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Abstract

The techniques and methods that help to obtain necessary and suffi cient conditions to determine the
local stability of linearized systems are paramount. In this paper, a corollary of the Gershgorin’s circle
theorem was used to establish the local stability of different epidemic models with three or more states
including, a Tuberculosis model, a SEIRS model, a vector-host model and Staged HIV/AIDS Model. It
was observed that no matter the state or the dimension of the system or matrix, this corollary can be
used to analyse the local stability for both disease-free and endemic equilibria, by establishing that when
R0 < 1, the Jacobian matrix evaluated at the disease free equilibrium will have negative eigenvalues
or negative real part eigenvalues where R0 is the basic reproduction number of the tuberculosis model.
Thus, the disease-free equilibrium is stable but when R0 > 1, the Jacobian matrix evaluated at the
endemic equilibrium will have negative eigenvalues or negative real part eigenvalues making the endemic
equilibrium is stable.

1 Introduction

The stability of an equilibrium point (stationary state) of a mathematical model for an infectious disease
helps to determine whether the solutions remain near the equilibrium point or get further away or not. The
equilibrium point can be either stable or unstable or a saddle point [9, 12].
The main method used to analyze the local stability of the equilibrium points of epidemic models is the

Lyapunov’s indirect method that is, to determine whether the eigenvalues of the Jacobian matrix evaluated
at the equilibrium points of the system are negative or have negative real part (that is, equilibrium points
lie in the left half of the complex plane). Since the characteristic equation for an n-dimensional system is a
polynomial equation of degree n for which it may be diffi cult or impossible to find all roots explicitly, different
methods such as the Routh-Hurwitz criterion gives necessary and suffi cient conditions for the eigenvalues
to lie in the left half of the complex plane. In this case, the reproduction number can be obtained from
the constant term. Whether the reproduction number is greater or less than 1 determines the sign of the
constant term [10]. In most of these methods, it is complicated to apply in problem of many dimensions [4].
The local asymptotic stability analysis using Routh-Hurwitz criteria involves calculation of the character-

istic equation and the determinants of the n Hurwitz matrices. The Routh-Hurwitz condition also becomes
intractable especially for large n [1].
In [2], the authors investigated the local stability of the disease-free equilibrium point of different epidemic

models with four states.
In this study, we investigate the local stability of the disease-free and endemic equilibrium points of

some selected epidemic model with four or more states using a corollary of Gershgorin’s circle theorem.
The Gershgorin’s theorem also provides suffi cient conditions for the eigenvalues to lie in the left half of
the complex plane [1, 13, 11]. That is, the local stability can be established without the need to calculate
the eigenvalues, instead the basic reproduction number which describes averagely the number of secondary
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infections produced by one infected individual in a susceptible population during their whole infectious period
gives a condition for an equilibrium point to be stable is used for the analysis. Informally, the theorem says
that if the off-diagonal entries of a square matrix over the complex numbers have small norms then its
eigenvalues are similar in norm to the diagonal entries of the matrix. This theorem is a very useful tool in
numerical analysis, particularly in perturbation theory [8].

Corollary 1 (Corollary of Gershgorin Circle Theorem) Let A be an n × n matrix with real entries.
If the diagonal elements aii of A satisfy

aii < −ri
where

ri =

n∑
j=1,j 6=i

| aij | (1)

for i = 1, ..., n, then the eigenvalues of A are negative or have negative real parts [1].

The following theorems will be used in the analysis of the equilibrium points of the selected models.

Theorem 2 The disease-free equilibrium is locally asymptotically stable if R0 < 1.

Theorem 3 The endemic equilibrium is locally asymptotically stable if R0 > 1.

2 Tuberculosis Model

Using the tuberculosis model in [5], the population under consideration is sub-divided into three epidemio-
logical classes: susceptible individuals S, latent or exposed infected individuals E, and infectious individuals
I. The incidence rate given by βSI (using the mass action law). A portion pβSI gives rise to immediate
active cases (fast progression), while the rest (1 − p)βSI gives rise to latent-TB cases with a low risk of
progressing to active TB (slow progression). The progression rate from latent TB to active TB is assumed
to be proportional to the number of latent-TB cases, that is, it is given by κE. The total incidence rate is
pβSI + κE. The model is given by the following system:

Ṡ = Λ− βSI − µS, Ė = (1− p)βSI − κE − µE, İ = pβSI + κE − µI − δI. (2)

Let Λ be recruitment rate of susceptible individuals, µ be the natural death rate, β be transmission rate of
active TB, κ be progression rate from latent TB to active TB (Rate of slow progression), δ death rate due
to TB infection and p rate of fast progression.

2.1 The Equilibrium Points

The equilibrium points of model (2) are

1. disease-free equilibrium point (P 0) given as(
S0, E0, I0

)
=
(Λ

µ
, 0, 0

)
.

The basic reproduction number R0 was computed using the Next Generation Matrix approach in [7]
and it is given as

R0 =
βΛ(κ+ µp)

µ(κ+ µ)(µ+ δ)
. (3)

2. The endemic equilibrium point (P ∗) can now be expressed in terms of R0 as

(P ∗) = (S∗, E∗, I∗) =
( Λ

µR0
,− (p− 1)(R0 − 1)µ(µ+ δ)

(µp+ κ)β
,

(R0 − 1)µ

β

)
.
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2.2 Local Stability Analysis of the Equilibrium Points

The Jacobian matrix J of the system (2) is

J =

 −βI − µ 0 −βS
(1− p)βI −(κ+ µ) (1− p)βS
pβI κ pβS − δ − µ

 . (4)

2.3 Local Stability Analysis of the Disease-Free Equilibrium

Evaluating the matrix (4) at the disease-free equilibrium gives

J0 =


−µ 0 −βΛ

µ

0 −(κ+ µ)
(1− p)βΛ

µ

0 κ
pβΛ

µ
− (µ+ δ)

 . (5)

The matrix J0 has one eigenvalue which is negative that is, −µ. The remaining sub-matrix is given by

Jr =

 −(κ+ µ)
(1− p)βΛ

µ

κ
pβΛ

µ
− (µ+ δ)

 .
According to Corollary 1, the matrix (Jr) will have negative eigenvalues if the following inequalities are
satisfied:

(κ+ µ) >
(1− p)βΛ

µ
, (6a)

− pβΛ

µ
+ (µ+ δ) > κ. (6b)

Dividing (6a) through by (κ+ µ) and (6b) by κ yields

1 >
(1− p)βΛ

µ(κ+ µ)
, (7)

−pβΛ + µ(µ+ δ)

µκ
> 1. (8)

From (7) and (8). After expanding and simplifying yields,

−pβΛ + µ(µ+ δ)

µκ
> 1 >

(1− p)βΛ

µ(κ+ µ)

⇒ 1 >
(κ+ µp)βΛ

µ(δ + µ)(κ+ µ)

⇒ 1 > R0
⇒ R0 < 1.

Therefore, we conclude that from the above proof the disease-free equilibrium (E0) is locally asymptotically
stable.
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2.4 Local Stability Analysis of the Endemic Equilibrium Point

Evaluating the matrix (4) at the endemic equilibrium gives

Jse =


−(R0 − 1)µ− µ 0 − βΛ

R0µ
−(1− p)(1−R0)µ −(κ+ µ)

(1− p)βΛ

R0µ
−p(1−R0)µ κ

pβΛ

R0µ
− (µ+ δ)

 . (9)

According to Corollary 1, the matrix (Jse ) will have negative eigenvalues if the following inequalities are
satisfied:

(R0 − 1)µ+ µ >
βΛ

R0µ
, (10a)

(κ+ µ) > (1− p)(1−R0)µ+
(1− p)βΛ

R0µ
, (10b)

− pβΛ

R0µ
+ (µ+ δ)− p(1−R0)µ > κ. (10c)

Dividing (10b) through by (κ+ µ) and (10c) by κ gives

1 >
(1− p)R0µ(1−R0)µ+ (1− p)βΛ

R0µ(κ+ µ)
, (11)

−pβΛ + (µ+ δ)R0µ− pR0µ(1−R0)µ
R0µκ

> 1. (12)

From (11) and (12),

−pβΛ + (µ+ δ)R0µ− pR0µ(1−R0)µ
R0µκ

> 1

>
(1− p)R0µ(1−R0)µ+ (1− p)βΛ

R0µ(κ+ µ)
. (13)

Expanding and simplifying (13) gives

0 > µ(1−R0)(µp+ κ) ⇒ R0 > 1.

This shows that the Endemic Equilibrium point is locally asymptotically stable since R0 > 1.

3 SEIRS Model

The SEIRS model consists of four compartments, but the individual loses immunity after some time and
moves back into the S class (that is, the individual becomes susceptible again). Let S be the number of
susceptible individuals, E, be the number of exposed individuals, (infected but are not yet infectious), I,
be the number of infectious individuals, and R, is the number of recovered individuals, (with temporary
immunity). Furthermore, let the contact rate be given by β, Λ is the recruitment rate, µ is the birth rate
(equal to the natural death rate), κ be the progression rate from E to I, γ the recovery rate, δ is the
additional rate of disease-induced mortality, ρ is the rate of loss of immunity, α is the vaccination rate.

Ṡ = Λ− βIS − (µ+ α)S + ρR, Ė = βIS − (κ+ µ)E, (14)

İ = κE − (µ+ γ + δ)I, Ṙ = γI − (µ+ ρ)R+ αS.

The system (14) has two equilibrium points:
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(i) a disease-free equilibrium point P 0, given by

P 0 = (S0, E0, I0, R0) = (
Λ(µ+ ρ)

µ(α+ µ+ ρ)
, 0, 0,

Λα

µ(α+ µ+ ρ)
).

The Basic Reproduction number R0 was computed using the Next Generation Matrix approach given
as

R0 =
Λ

µ

κ

(κ+ µ)

(µ+ ρ)

(α+ µ+ ρ)

β

(γ + µ+ δ)
.

(ii) endemic equilibrium point P ∗ = (S∗, E∗, I∗, R∗) expressed in terms of R0 as

S∗ =
Λ(µ+ ρ)

R0µ(α+ µ+ ρ)
,

E∗ =
(µ+ γ + δ)(R0 − 1)µ[(µ+ κ)(α+ µ+ ρ)(γ + µ+ δ)]

ακ(δ + µ) + µ((α+ µ+ ρ)(γ + µ+ δ))
,

I∗ =
(R0 − 1)µ[(µ+ κ)(α+ µ+ ρ)(γ + µ+ δ)]

ακ(δ + µ) + µ((α+ µ+ ρ)(γ + µ+ δ))
,

R∗ =
µR0κγA1(γ + µ+ δ)

µ(α+ µ+ ρ)ακ(δ + µ) + µ((α+ µ+ ρ)(γ + µ+ δ))
,

where A1 = (α+ µ+ ρ)− (−δκρ− δµρ+ γκµ− γµρ− κµρ− µ2ρ)]µ(µ+ κ)(α+ µ+ ρ).

3.1 Local Stability Analysis for the Equilibrium Points

The Jacobian matrix J for the system (14) give by

J =


−βI − (µ+ α) 0 −βS ρ

βI −(κ+ µ) βS 0
0 κ −(γ + µ+ δ) 0
α 0 γ −(µ+ ρ)

 . (15)

3.2 Local Stability Analysis for the Disease-free Equilibrium Point

Evaluating the matrix J at the disease-free equilibrium gives

J0 =


−(µ+ α) 0 − βΛ(µ+ ρ)

µ(α+ µ+ ρ)
ρ

0 −(κ+ µ)
βΛ(µ+ ρ)

µ(α+ µ+ ρ)
0

0 κ −(γ + µ+ δ) 0
α 0 γ −(µ+ ρ)

 . (16)

According to Corollary 1, the matrix (J0) will have negative eigenvalues if the following inequalities are
satisfied

(µ+ α) >
βΛ(µ+ ρ)

µ(α+ µ+ ρ)
+ ρ, (17a)

(κ+ µ) >
βΛ(µ+ ρ)

µ(α+ µ+ ρ)
, (17b)

(γ + µ+ δ) > κ, (17c)

(µ+ ρ) > (α+ γ). (17d)
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Combining (17b) and (17d) gives

1 >
βΛ(µ+ ρ)

µ(α+ µ+ ρ)(µ+ κ)
(18)

and
(γ + µ+ δ)

κ
> 1. (19)

From (18) and (19) we have
(γ + µ+ δ)

κ
> 1 >

βΛ(µ+ ρ)

µ(α+ µ+ ρ)(µ+ κ)
.

It follows that

1 >
βΛ(µ+ ρ)κ

µ(α+ µ+ ρ)(µ+ κ)(γ + µ+ δ)
= R0.

This shows that the Disease-free equilibrium point is locally asymptotically stable since R0 < 1.

3.3 Local Stability Analysis for the Endemic Equilibrium

The Jacobian matrix J evaluated at the endemic equilibrium gives

J1 =


b− (α+ µ) 0 − (µ+ κ)(µ+ γ + δ)

κ
ρ

−b −(κ+ µ)
(µ+ κ)(µ+ γ + δ)

κ
0

0 κ −(γ + µ+ δ) 0
α 0 γ −(µ+ ρ)

 , (20)

where

b =
(α+ µ+ ρ)(µ(µ+ κ))(µ+ γ + δ)(1−R0)

µ(µ+ κ)(µ+ γ + δ) + ρ(µ(µ+ γ + δ) + κ(µ+ δ))
.

According to Corollary 1, the matrix (J0) will have negative eigenvalues if the following inequalities are
satisfied

(i∗)
(α+ µ+ ρ)(µ(µ+ κ))(µ+ γ + δ)(R0 − 1)

µ(µ+ κ)(µ+ γ + δ) + ρ(µ(µ+ γ + δ) + κ(µ+ δ))
+ (α+ µ) >

(µ+ κ)(µ+ γ + δ)

κ
+ ρ.

(ii∗)

(κ+ µ) >
(α+ µ+ ρ)(µ(µ+ κ))(µ+ γ + δ)(1−R0)

µ(µ+ κ)(µ+ γ + δ) + ρ(µ(µ+ γ + δ) + κ(µ+ δ))
+

(µ+ κ)(µ+ γ + δ)

κ
.

(iii∗) (µ+ δ + γ) > κ.

(iv∗) (µ+ ρ) > α+ γ.

Dividing (ii∗) through (κ+ µ) and (iii∗) by κ, and simplifying gives

1 >
(α+ µ+ ρ)(µ)(µ+ γ + δ)(1−R0)

µ(µ+ κ)(µ+ γ + δ) + ρ(µ(µ+ γ + δ) + κ(µ+ δ))
+

(µ+ γ + δ)

κ
(21)

and
(µ+ δ + γ)

κ
> 1. (22)

The above inequality holds if
0 > 1−R0,

that is,
R0 > 1.

The endemic equilibrium point is locally asymptotically stable since R0 > 1.
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4 7-Staged States Vector-Host Model

In this section, a malaria modelled as an SEIRS for the host population and SEI for the vector population
similar to that of [6] and a Zika virus model in [3] are analyzed.

4.1 The malaria model

The malaria model divides the human population into 4 classes: Susceptible, Sh, then comes the latent or
exposed, Lh, Ih, people who have been infected and are capable of spreading the disease to those in the
susceptible class and finally, the recovered (immune), Rh, people who recover from the infection through
clinical treatment with temporary immunity . The recovered humans have some immunity to the disease
and do not get clinically ill, but after some period of time, they lose their immunity and return to the
susceptible class.
The vector population is divided into 3 classes: Susceptible, Sv, Latent or Exposed, Lv and Infectious,

Iv. Let µh be Humans birth rate = Humans death rate, κ be transition rate from Latent class to infectious
class at time t, γ be recovery rate of human, βh be transmission rate of host (bite rate plus probability
of transmission of disease), δ be Disease-induced death rate for humans, ρ be Rate of loss of immunity for
humans, µc be Vector birth rate = vector death rate.

Ṡh = µh − βhShIv − αSh + ρRh − µhSh,

Ėh = βhShIv − (κ+ µh)Eh,

İh = κEh − (γ + µh + δ)Ih,

Ṙh = γIh − µhRh + αSh − ρRh,

Ṡv = µc − βvSvIh − µcSv,

Ėv = βvSvIh − θEv − µcEv,

İv = θEv − µcIv.

(23)

4.2 Equilibrium Points of the Model and Basic Reproduction Number (R0)
The system (23) has two equilibrium points namely;

• The Disease-Free equilibrium; and

• The Endemic equilibrium.

4.2.1 The Disease-Free Equilibrium

The disease-Free equilibrium of the system (23) is given by

p0 = (S0h, E
0
h, I

0
h, R

0
h, S

0
v , E

0
v , I

0
v ) =

(
(µh + ρ)

(α+ µh + ρ)
, 0, 0,

α

(α+ µh + ρ)
, 1, 0, 0

)
.

4.2.2 The Basic Reproduction Number (R0)

The basic reproduction number (RNG0 ) of the model was computed using the next generation matrix approach
discussed in [7].The basic reproduction for (23) is given as

RNG0 =

√
βh(µh + ρ)κ

(κ+ µh)(µh + γ + δ)(α+ µh + ρ)
.

βvθ

(θ + µc)µc
.
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According to [10], the square of the reproduction number obtained via the next-generation approach [7]:

(RNG0 )2 = R0

is the basic reproduction number (R0) of the model. Therefore, the basic reproduction number for (23) is
given as

R0 =
βh(µh + ρ)κ

(κ+ µh)(µh + γ + δ)(α+ µh + ρ)
.

βvθ

(θ + µc)µc
. (24)

Now, for a population where there is no prevention effort, α = 0, the basic reproduction number is represented
by

R
′

0 =
βhκ

(κ+ µh)(µh + γ + δ)
.

βvθ

(θ + µc)µc
. (25)

4.2.3 Endemic Equilibrium

The solution for the endemic equilibrium is obtained in terms of the infected humans which is also expressed
in terms of R0 and after some algebraic manipulation, we have

S∗h =
µh(θ + µc)(I

∗
hβv + µc)

(α+ µc)(θ + µc)(I
∗
hβv + µc) + θI∗hβvβh

,

E∗h =
θI∗hβvβhµh

(κ+ µh)(µc(θ + µc)(α+ µh) + I∗hβv(θβh(θ + µc)(α+ µh))
,

I∗h =
R0 − 1

βv(γ + δ + µh)(κ+ µh)(θβh + (θ + µc)(α+ µh + ρ))
,

R∗h =
(γIh + α+ µh)(θ + µc)(I

∗
hβv + µc) + (θI∗hβv)

µh(θ + µc)(I
∗
hβv + µc)

,

S∗v =
µh

(I∗hβv + µc)
, E∗v =

I∗hβvµc
(θ + µc)(I

∗
hβv + µc)

,

I∗v =
θI∗hβv

(θ + µc)(I
∗
hβv + µc)

.

4.3 Local Stability Analysis of the Vector-Host Model

The Jacobian matrix for the system (23) is given as

J =



n∗ 0 0 ρ 0 0 −βhSh
βhIv −(κ+ µh) 0 0 0 0 βhSh

0 κ −(µh + γ + δ) 0 0 0 0
α 0 γ −(µh + ρ) 0 0 0
0 0 −βvSv 0 −βvIh − µc 0 0
0 0 βvSv 0 βvIh −(θ + µc) 0
0 0 0 0 0 θ −µc


(26)

where n∗ = βhIv − (α+ µh).

4.4 Local Stability Analysis of the Disease-Free Equilibrium Point

Now, we investigate the local stability of the disease-free equilibrium point with α = 0, since the basic
reproduction for the model without prevention is always greater than the basic reproduction for the model
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with prevention, that is, R0 < R
′

0. Evaluating the Jacobian matrix at the disease equilibrium point (E0)
yields

J0 =



−µh 0 0 ρ 0 0 −βh
0 −(κ+ µh) 0 0 0 0 βh
0 κ −(µh + γ + δ) 0 0 0 0
0 0 γ −(µh + ρ) 0 0 0
0 0 −βv 0 −µc 0 0
0 0 βv 0 0 −(θ + µc) 0
0 0 0 0 0 θ −µc


. (27)

From rows 1, 4 and 5, we get three negatives eigenvalues which are λ1 = −µh, λ2 = −(µh+ρ) and λ3 = −µc.
Eliminating rows 1, 4 and 5 from J0, we end up with the sub-matrix

Js =


−(κ+ µh) 0 0 βh

κ −(µh + γ + δ) 0 0
0 βv −(θ + µc) 0
0 0 θ −µc

 . (28)

The matrix Js satisfies the corollary of Gershgorin’s circle theorem, if the following inequalities hold;

(κ+ µh) > βh, (29)

(µh + γ + δ) > κ, (30)

θ + µc > βv, (31)

µc > θ. (32)

Combining Eq. (29) to Eq. (32) gives

1 >
κβhθβv

µc(θ + µc)(κ+ µh)(µh + γ + δ)
.

Hence, from (25), R′

0 < 1. Since R′

0 < 1, it implies R0 < 1. Therefore, R0 < 1, ensures local stability of the
disease-free equilibrium.

4.5 Local Stability Analysis of Endemic Equilibrium Point

The Jacobian matrix evaluated at the Endemic equilibrium (E0) gives

Je =



a∗ − α− µh 0 0 ρ 0 0 −b∗
−a∗ −(κ+ µh) 0 0 0 0 b∗

0 κ −(µh + γ + δ) 0 0 0 0
α 0 γ −(µh + ρ) 0 0 0
0 0 −c∗ 0 d∗ − µc 0 0
0 0 c∗ 0 h∗ −θ − µc 0
0 0 0 0 0 θ −µc


(33)

where h∗ = −d, a∗ =
a1
b1
, b∗ =

a2
b2
, c∗ =

a3
b3
, d∗ =

a4
b4
, a1 = βh(I∗hβvβh), b1 = (θ + µc)(I

∗
hβv + µc),

a2 = βhµh, b2 = (α+ µc)(θ + µc)(I
∗
hβv + µc) + θI∗hβvβh,

a3 = βvµh, b3 = aaI∗hβv + µc, a4 = βv(R0 − 1) and

b4 = βv(γ + δ + µh)(κ+ µh)(θβh + (θ + µc)(α+ µh + ρ)).
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Using Corollary 1, the matrix (Je) will have negative eigenvalues if the following inequalities are satisfied.
That is,

µh + α > ρ+ a∗ + b∗, (34)

1 >
a∗

µh + κ
+

b∗

µh + κ
, (35)

δ + µh + γ

κ
> 1, (36)

α+ γ

µh + ρ
< 1, (37)

µc > d∗ + c∗, (38)

θ + µc > h∗ + c∗, (39)

µc > θ. (40)

From Eq. (35) and Eq. (36) we get

1 >
a∗κ

(µh + κ)(δ + µh + γ)
+

b∗κ

(µh + κ)(δ + µh + γ)
. (41)

Let

a∗∗ =
a∗κ

(µh + κ)(δ + µh + γ)
and b∗∗ =

b∗κ

(µh + κ)(δ + µh + γ)
.

Then Eq. (41) becomes

1 > a∗∗ + b∗∗. (42)

Adding Eq. (38) and Eq. (39) yields

θ + 2µc > 2c∗.

Since h∗ = −d∗, we see that
2θ + 2µc > 2c∗. (43)

From Eq. (40) and Eq. (43), we have

1 >
c∗θ

(θ + µc)µc
. (44)

But
c∗1θ

(θ + µc)µc
=

1

b∗∗
.

This implies Eq. (44) becomes

− 1 > −b∗∗. (45)

Adding Eq. (42) and Eq. (45) gives a∗∗ < 0. Simplifying a∗∗ gives 0 > (1−R0) and R0 > 1.

Therefore, R0 > 1, ensures local stability of the endemic equilibrium p∗.
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5 A-Staged HIV/AIDS Model

We consider a sexually active population N(t), divided into six compartments: S(t), I1(t), I2(t), I3(t),
A(t) and T (t). S(t) represents the number of susceptible individuals; I1(t) represents the number of HIV-
positive individuals in the asymptomatic stage of HIV infection; I2(t) represents the number of HIV-positive
individuals in the pre-AIDS stage but not receiving antiretroviral (ARV) treatment, I3(t), A(t) represents the
number of individuals with full-blown AIDS but not receiving ARV treatment; T (t) represents the number
of individuals who are receiving ARV treatment; and R(t), the removed class, represents the number of
individuals who have changed their sexual habits suffi ciently such that they are, literarily, ‘immune’to HIV
infection by sexual contact. Note that the individuals in the R class are people who take up safe sexual
habits and maintain the habits for the rest of their lives. The significance of the removed R class is that
it emphasizes the importance of prevention for a disease, such as HIV, that has no cure. Increasing the
members in this class is one of the keys to controlling the spread of the disease. The population dynamics
is given by the following equations:

Ṡ = Λ−
(β1I1
N

+
β2I2
N

+
β3I3
N

)
S − (µ+ ρ)S,

İ1 =
(β1I1
N

+
β2I2
N

+
β3I3
N

)
S − (µ+ α1)I1,

İ2 = α1I1 − (µ+ α2 + γ2)I2,

İ3 = α2I2 − (µ+ α3 + γ3)I3,

Ȧ = α3I3 − (µ+ δ + γA)A,

Ṫ = γ2I2 + γ3I3 + γAA− µT,

(46)

where βi = cpi, i = 1, 2, 3 is the product of the average number of sexual partners (c) and the probability (pi)
of the infection per partner with an infected individual in I1, I2 and I3 respectively. Let β1 be infection rate
of primary infectious individual, β2 be infection rate of asymptomatic infectious individual, β3 be infection
rate of symptomatic infectious individual, Λ be recruitment rate, µ be natural death rate, α1 be progression
from the I1 to I2, α2 be progression from the I2 to I3, α3 be progression from the I3 to A, δ be disease-induced
death, ρ be rate of removal of susceptible, α2 be treatment rate of asymptomatic infectious individual, α3
be treatment rate of symptomatic infectious individual, αA be treatment rate for advance AIDS individual.

The total population, N(t) is given by

N = S(t) + I1(t) + I2(t) + I3(t) +A(t) + T (t). (47)

5.1 Equilibrium Points of A-Staged HIV/AIDS Model

The model is made up of two equilibrium points.

(a) Disease free Equilibrium point given by

(S0 =
Λ

µ+ ρ
, I01 = 0, I02 = 0, I03 = 0, A0 = 0, T 0 = 0).

(b) Endemic Equilibrium point given by

S∗ =
Λ

λ+ µ+ ρ
, (48)

I∗1 =
λ

µ+ α1
S∗, (49)

I∗2 =
α1

(µ+ α2 + γ2)
I∗1 ,
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I∗3 =
α1

(µ+ α2 + γ2)

α2
(µ+ α3 + γ3)

I∗1 ,

A∗ =
α1

(µ+ α2 + γ2)

α2
(µ+ α3 + γ3)

α3
(µ+ δ + γA)

I∗1 ,

T ∗ =
[γ2
µ

α1
(µ+ α2 + γ2)

+
γ3
µ

α1
(µ+ α2 + γ2)

α2
(µ+ α3 + γ3)

+
γA
µ

α1
(µ+ α2 + γ2)

α2
(µ+ α3 + γ3)

α3
(µ+ δ + γA)

]
, (50)

where λ =
β1I1
N

+
β2I2
N

+
β3I3
N

.

5.2 Basic Reproduction Number R0 of HIV/AIDS Model
The basic reproduction number for the model is given as

R0 =
β1

(µ+ α1)
+

α1β2
(µ+ α1)(µ+ α2 + γ2)

+
α1α2β3

(µ+ α1)(µ+ α2 + γ2)(µ+ α3 + γ3)

where

(1)
β1

(µ+ α1)
is the probability of an infective that progresses from I1 to I2,

(2)
β2

(µ+ α2 + γ2)
is the probability of an infective that progresses from I3 to I3,

(3)
β3

(µ+ α3 + γ3)
is the probability of an infective that progresses from I3 to A.

From (49) we have

I∗1
S∗

=
λ

(µ+ α1)
,

I∗1
S∗

=
1

(µ+ α1)

β1I1 + β2I2 + β3I3
N

,

N∗

S∗
=

1

(µ+ α1)

(
β1 +

β2I2
I∗1

+
β3I3
I∗1

)
,

N∗

S∗
=

1

(µ+ α1)

(
β1 +

α1β2
(µ+ α2 + γ2)

+
α1α2β3

(µ+ α2 + γ2)(µ+ α3 + γ3)

)
,

N∗

S∗
= R0,

R0 =
N∗

S∗

=
S∗ + I∗1 + I∗2 + I∗3 +A∗ + T ∗

S∗

= 1 + λ
1

(µ+ α1)
+ λ

α1
(µ+ α1)(µ+ α2 + γ2)

+ λ
α1α2

(µ+ α1)(µ+ α2 + γ2)(µ+ α3 + γ3)
+

λ
α1α2α3

(µ+ α1)(µ+ α2 + γ2)(µ+ α3 + γ3)(µ+ δ + γA)
+

λ
α1

(µ+ α1)(µ+ α2 + γ2)

[γA
µ

+
α2γ3

µ(µ+ α3 + γ3)
+

α2α3γA
µ(µ+ α3 + γ3)(µ+ δ + γA)

]
,

R0 − 1 = λπ,
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λ =
(R0 − 1)

π
,

where π is the mean infective period given by

π =
1

(µ+ α1)
+

α1
(µ+ α1)(µ+ α2 + γ2)

+
α1α2

(µ+ α1)(µ+ α2 + γ2)(µ+ α3 + γ3)

+
α1α2α3

(µ+ α1)(µ+ α2 + γ2)(µ+ α3 + γ3)(µ+ δ + γA)

+
α1

(µ+ α1)(µ+ α2 + γ2)

[γA
µ

+
α2γ3

µ(µ+ α3 + γ3)
+

α2α3γA
µ(µ+ α3 + γ3)(µ+ δ + γA)

]
by substituting λ into the endemic equilibrium point expressed in (49)-(50), we will obtain the endemic
equilibrium in term of R0 to be

S∗ =
[ Λπ

(R0 − 1) + µ+ ρ

]
,

I∗1 =
[ (R0 − 1)

π(µ+ α1)

]
S∗,

I∗2 =
[ α1
π(µ+ α1)(µ+ α2 + γ2)

]
(R0 − 1)S∗,

I∗3 =
[ α1α2
π(µ+ α1)(µ+ α2 + γ2)(µ+ α3 + γ3)

]
(R0 − 1)S∗,

A∗ =
[ α1α2α3
π(µ+ α1)(µ+ α2 + γ2)(µ+ α3 + γ3)(µ+ δ + γA)

]
(R0 − 1)S∗,

T ∗ =
α1

π(µ+ α1)(µ+ α2 + γ2)[γ2
µ

+
α2γ3

µ(µ+ α3 + γ3)
+

α2α3γA
µ(µ+ α3 + γ3)(µ+ δ + γA)

]
(R0 − 1)S∗.

Jacobian matrix of the system (46) is given as

J =



n∗ −β1
N
S −β2

N
S −β3

N
S 0 0

m∗
β1
N
S − (α1 + µ)

β2
N
S

β3
N
S 0 0

0 α1 −(α2 + γ2 + µ) 0 0 0
0 0 α2 −(α3 + γ3 + µ) 0 0
0 0 0 α3 −(µ+ δ + γA) 0
0 0 γ2 γ3 γA −µ


(51)

where

n∗ = −β1I1
N
− β2I2

N
− β3I3

N
− (µ+ ρ) and m∗ =

β1I1
N

+
β2I2
N

+
β3I3
N

.

5.3 Local Stability Analysis at the Disease Free Equilibrium Point

The Jacobian matrix J evaluated at the disease free equilibrium point is given as

J0 =



−(µ+ ρ) − β1µ

(µ+ ρ)
− β2µ

(µ+ ρ)
− β3µ

(µ+ ρ)
0 0

0 p∗
β2µ

(µ+ ρ)

β3µ

(µ+ ρ)
0 0

0 α1 −(α2 + γ2 + µ) 0 0 0
0 0 α2 −(α3 + γ3 + µ) 0 0
0 0 0 α3 −(µ+ δ + γA) 0
0 0 γ2 γ3 γA −µ


(52)
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where

p∗ =
β1µ

(µ+ ρ)
− (α1 + µ).

The matrix J0 has three negative eigenvalue, λ1 = µ, λ2 = (µ + ρ), λ3 = (µ + δ + γA). The sub-matrix is
given as

Js0 =


β1µ

(µ+ ρ)
− (α1 + µ)

β2µ

(µ+ ρ)

β3µ

(µ+ ρ)
α1 −(α2 + γ2 + µ) 0
0 α2 −(α3 + γ3 + µ)

 . (53)

We now determine the eigenvalue of the sub-matrix Js0 by applying a corollary of Gershgorin’s circle theorem.

R1 : 1 >
β1µ

(µ+ ρ)(α1 + µ)
+

β2µ

(µ+ ρ)(α1 + µ)
+

β3µ

(µ+ ρ)(α1 + µ)
,

R2 : 1 >
α1

(α2 + γ2 + µ)
,

R3 : 1 >
α2

(α3 + γ3 + µ)
,

where Ri, i = 1, 2, 3 stands for the rows in the matrix.
By multiplying the second term of the right hand side (rhs) of R1 by the term obtained in the rhs of R2

and also by multiplying the third term of rhs of R1 by the terms obtained in rhs of R1 and R3 gives

1 >
β1µ

(µ+ ρ)(µ+ α1)
+

α1β2µ

(µ+ ρ)(µ+ α1)(µ+ α2 + γ2)

+
α1α2β3µ

(µ+ ρ)(µ+ α1)(µ+ α2 + γ2)(µ+ α3 + γ3)
,

which implies R0(ρ) < 1, hence the disease free equilibrium point is locally asymptotically stable.

5.4 Local Stability Analysis at the Endemic Equilibrium Point

The Jacobian matrix evaluated at the endemic equilibrium gives

JE =



λ∗ − (µ+ ρ) − β1R0
− β2R0

− β3R0
0 0

λ∗ b∗
β2
R0

β3
R0

0 0

0 α1 −(α2 + γ2 + µ) 0 0 0
0 0 α2 −(α3 + γ3 + µ) 0 0
0 0 0 α3 −(µ+ δ + γA) 0
0 0 γ2 γ3 γA −µ


where

λ∗ =
β1I1
N

+
β2I2
N

+
β3I3
N

, b∗ =
β1
R0
− (α1 + µ) and R0 =

N∗

S∗
.

Two of the eigenvalues of JE are λ1 = µ and λ2 = −(δ + γA + µ). Furthermore,

JsE =


−λ∗ − (µ+ ρ) − β1R0

− β2R0
− β3R0

λ∗
β1
R0
− (α1 + µ)

β2
R0

β3
R0

0 α1 −(α2 + γ2 + µ) 0
0 0 α2 −(α3 + γ3 + µ)

 ,
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A1 : λ∗ + (µ+ ρ) >
β1 + β2 + β3

R0
,

A2 : −λ∗ + (α1 + µ) >
β1 + β2 + β3

R0
,

A3 : 1 >
α1

(α2 + γ2 + µ)
,

A4 : 1 >
α2

(α3 + γ3 + µ)
.

Adding inequalities A1 and A2 gives

(µ+ ρ) + (α1 + µ) >
2(β1 + β2 + β3)

R0
.

Dividing through by (µ+ ρ)(α1 + µ) gives

1

(α1 + µ)
+

1

(µ+ ρ)
>

2

R0

[ β1
(µ+ ρ)(α1 + µ)

+
β2

(µ+ ρ)(α1 + µ)
+

β3
(µ+ ρ)(α1 + µ)

]
.

Multiplying the above inequality by µ gives

µ

(α1 + µ)
+

µ

(µ+ ρ)
>

2

R0

[ β1µ

(µ+ ρ)(α1 + µ)
+

β2µ

(µ+ ρ)(α1 + µ)
+

β3µ

(µ+ ρ)(α1 + µ)

]
.

Dividing through by 2 gives

1 >
1

2

( µ

(α1 + µ)
+

µ

(µ+ ρ)

)
>

1

R0

[ β1µ

(µ+ ρ)(α1 + µ)
+

β2µ

(µ+ ρ)(α1 + µ)
+

β3µ

(µ+ ρ)(α1 + µ)

]
or

1 >
1

R0

[ β1µ

(µ+ ρ)(α1 + µ)
+

β2µ

(µ+ ρ)(α1 + µ)
+

β3µ

(µ+ ρ)(α1 + µ)

]
. (54)

From the inequalities A3 and A4, it is obvious that

R0 >
[ β1µ

(µ+ ρ)(α1 + µ)
+

β2µ

(µ+ ρ)(α1 + µ)
∗A3 +

β3µ

(µ+ ρ)(α1 + µ)
∗ (A3 ∗A4)

]
.

Hence (54) holds provided R0 > 1.

6 Concluding Remarks

In this paper, we investigated the local stability of both the disease-free and endemic equilibria of a tuber-
culosis model, SEIRS, a vector-host model and a-Staged HIV/AIDS Model. The corollary of Gershgorin’s
circles theorem which is an essential tool that helps to determine the regions of the complex plane in which
the eigenvalues of a matrix are located was used. This criterion is very practical given that the local stability
of the equilibrium points can be established without the need to calculate the eigenvalues, instead the basic
reproduction number which also gives a condition for an equilibrium point to be stable were obtained for
each model after simple computations by establishing that if R0 < 1, the Jacobian matrix evaluated at the
disease-free equilibrium will have negative or negative real part eigenvalues. Thus, disease-free equilibrium
is stable but if R0 > 1, then the Jacobian matrix evaluated at the endemic equilibrium will have negative
or negative real part eigenvalues making the endemic equilibrium stable.
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