∈ N}. Then, δλ(B) = 0 if limn→∞

n
1
p

λn
exists.

Proof. Let

Bn = {k ∈ B : k ∈ In} and lim
n

n
1
p

λn
= l.

Then, it is easy to show that

|Bn| = [n
1
p ]− [(n− λn +

1− (−1)n

2
)
1
p ],

where [x] denotes the largest integer ≤ x.
Case-I: Assume that n is even. We have

n
1
p − 1 ≤ [n

1
p ] ≤ n

1
p .

Then
n
1
p − 1

λn
≤ [n

1
p ]

λn
≤ n

1
p

λn
.

It follows that

lim
n→∞

[n
1
p ]

λn
= l.

Also,
(n− λn)

1
p − 1 ≤ [(n− λn)

1
p ] ≤ (n− λn)

1
p .

Then
(n− λn)

1
p − 1

λn
≤ [(n− λn)

1
p ]

λn
≤ (n− λn)

1
p

λn
.

So
n
1
p

λn
(1− λn

n
)
1
p − 1

λn
≤ [(n− λn)

1
p ]

λn
≤ n

1
p

λn
(1− λn

n
)
1
p .

If λnn < 1, then from above,

n
1
p

λn
−O(

λn
n

)− 1

λn
≤ [(n− λn)

1
p ]

λn
≤ n

1
p

λn
−O(

λn
n

).

Therefore,

lim
n→∞

[(n− λn)
1
p ]

λn
= l.

If λnn = 1, then limn→∞
[(n−λn)

1
p ]

λn
= l is trivial. Therefore,

lim
n→∞

[n
1
p ]

λn
− lim
n→∞

[(n− λn)
1
p ]

λn
= l − l = 0.

Hence, if n is even then limn→∞ |Bn|/λn = 0.
Case-II: If n is odd, using a similar technique it can be easily shown that limn→∞ |Bn|/λn = 0.
Hence, from the above two cases we can conclude that δλ(B) = 0.

Theorem 2 Let (xk) be a sequence in the GNLS (X, || · ||G) such that xk
Sλ−||·||G−−−−−−→ x. Then, x is unique.
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Proof. The proof is easy, so omitted.

Theorem 3 Let (xk) and (yk) be two sequences in the GNLS (X, || · ||G) such that xk
Sλ−||·||G−−−−−−→ x and

yk
Sλ−||·||G−−−−−−→ y. Then

(i) xk + yk
Sλ−||·||G−−−−−−→ x+ y; and

(ii) cxk
Sλ−||·||G−−−−−−→ cx for any c ∈ R.

Proof. The proof is easy, so omitted.

Theorem 4 Let (xk) be a sequence in the GNLS (X, || · ||G). Then, xk
Sλ−||·||G−−−−−−→ x if and only if there exists

M = {m1 < m2 < ... < mk < ...} ⊂ N such that δλ(M) = 1 and (xmk)
||·||G−−−→ x.

Proof. Firstly, we assume that there exists a set M = {m1 < m2 < ... < mk < ...} ⊂ N satisfying

δλ(M) = 1 and (xmk)
||·||G−−−→ x.

Then, for every ξ ∈ (0, 1] and ε > 0, there exists N(= Nε(ξ)) ∈ N such that

A||xmk−x||G(ξ) < ε, ∀k ≥ N.

Let B(ξ, ε) = {k ∈ N : A||xk−x||G(ξ) ≥ ε}. Then, the inclusion

B(ξ, ε) ⊂ N \ {mN+1,mN+2, ...}

holds and as a consequence we have δλ(B(ξ, ε)) = 0. Hence, xk
Sλ−||·||G−−−−−−→ x.

For the converse part, assume that xk
Sλ−||·||G−−−−−−→ x holds. Then, for every ξ ∈ (0, 1] and j ∈ N, δλ(Mj) = 1,

where

Mj =

{
k ∈ N : A||xk−x||G(ξ) <

1

j

}
.

From the construction of Mj’s, it is clear that

M1 ⊃M2 ⊃ ... ⊃Mj ⊃Mj+1 ⊃ .... (1)

Let us choose v1 ∈M1 to be an arbitrary element. Then, there exists v2 ∈M2 such that

1

λn
|{k ∈ In : k ∈M2}| >

1

2
for all n ≥ v2.

In a similar way, there exists v3 ∈M3 such that

1

λn
|{k ∈ In : k ∈M3}| >

2

3
for all n ≥ v3.

Proceeding like this, we can construct an increasing sequence (vj) of positive integers such that vj ∈Mj

and
1

λn
|{k ∈ In : k ∈Mj}| > 1− 1

j
for all n ≥ vj . (2)

Let us construct M as follows: each natural number of the interval [1, v1] belongs to M and any natural
number of the interval [vj , vj+1] belongs to M if and only if it belongs to Mj : (j ∈ N).
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From (1) and (2), we have for each vj ≤ n < vj+1,

|{k ∈ In : k ∈Mj}|
λn

≥ |{k ∈ In : k ∈Mj}|
λn

> 1− 1

j
.

Consequently, δλ(M) = 1. Let ε > 0 be given. By Archimedean property, choose j ∈ N such that 1
j < ε.

Furthermore, let k ∈ M be such that k ≥ vj . Then, there exists t ≥ j such that vt ≤ k ≤ vt+1. But by the
definition of M , k ∈Mt. Therefore,

A||xk−x||G(ξ) <
1

t
≤ 1

j
< ε.

Hence, (xmk)
||·||G−−−→ x holds and the proof is complete.

Remark 1 Every subsequence of a gradually λ-statistical convergent sequence is not necessarily gradually
λ-statistical convergent.

Example 4 Let X = R and || · ||G be the norm defined in Example 3. Consider the sequence (λn) defined
by

λn =

{
1, n = 1,
n
2 , n ≥ 2.

Let

xk =

{
k, k = p2, p ∈ N,
0, otherwise.

By Lemma 1 with p = 2, then, for any ε > 0,

lim
n→∞

∣∣{k ∈ In : A||xk−0||G(ξ) ≥ ε
}∣∣ = δλ(B) = 0,

where B = {n ∈ N :
√
n ∈ N}. Therefore, xk

Sλ−||·||G−−−−−−→ 0. But the sequence considered in Example 3 is not
gradually λ-statistical convergent although it is a subsequence of the above sequence.

Theorem 5 Let (xk) be a sequence in the GNLS (X, || · ||G). Then,

(i) xk
[V,λ]G−−−−→ x implies xk

Sλ−||·||G−−−−−−→ x but the converse is not true;

(ii) If (xk) is gradually bounded and xk
Sλ−||·||G−−−−−−→ x, then, xk

[V,λ]G−−−−→ x.

Proof. (i) Let ε > 0 be arbitrary and xk
[V,λ]G−−−−→ x. Then, the proof follows directly from the following fact:∑

k∈In

A||xk−x||G(ξ) ≥
∑
k∈In

A||xk−x||G (ξ)≥ε

A||xk−x||G(ξ) ≥ ε
∣∣{k ∈ In : A||xk−x||G(ξ) ≥ ε

}∣∣ .
For the converse part, we construct a counterexample by considering the gradual normed space (R, || · ||G),
where || · ||G is the norm defined in Example 3. Consider the sequence (λn) be defined in Example 2. Define
a sequence (xk) by

xk =

{
k, n− [

√
n
2 ] + 1 ≤ k ≤ n,

0, otherwise.

Then, for every ε > 0 with 0 < εeξ ≤ 1 we have

lim
n→∞

1

λn

∣∣{k ∈ In : A||xk−0||G(ξ) ≥ ε
}∣∣ = lim

n→∞

2

n
[

√
n

2
] = 0.
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Hence, xk
Sλ−||·||G−−−−−−→ 0 holds. On the other hand,

1

λn

∑
k∈In

A||xk−0||G(ξ)

=
2

n
·

∑
k∈[n2+1,n]

A||xk||G(ξ)

=
2eξ

n
· {(n− [

√
n

2
] + 1) + (n− [

√
n

2
] + 2) + · · ·+ (n− [

√
n

2
] + [

√
n

2
])}

→ ∞ as n→∞,

i.e., (xk) does not converge to 0 in [V, λ]G.

(ii) Let xk
Sλ−||·||G−−−−−−→ x and (xk) be gradually bounded, say A||xk−x||G(ξ) ≤ M, : ∀k ∈ N. Then, for any

ε > 0, we have

1

λn

∑
k∈In

A||xk−x||G(ξ) =
∑
k∈In

A||xk−x||G (ξ)≥ε

A||xk−x||G(ξ) +
∑
k∈In

A||xk−x||G (ξ)<ε

A||xk−x||G(ξ)

≤ M

λn

∣∣{k ∈ In : A||xk−x||G(ξ) ≥ ε
}∣∣+ ε;

which consequently implies that xk
[V,λ]G−−−−→ x.

Theorem 6 Sλ(G) ⊇ S(G) if lim inf
n

λn
n > 0.

Proof. Suppose lim inf
n

λn
n > 0 and xk

st−||·||G−−−−−→ x. Then, for suffi ciently large n, there exists δ > 0 such that
λn
n > δ. Now for any ε > 0 and ξ ∈ (0, 1], we have

1

n

∣∣{k ≤ n : A||xk−x||G(ξ) ≥ ε
}∣∣ ≥ 1

n

∣∣{k ∈ In : A||xk−x||G(ξ) ≥ ε
}∣∣

≥ δ 1

λn

∣∣{k ∈ In : A||xk−x||G(ξ) ≥ ε
}∣∣ ,

which yields xk
Sλ−||·||G−−−−−−→ x.

Theorem 7 S(G) ⊇ Sλ(G) if lim inf
n

λn
n = 1.

Proof. Suppose lim inf
n

λn
n = 1 and xk

Sλ−||·||G−−−−−−→ x. Then, for any ε > 0 and ξ ∈ (0, 1], we have

1

n

∣∣{k ≤ n : A||xk−x||G(ξ) ≥ ε
}∣∣ ≤ 1

n

∣∣{k ≤ n− λn : A||xk−x||G(ξ) ≥ ε
}∣∣+

1

n

∣∣{k ∈ In : A||xk−x||G(ξ) ≥ ε
}∣∣

≤ n− λn
n

+
λn
n

1

λn

∣∣{k ∈ In : A||xk−x||G(ξ) ≥ ε
}∣∣ ,

which yields xk
st−||·||G−−−−−→ x.

Definition 11 Let (X, || · ||G) be a GNLS. A sequence (xk) in X is said to be gradual λ-statistical Cauchy
if for every ε > 0 and ξ ∈ (0, 1], there exists N ∈ N such that

lim
n→∞

1

λn

∣∣{k ∈ In : A||xk−xN ||G(ξ) ≥ ε
}∣∣ = 0

or equivalently, A||xk−xN ||G(ξ) < ε a.a.k.



C. Choudhury and S. Debnath 217

Theorem 8 Let (X, || · ||G) be a GNLS. Then, every gradually λ-statistical convergent sequence in X is
gradual λ-statistical Cauchy.

Proof. Let xk
Sλ−||·||G−−−−−−→ x. Then, for any ε > 0 and ξ ∈ (0, 1],

lim
n→∞

1

λn

∣∣∣{k ∈ In : A||xk−x||G(ξ) ≥ ε

2

}∣∣∣ = 0.

This implies that

A||xk−x||G(ξ) <
ε

2
a.a.k,

i.e.

δλ(
{
k ∈ N : A||xk−x||G(ξ) ≥ ε

2

}
) = 0,

i.e.

δλ(
{
k ∈ N : A||xk−x||G(ξ) <

ε

2

}
) 6= 0.

Therefore, the set {
k ∈ N : A||xk−x||G(ξ) <

ε

2

}
6= ∅

Choose N ∈ N such that
N ∈

{
k ∈ N : A||xk−x||G <

ε

2

}
.

Then we have,

A||xk−xN ||G(ξ) = A||xk−x+x−xN ||G(ξ)

≤ A||xk−xN ||G(ξ) +A||xN−x||G(ξ)

< ε a.a.k.

Hence, (xk) is gradual λ-statistical Cauchy.

Conclusion

In this paper, we have investigated a few fundamental properties of λ-statistical convergence in the gradual
normed linear spaces. We also introduced (V, λ)−summability in the gradual normed linear spaces and
established Theorem 5 to reveal the interrelationship between the notions. Finally, we have introduced the
concept of λ-statistical Cauchy sequences in the gradual normed space and established the interrelationship
between gradual λ-statistical convergent and gradual λ-statistical Cauchy sequences.

Summability theory and the convergence of sequences have wide applications in various branches of
mathematics particularly, in mathematical analysis. Research in this direction based on gradual normed
linear spaces has not yet gained much ground and it is still in its infant stage. The obtained results may be
useful for future researchers to explore various notions of convergences in the gradual normed linear spaces
in more detail.
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