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Abstract

We prove in a few new cases (under mild conditions) that the order of xp−x−1 ∈ Fp[x] equals pp−1
p−1 .

1 Introduction

We are interested in a link between roots of some irreducible trinomials modulo p and some numbers that
appear naturally in combinatorics. The trinomials are primitive when every nonzero element of the extension
field Fp(r) of the finite field Fp with p elements, is a power of r, with r a zero of the trinomial. This is
useful for applications like coding messages. In our case, the trinomial is Ta(x) = xp − x− a, with p an odd
prime, and a a generator of the group of nonzero elements of Fp. We know that Ta(x) is primitive if and
only if T (x) = T1(x) = xp − x − 1 has order g(p) = pp−1

p−1 . The minimal period (see below for details) of a
sequence of numbers associated to the trinomial, namely, the Bell numbers, (see below) equals g(p) if and
only if T (x) has order g(p). This conjecture, that is, the statement that for any prime number p, Ta(x) is
always primitive, is a long-standing diffi cult conjecture. Thus, it is interesting to try to get some progress
on it. On the other side, the Bell numbers grows exponentially. Therefore, it is easier to work with them
modulo p. The Bell numbers B(n) (see sequence A000110 of the OEIS [12]) are positive integers that arise
in combinatorics:

1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115975, 678570, 4213597, 27644437, . . . . (1)

For small values of p, say p ∈ {2, 3}, we can look directly in the link above. For example, if p = 2, we have
that the trinomial T (x) = x2 − x − 1 ∈ F2[x] has effectively order g(2) = 3, since its roots r in F4 = F2(r)
have order 3. Hence, we have

r3 = r · r2 = r(r + 1) = r2 + r = r + 1 + r = 1 ∈ F4.

On the other hand, the Bell numbers modulo 2

1, 1, 0, 1, 1, 0, 1, 1, 0, . . .

have minimal period g(2) = 3. The computation is similar for p = 3.

Definition 1 The Bell numbers B(n) are defined by B(0) = 1, and B(n + 1) =
∑n

k=0

(
n
k

)
B(k) for n =

0, 1, 2, · · · .

Besides the classical Definition 1 that comes from Becker and Riordan [4], other definitions, or charac-
terizations, appear in [1], [6], [7, page 371], [9]. Williams [14] proved that, for each prime number p the
sequence B(n) (mod p) is periodic. We are interested in its minimal period. To be more precise, let us fix
the following notation for the entire paper. We let p denote an odd prime number. We call an integer d a
period of B(n) (mod p) if for all non-negative integers n one has B(n+ d) ≡ B(n) (mod p). We set q = pp,
and we let Fp denote the finite field with p elements, and let Fq denote the finite field with q elements.
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Namely, the Artin-Schreier extension of degree p of Fp generated by an element r, a root of the irreducible
trinomial xp − x− 1 in some fixed algebraic closure of Fp. We let Tr denote the trace function from Fq onto
Fp. Observe that the Frobenius σ : Fq 7→ Fq, such that σ(t) = tp, transforms r into r + 1, and in general
r+n into r+n+1 for any n ∈ Fp. This will be used several times in the paper without further explanation.
We put c(p) = 1 + 2p+ 3p2 + · · ·+ (p− 1)pp−2 and g(p) = 1 + p+ p2 + · · · pp−1.

Radoux [11] conjectured that the order, d = op(r), of r in F∗q equals g(p). It turns out [5] that d is also
the minimal period of B(n) (mod p). Montgomery et al. [9] gave convincing heuristics to the truth of the
conjecture and established the conjecture for new prime numbers after deep computations. This implies that
the conjecture holds for all primes less than 126 as well as for the primes in {137, 149, 157, 163, 167, 173}.
On the other hand, Car et al. [5] established the conjecture under some conditions on the p-adic digits of d.
The link of r with the Bell numbers B(n) modulo p (see [2, 3], [10]) is the following:

B(n) ≡ −Tr(rc(p))Tr(rn−c(p)−1) (mod p). (2)

Gallardo and Rahavandrainy [8] generalized the Bell numbers B(n) in Fp to some rational fraction of r,
β(n) ∈ Fq, with the property that Tr(β(n)) = −B(n). Our contribution in the present paper is to extend
the results in [5] in two manners. First, we consider conditions on the p− 1 roots of r in Fq (as, e.g., rc(p))
that implies the conjecture. Second, we consider several cases in which d < g(p) holds (proving that this
assumption is impossible), including the cases in which the base-p digits of d are all 1 (and similar cases),
or the base-p digits of d are all small.

More precisely, our main result is as follows:

Theorem 1 Let p be an odd prime number larger than 6. Write d in base p as follows d = d0 + d1p+ · · ·+
dp−1p

p−1 with 0 ≤ dj ≤ p − 1 for all j. Put m0 = d0 and mk = d1 + · · · + dk, for k = 1, . . . , p − 2. The
following statements hold.

(a) Let c1(p) = m0+m1p+m2p
2+ · · ·+mp−2p

p−2. Assume that rc1(p) = r1+c(p)+p
p−1−pp . Then d = g(p).

(b) Assume that d < g(p). Then d1 = 1 implies that dp−3 = 0.

(c) If for some integer a such that 0 < a ≤ p we have d = pa−1
p−1 then a = p and d = g(p).

(d) Assume that d < g(p), and let a be an integer such that p − 2 ≤ a ≤ p − 1. Then d 6= 1 + a(p + p2 +
· · ·+ pp−3 − pj) when j = p− 6.

(e) Assume that d < g(p). Let Dk = ]{j : dj = k} be the number of j’s for which dj = k. Assume
that D2 6≡ D0 (mod 2) and that 2D0 + D1 6= D3. Then it is impossible that dj ∈ {0, 1, 2, 3} for all
j = 0, . . . , p− 1.

In order to describe more explicitly some of our results in the theorem, we work some examples in which
we chose an explicit prime number p.

• We take p = 3. Consider the hypothesis (a) and (c) of the theorem. We have d = d0+3d1+9d2 where
d0, d1, d2 ∈ {0, 1, 2}. Furthermore, we have alsom0 = d0, andm1 = d1. Observe that g(3) = 33−1

3−1 = 13,
and that c(3) = 1 + 2 · 3 = 7. Moreover,

rc1(3) = r1+c(3)+3
2−33 = r8−18 = r−10. (3)

Furthermore, we have r13 = 1, since the minimal period d of B(n) modulo 3 is the order of r, and
rg(3) = 1. In the following, we still have p = 3.

• Let us prove (a): Since d divides g(3) = 13 and d > 1, we get immediately that d = 13 = g(3). But let
come to the same result directly. Assume to the contrary that d < g(3). We claim that

d2 = 0. (4)
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In order to prove the claim, observe that if d2 > 0 then d = d0 + 3d1 + 9d2 > 9. But d < 13 since
g(3) = 13. This is impossible since d must divide 13. This proves the claim. We have by hypothesis,
and by (3)

rd0+3d1 = rd0+d1p = rm0+m1p = rc1(p) = rc1(3) = r−10 = r3. (5)

In other words, (5) says that rd0+3d1−3 = 1. Observe that (4) implies that d0+3d1− 3 = d− 3. Thus,
d divides d−3. Thus, the only possibility left is that d−3 = 0. But this means that d = 3, and clearly
3 does not divide 13.

• Let us prove (c). The hypothesis read

d ∈ {3− 1
3− 1 ,

32 − 1
3− 1 ,

33 − 1
3− 1 } = {1, 4, 13}

when a takes the values 1, 2, 3 respectively. We reject d = 1 since r 6= 1. We reject d = 4 since d must
divide g(3) = 13.

We also have a numerical result about the problem of how large can be d. We consider the special case
in which d = g(p)/(2p+ 1), that is, the maximal possible value of d when d < g(p). In this case, p > 3 and
2p+1 are both primes, so that p ≡ 1 (mod 4) and p belong to the sequence A103579 (minus the first term)
of the OEIS [12], namely,

p ∈ {5, 29, 41, 53, 89, 113, 173, 233, 281, 293, 509, 593, 641, 653, 761, 809, . . .}.

Observe that Lemma 2 does not dismiss g(p)/(2p+ 1) to be equal to d.

Theorem 2 For any odd prime p such that 2p+ 1 is also prime, p ≡ 1 (mod 4), and p < 100000, we have
d 6= g(p)/(2p+ 1).

Remark 1 Montgomery et al. [9, Theorem 2.1] proved that for any odd prime p for which 2p + 1 is also
prime, 2p+ 1 divides g(p) if and only if p ≡ 1 (mod 4). It is also clear [5, Lemma 1.1] (for any odd prime
p) that if 2p+ 1 divides g(p) then 2p+ 1 is prime.

We discuss a special case of Theorem 2 as an example.

• We consider the case when p = 5. This is the minimal possible value of p. We have g(5) = 55−1
5−1 =

781 = 11 · 71. We want to prove that d 6= g(5)/(2 · 5 + 1) = 71. Assume, on the contrary, that d = 71.
We will compute r71 in the following manner. We know that r5 = r+1. We write d in base 5 (radix-5
expansion of d) as follows: d = g(5)/11, with

g(5) = 1 + 1 · 5 + 1 · 52 + 1 · 53 + 1 · 54,

and
11 = 1 + 2 · 5.

Dividing the 5-adic number g(5) +O(55) by the 5-adic number 1 + 2 · 5 +O(55) we get

d+O(55) = 1 + 4 · 5 + 2 · 52 +O(55).

This really means that 71 = d = 1 + 4 · 5 + 2 · 52. This allows us to compute

r71 = r · (r + 1)4 · (r + 2)2,

since r5 = r + 1 and r5
2

= r + 2. Expanding and collecting we obtain after some computation

r71 = 4 · r4 + 2 · r3 + 4 · r2 + 3 · r + 1.

Therefore, r71 6= 1, and we obtain our result.
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Below, in section 2, we prove some results useful for the proof of Theorem 1. We believe that these results
might have an interest in themselves.
Throughout the paper, we put

d = d0 + d1p+ · · ·+ dp−1pp−1 (6)

the radix-p expansion of d, the order of r in Fq (i.e., we have 0 ≤ dj ≤ p− 1 for all j).

2 Tools

The following lemma is [5, Lemma 1.1 (b)]

Lemma 1 Every divisor δ of g(p) is of the form δ = 2kp+ 1 for some non-negative integer k.

The next result is [5, Lemma 3.1]

Lemma 2 With d as in (6), if d < g(p), then d0 = 1 and dp−2 = dp−1 = 0.

The next result is [5, Theorem 3.5 (b)].

Lemma 3 Assume that d < g(p). Then

2p− 1 ≤ d0 + d1 + · · ·+ dp−1 < p2 − 3p.

The following lemma [8, Lemma 7] is about the p− 1 roots of r.

Lemma 4 The set of y ∈ Fq such that yp = ry equals {krc(p) : k ∈ Fp}

We also have the following:

Lemma 5 Let y = rc(p). Then

(a) The order of y is equal to d. In particular, we have that yd = 1.

(b) yd−s−1 = rs(r + 1)s−d1(r + 2)s−(d1+d2) + · · ·+ (r + p− 2)s−(d1+···+dp−2), where s = d1 + · · ·+ dp−1.

Proof. Since c(p) = pp−g(p)
p−1 it follows that c(p)(p−1) = g(p)(p−2)+1. Thus gcd(c(p), g(p)) = 1. Therefore,

gcd(c(p), d) = 1 since d divides g(p). We have then

op(y) =
op(r)

gcd(op(r), c(p))
=
d

1
= d.

This proves (a). In order to prove (b) observe that Lemma 2 implies that d0 = 1. Thus, one has

yd = y(yp)d1 · · · (yp
p−1
)dp−1 . (7)

By Lemma 4 we have that yp = ry, and hence we obtain

(yp)d1 = rd1yd1 , (8)

(yp
2

)d2 = ((ry)p)d2 = (rpyr)d2 = (r + 1)d2yd2rd2 = rd2(r + 1)d2yd2 . (9)

Analogously, we obtain, for 3, . . . , p− 1:

(yp
3

)d3 = rd3(r + 1)d3(r + 2)d3yd3 , . . . , (10)

(yp
p−1
)dp−1 = rdp−1(r + 1)dp−1 · · · (r + p− 2)dp−1ydp−1 . (11)

Putting (8),(9),(10),(11) into (7) we get the result.
The next result follows from [13].

Lemma 6 One has that d > 22.54·p.
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3 Proof of Theorem 1

In order to prove (a) observe that we have y = rc(p). Thus, yd = 1 by Lemma 5 (a). Hence, Lemma 5 (b)
implies that

1 = yd = rs(r + 1)s−m1 · · · (r + p− 2)s−mp−2ys+1, (12)

where s = mp−1. Observe that since d0 = 1 (see Lemma 2) we have

rc1(p) = r(r + 1)m1(r + 2)m2 · · · (r + p− 2)mp−2 . (13)

Multiply both sides of (12) by rc1(p) to get

rc1(p) = rs+1(r + 1)s · · · (r + p− 2)sys+1. (14)

We also write (14) as

rc1(p) =
rys+1

(r + p− 1)s (r(r + 1) · · · (r + p− 1))
s. (15)

We have r(r + 1) · · · (r + p− 1) = 1 since rg(p) = 1. Thus, (15) implies

r · ys+1 = (r + p− 1)s · rc1(p). (16)

Remember that we assume that rc1(p) = r1+c(p)+p
p−1−pp . One has rp

p

= 1 since g(p) divides pp−1. Moreover,
we have rp

p−1
= r + p− 1. Thus, we obtain

rc1(p) = r · y · rp
p−1
· r−p

p

= r(r + p− 1)y. (17)

Hence, (16) and (17) imply
ys = (r + p− 1)s+1. (18)

Applying the Frobenius over (18) (i.e., using that yp = ry) we get

rsys = rs+1. (19)

Thus, (18) says that
ys = r. (20)

All dj are equal to 1 when d = g(p). Thus, s = p− 1 and (20) is trivially true. Assume that d < g(p). Write
(20) as:

ys−(p−1) = 1. (21)

It follows from (21) that the order of y divides s− (p− 1). In other words, by Lemma 5 (a) we have that:

d | s− (p− 1). (22)

By Lemma 3 we obtain that s− 1 ≥ 2p− 2. Thus, s 6= p− 1. Lemma 3 implies that s is small, indeed one
has that s ≤ p(p− 3)− 1. Thus, (22) is impossible by Lemma 6. This proves the result.

In order to prove (b) put e = g(p)/d. Observe first that Lemma 1 implies that one has for positive
integers K, k, and `: g(p) = 2Kp+ 1, d = 2kp+ 1, and e = 2`p+ 1. Hence,

2Kp+ 1 = g(p) = de = (2kp+ 1)(2`p+ 1). (23)

We rewrite (23) as follows:
2K = 4k`p+ 2k + 2`. (24)

By Lemma 2 one has d = 1 + d1p+ · · ·+ dp−3pp−3. Observe that

2K =
g(p)− 1

p
= 1 + p+ · · ·+ pp−2, (25)
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and that

2k =
d− 1
p

= d1 + · · ·+ dp−3pp−4. (26)

Thus, (24), together with (25) and (26) says that

1 + p+ · · ·+ pp−2 = 2`p · 2k + 2k + 2` = 2`p(d1 + · · ·+ dp−3pp−4) + d1 + · · ·+ dp−3pp−4 + 2`. (27)

Assume that d1 = 1. Reduce (27) modulo p to get the following:

p | `. (28)

This implies that ` ≥ p. Thus, (27) implies that

1 + p+ · · ·+ pp−3 + pp−2 ≥ 2p2dp−3pp−4 = 2dp−3pp−2 ≥ 2pp−2, (29)

assuming that dp−3 6= 0. But

pp−2 > pp−2 − 1 ≥ pp−2 − 1
p− 1 = 1 + p+ · · ·+ pp−3. (30)

This contradicts (29). Thus, dp−3 = 0. This proves (b).
In order to prove (c) assume, on the contrary, that for 1 < a < p one has

d =
pa − 1
p− 1 = 1 + p+ · · ·+ pa−1. (31)

In particular, we have that d < g(p). We get from (31) that the sum S =
∑a

j=0 dj of digits of d satisfies
S = a ≤ p− 1. But by Lemma 3 we know that S ≥ 2p− 1. This is impossible. This proves the result.

In order to prove (d) by contradiction, let us write the radix-p expansion of d as follows

d = 1 + ap+ · · ·+ apj−1 + apj+1 + · · ·+ app−3. (32)

We have
h1 = r1+ap+···+ap

j−1
= r(r + 1)a · · · (r + p− 7)a, (33)

h2 = rap
j+1+···+app−1 = (r + p− 5)a · · · (r + p− 1)a. (34)

Put h = ra−1(r + p− 6)a. Since hh1h2 = (rp − r)a = 1 in Fq, and 1 = rd = h1h2, we have h = 1. In other
words, we have the following:

ra−1(r + p− 6)a = 1. (35)

But (35) says that
ra−1+ap

p−6
= ra−1(r + p− 6)a = 1. (36)

Hence,
d | a− 1 + app−6. (37)

But d > pp−3, thus (37) is impossible. This proves (d).
In the following, we use repeatedly the simple fact:
If deg(A(x)) < p and deg(B(x)) < p then the equality

A(r) = B(r) (38)

is impossible, since the minimal polynomial of r, namely, xp − x− 1 has degree p.
In order to prove (e) assume (to the contrary) that dj ∈ {0, 1, 2, 3} for all j = 0, . . . , p− 1. Thus, we have

the equality of sets:
{j : dj 6= 0} = {j : dj = 1} ∪ {j : dj = 2, 3} (39)
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Observe that we have
p−1∏
j=0

(r + j) = rp − r = 1, (40)

and that the equation rd = 1 can be written as

p−1∏
{j : dj 6=0}

(r + j)dj =

p−1∏
j=0

(r + j)dj = 1 (41)

since (r + j)dj = 1 when dj = 0.
Hence, we have by (39)

p−1∏
{j : dj=1}

(r + j) ·
p−1∏

{j : dj=2,3}

(r + j)dj =

p−1∏
{j : dj 6=0}

(r + j)dj = 1. (42)

Multiply both sides of (42) by M =
∏p−1
{j : dj=0,2,3}(r + j) to get

M ·
p−1∏

{j : dj=1}

(r + j)

p−1∏
{j : dj=2,3}

(r + j)dj =M. (43)

But (40) implies that

M ·
p−1∏

{j : dj=1}

(r + j) =

p−1∏
{j : dj=0,1,2,3}

(r + j) =

p−1∏
j=0

(r + j) = 1, (44)

so that (43) says that
p−1∏

{j : dj=2,3}

(r + j)dj =M =

p−1∏
{j : dj=0,2,3}

(r + j). (45)

Dividing both sides of (45) by
∏p−1
{j : dj=2,3}(r + j) we obtain

p−1∏
{j : dj=2,3}

(r + j)dj−1 =

p−1∏
{j : dj=0}

(r + j). (46)

But (46) can also be written as

p−1∏
{j : dj=2}

(r + j) ·
p−1∏

{j : dj=3}

(r + j)2 =

p−1∏
{j : dj=0}

(r + j) (47)

since when dj = 2 in (46) then dj − 1 = 1 in the exponent of (r + j) in (47), and when dj = 3 in (46) then
dj − 1 = 2 in the exponent of (r + j) in (47).
Case 1. Assume that

D2 + 2D3 < p. (48)

Since D0 < p as well, it follows from (48) that both the polynomial P (r) on the left-hand side of (47),
and the polynomial Q(r) on the right-hand side of (47), have degree less than p. By hypothesis, they have
different degree. Namely, deg(P (r)) = D2 + 2D3 6= D0 = deg(Q(r)), since D2 and D0 have different parity.
But P (r)−Q(r) = 0 in Fq. This is impossible since the minimal polynomial of r has degree p (see (38)).
Thus, it remains to consider the case:
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Case 2. Assume that
D2 + 2D3 ≥ p. (49)

Proceed now as before, (see steps (43), (44), (45), (46),(47)) but with

N =

p−1∏
{j : dj=0}

(r + j) ·
p−1∏

{j : dj=1}

(r + j), (50)

instead of M . Namely, multiply both sides of (47) by N and use (40) to obtain the analogue of (47):

p−1∏
{j : dj=0}

(r + j)2 ·
p−1∏

{j : dj=1}

(r + j) =

p−1∏
{j : dj=3}

(r + j). (51)

Sub-case 2A: Assume that
D1 + 2D0 < p. (52)

Since D3 < p and (52) hold, it follows from (51) that both the polynomial P1(r) on the right-hand side of
(47), and the polynomial Q1(r) on the left-hand side of (51), have degree less than p. By hypothesis, they
have different degree. Namely, deg(P1(r)) = D1 + 2D0 6= D3 = deg(Q1(r)). But P1(r) − Q1(r) = 0 in Fq.
This is impossible since the minimal polynomial of r has degree p (see again (38)).

Thus, it remains to consider the following case.
Sub-case 2B: Assume that

D1 + 2D0 ≥ p. (53)

We assume then that (49) and (53) hold simultaneously. This implies, by adding these inequalities, that

D0 +D3 + (D0 +D1 +D2 +D3) ≥ 2p. (54)

But D0+D1+D2+D3 = p since all dj , for j = 0, . . . , p− 1, belong to {0, 1, 2, 3}. Therefore, (54) says that:

D0 +D3 ≥ p. (55)

But on the other hand,
D0 +D3 < D0 +D1 +D2 +D3 = p, (56)

with a strict inequality in (56) since d0 = 1 implies that D1 ≥ 1. This contradiction proves (e), thereby
finishing the proof of the theorem.

Remark 2 Using similar arguments we can show, for (a), that if dp−3 = 0 then we must have 2` ≥ p.
Similarly, for (d), the cases j ∈ {p − 5, p − 4} can be handled by a similar method. Observe that our
argument requires that j ≥ p − 6. Concerning (e), observe that by symmetry we can alternatively ask that
D1 6≡ D3 (mod 2) and 2D3 +D2 6= D0, in order to get the same contradiction.

4 Proof of Theorem 2

The result follows from running a straightforward gp-PARI computer program. The program took about
14 days to check all these primes p. In all cases, we obtained that rd 6= 1 in Fq when d = g(p)

2p+1 . The first
162 primes, corresponding to p < 20000, were checked in about 7 minutes. We wrote the program based on
the following. By [9, Theorem 2.1] 2p + 1 divides g(p). Assume, on the contrary, that d = g(p)/(2p + 1).
Computing the quotient of the p-adic number g(p)+O(pp) divided by 1+ 2p+O(pp), we obtain the radix-p
expansion of d, say d = 1+d1p+ · · ·+dp−1pp−1. As a next step, we compute rd = r(r+1)d1 · · · (r+p−1)pp−1

in Fq by using the finite sequence s1 = r, sn+1 = sn · (r + n)dn . Finally, we checked if rd 6= 1 in Fq. This
holds. Since this is impossible, we obtain the result.

Acknowledgment. We are grateful to the referee for detailed comments and suggestions. Thanks to
his (her) work, the actual paper is substantially better.
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