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Abstract

In this paper, we derive the exact expressions for single and product moments of generalized order
statistics from the Power Lomax distribution. The obtained expressions involve the hypergeometric
function.

1 Introduction

The Power Lomax (PoLo) distribution was proposed by [19], as a new extension of the Lomax distribution.
Thanks to the addition of a new power/shape parameter, it gives a better fit as a model as compared to
the Lomax distribution. For more distributional properties of the Power Lomax distribution, we may refer
to [19]. The importance of the PoLo distribution was highlighted in various studies, including [2], [17] and
[18]. However, some aspects of the related generalized order statistics (gos) remain unexplored, and are the
purpose of this study. The motivations and details on these aspects are described below.
First and foremost, a random variable X is said to follow the PoLo distribution if its probability distri-

bution function (pdf) is of the form

f(x) = αβλαxβ−1
(
λ+ xβ

)−(α+1)
, x ≥ 0, (1)

where α, β, λ > 0. It is understood that f(x) = 0 for x < 0. The corresponding distribution function (df) is
derived as

F (x) = 1− λα
(
λ+ xβ

)−α
x ≥ 0, (2)

and F (x) = 0 for x < 0. In view of Equations (1) and (2), the pdf and df of the PoLo distribution are
defined by the following relation:

f(x) =
αβ

λ

xβ−1(
1 + xβ

λ

) F̄ (x), (3)

where F̄ (x) = 1− F (x). Equation (3) is called the characterizing equation.
Now, the basics on the concept of gos are recalled. This concept was introduced by [7] as follows:
Let n ∈ N, k ≥ 1, and m̃ = (m1,m2, . . . ,mn−1) ∈ Rn−1, Mr =

∏n−1
j=r mj , 1 ≤ r ≤ n− 1 be the

parameters such that, for 1 ≤ i ≤ n− 1,

γi = k + n− i+

n−1∑
j=i

mj > 0.
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The random variables X(1, n, m̃, k), X(2, n, m̃, k), . . . , X(n, n, m̃, k) are said to be gos from a continuous
random variable with the df F (x) and the pdf f(x) if their joint pdf has the following form:

k

(
n−1∏
j=1

γj

)(
n−1∏
i=1

[
F̄ (xi)

]mi
f(xi)

)[
F̄ (xn)

]k−1
f(xn),

where it is supposed that F−1(0+) < x1 ≤ x2 ≤ . . . ≤ xn < F−1(1).
The model of gos contains special cases such as ordinary order statistics

(γi = n− i+ 1; i = 1, 2, . . . , n i.e. m1 = m2 = · · · = mn−1 = 0, k = 1),

k-th record values
(γi = k i.e. m1 = m2 = · · · = mn−1 = −1, k ∈ N),

sequential order statistics (γi = (n− i+ 1)αi; α1, α2, . . . , αn > 0), order statistics with non-integral sample
size (γi = α − i + 1;α > 0), Pfeifer’s record values (γi = βi; β1, β2, . . . , βn > 0) and progressive type II
censored order statistics (mi ∈ N, k ∈ N). We may refer the reader to [7] and [8].
With these notions in mind, we may consider two complementary cases as described below

Case I: m1 = m2 = · · · = mn−1 = m.

Case II: γi 6= γj , i 6= j, i, j = 1, 2, . . . , n− 1.

The underlying theory behind these two cases is detailed below.

Case I: The pdf of the r-th gos X(r, n,m, k) is given by [7] and can be expressed as

fX(r,n,m,k)(x) =
Cr−1

(r − 1)!
[F̄ (x)]γr−1f(x)[gm(F (x))]r−1.

Furthermore, with reference to [7], the joint pdf of X(r, n,m, k) and X(s, n,m, k), 1 ≤ r < s ≤ n is given by

fX(r,n,m,k),X(s,n,m,k)(x, y) =
Cs−1

(r − 1)! (s− r − 1)!
[F̄ (x)]m[gm(F (x))]r−1

× [hm(F (y))− hm(F (x))]s−r−1[F̄ (y)]γs−1f(x)f(y), x < y, (4)

where

Cr−1 =

r∏
i=1

γi, γi = k + (n− i)(m+ 1), hm(x) =

−
1

m+1 (1− x)m+1, m 6= −1

− ln(1− x), m = −1

and

gm(x) = hm(x)− hm(0) =

∫ x

0

(1− t)mdt, x ∈ [0, 1).

In this setting, let E[Xj(r, n,m, k)] = µjr,n,m,k denotes the j-th moment of the r-th gos X(r, n,m, k).

Similarly E[Xi(r, n,m, k)Xj(s, n,m, k)] = µi,jr,s,n,m,k denotes the (i, j)-th product moment of the r-th and
s-th gos.

Case II: The pdf of the r-th gos X(r, n, m̃, k) is specified by [8]. It can be expressed as

fX(r,n,m̃,k)(x) = Cr−1

r∑
i=1

ai(r)[F̄ (x)]γi−1f(x).

Also, the joint pdf of X(r, n, m̃, k) and X(s, n, m̃, k), 1 ≤ r < s ≤ n, is given by
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fX(r,n,m̃,k),X(s,n,m̃,k)(x, y) = Cs−1

[
s∑

i=r+1

a
(r)
i (s)

{
F̄ (y)

F̄ (x)

}γi][ r∑
i=1

ai(r)
{
F̄ (x)

}γi] f(x)

F̄ (x)

f(y)

F̄ (y)
,

where

ai(r) =

r∏
j=1

1

γj − γi
, j 6= i, γj 6= γi, 1 ≤ i ≤ r ≤ n

and

a
(r)
i (s) =

n∏
j=r+1

1

γj − γi
, j 6= i, γj 6= γi, r + 1 ≤ i ≤ s ≤ n.

For m1 = m2 = · · · = mn−1 = m 6= −1, based on a result of [11], it can be shown that

ai(r) =
(−1)r−i

(m+ 1)r−1(r − 1)!

(
r − 1

r − i

)
(5)

and

a
(r)
i (s) =

(−1)s−i

(m+ 1)s−r−1(s− r − 1)!

(
s− r − 1

s− i

)
. (6)

In this setting, let E[Xj(r, n, m̃, k)] = µjr,n,m̃,k denotes the j-th moment of the r-th gos X(r, n, m̃, k).

Similarly E[Xi(r, n, m̃, k)Xj(s, n, m̃, k)] = µi,jr,s,n,m̃,k denotes the (i, j)-th product moment of the r-th and
s-th gos.
In the context of the PoLo distribution, based on the cases above, the author in [1] derived the recurrence

relations of order statistics. References [14] and [20] have derived the recurrence relations for the gos with
m1 = m2 = · · · = mn−1 = m and γi 6= γj , i 6= j, i, j = 1, 2, . . . , n− 1, respectively, for the same distribution.
The authors in [15] also found the moments of the PoLo distribution based on order statistics. For some
additional related topics, one may refer to [3], [4], [9], [10], [11], [12], [13], among others. However, to our
knowledge the exact expressions for single and product moments of gos from the PoLo distribution for Cases
I and II remain unexplored and deserve a complete study. This article offers these expressions.
Section 2 provides the single and product moments of gos from the PoLo distribution for Case I. Similarly,

Section 3 provides the single and product moments of gos from the PoLo distribution for Case II. The paper
ends with a numerical study in Section 4.

2 Moments of gos for Case I

Single moments

In this paragraph, we derive the exact expressions for single moments of gos. Before presenting the main
result, the following lemma is proved.

Lemma 1 Let us consider the following integral function:

Φj(a) =

∫ +∞

0

xj+β−1(
1 + xβ

λ

)aα+1 dx. (7)

Then, provided that it exists, we have

Φj(a) =
λ1+

j
β

β
B
(
aα− j

β
, 1 +

j

β

)
, (8)

where B(a, b) is the beta function defined by B(a, b) =
∫ 1
0
ta−1(1− t)b−1dt, and

Φ0(a) =
λ

βaα
. (9)
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Proof. Substituting u = 1

1+ xβ

λ

in Equation (7), after some algebra, we get

Φj(a) =
λ1+

j
β

β

∫ 1

0

uaα−
j
β−1(1− u)

j
β du,

which gives the result given in Equation (8). To prove Equation (9), it is enough to put j = 0 in Equation
(8).

Theorem 1 The single moment for the PoLo distribution is

µjr,n,m,k =
Cr−1

(r − 1)!

1

(m+ 1)r−1

(αβ
λ

) r−1∑
i=0

(−1)i
(
r − 1

i

)
Φj(γr−i). (10)

Proof. From the definition of µjr,n,m,k, we have

µjr,n,m,k =
Cr−1

(r − 1)!

∫ +∞

0

xj [F̄ (x)]k+(n−r)(m+1)−1[gm(F (x))]r−1f(x)dx.

Now, using Equation (3), we get

µjr,n,m,k =
Cr−1

(r − 1)!

1

(m+ 1)r−1

(αβ
λ

) r−1∑
i=0

(−1)i
(
r − 1

i

)∫ +∞

0

xj+β−1(
1 + xβ

λ

)α(γr−i)+1 dx
=

Cr−1
(r − 1)!

1

(m+ 1)r−1

(αβ
λ

) r−1∑
i=0

(−1)i
(
r − 1

i

)
Φj(γr−i).

Remark 1 Setting m = −1 in Equation (10) gives an indeterminate form. The single moments of the
PoLo distribution based on upper record values can be calculated using L’Hospital Rule, by differentiating the
numerator and denominator of Equation (10), (r− 1) times with respect to m and taking the limit m→ −1.
By assuming that j/β is a positive integer, an expression for the moments of generalized (k-th) record values
from the PoLo distribution is

µjr,n,−1,k = E
(
Y (k)r

)j
= (αk)

r
λ
j
β−1

j/β∑
p=0

(−1)p
(
j/β

p

)
1

[αk + p− j/β]r
,

where Y (k)r denotes the k-th upper record values. Putting k = 1 in, we deduce the explicit expression for the
moments of ordinary upper record values from the PoLo distribution.

Remark 2 Setting m = 0 and k = 1 in Equation (10), we get the result for the order statistics from the
PoLo distribution as

µjr,n,0,1 = µjr:n = Cr:n

(αβ
λ

) r−1∑
i=0

(−1)i
(
r − 1

i

)
Φj(n− r + i+ 1),

where

Cr:n =
n!

(r − 1)!(n− r)! , γr−i = n− r + i+ 1, Cr−1 =
n!

(n− r)! .

Remark 3 Setting j = 0 in Equation (10), we get

r−1∑
i=0

(−1)i
(
r − 1

i

)
1

γr−i
=

(r − 1)!(m+ 1)r−1

Cr−1
, m 6= 1. (11)
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Product moments

In this paragraph, we derive the exact expressions for product moments of gos. Before coming to the
main result, the following lemma is proved.

Lemma 2 Let us consider the following double integral function:

Φj,l(a, b) =

∫ +∞

0

∫ y

0

xj+β−1(
1 + xβ

λ

)aα+1 yl+β−1(
1 + yβ

λ

)αb+1 dxdy. (12)

Then, provided that it exists, we have

Φj,l(a, b) =
λ
j+l
β +2

β(j + β)
B
(j + l

β
+ 2, αb− l

β

)
×3F2

[ j
β

+ 1, 1− aα+
j

β
,
j + l

β
+ 2;

j

β
+ 2,

j

β
+ αb+ 2; 1

]
, (13)

where pFq[a1, . . . , ap; b1, . . . , bq;x] denotes the hypergeometric function defined by

pFq[a1, . . . , ap; b1, . . . , bq;x] =

+∞∑
r=0

[ p∏
j=1

Γ(aj + r)

Γ(aj)

][ q∏
j=1

Γ(bj)

Γ(bj + r)

]xr
r!
,

Γ(a) denotes the gamma function defined by Γ(a) =
∫ +∞
0

ta−1e−tdt, for p = q+1 and
∑q
j=1 bj−

∑p
j=1 aj > 0.

Proof. First, we notice that

Φj,l(a, b) =

∫ +∞

0

yl+β−1(
1 + yβ

λ

)αb+1
[∫ y

0

xj+β−1(
1 + xβ

λ

)aα+1 dx
]
dy. (14)

Now, let us set

B(y) =

∫ y

0

xj+β−1(
1 + xβ

λ

)aα+1 dx. (15)

Substituting 1− u = 1

1+ xβ

λ

in Equation (15), we get

B(y) =
λ1+

j
β

β

∫ yβ

λ

1+
yβ

λ

0

u
j
β (1− u)aα−

j
β−1du =

λ1+
j
β

β
B yβ

λ

1+
yβ

λ

( j
β

+ 1, aα− j

β

)
.

From Equation (14), we have

Φj,l(a, b) =
λ1+

j
β

β

∫ +∞

0

yl+β−1(
1 + yβ

λ

)αb+1B yβ

λ

1+
yβ

λ

( j
β

+ 1, aα− j

β

)
dy, (16)

where Bx(p, q) =
∫ x
0
up−1(1− u)q−1du. Owing to [16], we know that

Bx(p, q) = p−1xp2F1[p, 1− q; p+ 1;x]

and ∫ 1

0

ua−1(1− u)b−12 F1[c, d; e;x]du = B(a, b)3F2[c, d, a; e, a+ b; 1].
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Substituting these results in Equation (16), we get

Φj,l(a, b) =
λ1+

j
β

β

∫ +∞

0

yl+β−1(
1 + yβ

λ

)αb+1
(

yβ

λ

1 + yβ

λ

) j
β+1( j

β
+ 1
)−1

×2F1
[ j
β

+ 1, 1− aα+
j

β
;
j

β
+ 2;

( yβ

λ

1 + yβ

λ

)]
dy. (17)

Setting t =
yβ

λ

1+ yβ

λ

in Equation (17), we have

Φj,l(a, b) =
λ
j+l
β +2

β(j + β)

∫ 1

0

t
j+l
β +1(1− t)αb−

l
β−1

2 F1

[ j
β

+ 1, 1− aα+
j

β
;
j

β
+ 2; t

]
dt

=
λ
j+l
β +2

β(j + β)
B
(j + l

β
+ 2, αb− l

β

)
×3F2

[ j
β

+ 1, 1− aα+
j

β
,
j + l

β
+ 2;

j

β
+ 2,

j

β
+ αb+ 2; 1

]
.

Lemma 3 Let Φj,l be defined in (12). We have

Φ0,l(a, b) =
λ

aαβ
[Φl(b)− Φl(a+ b)] (18)

and

Φj,0(a, b) =
λ

bαβ
[Φj(a+ b)], (19)

where Φj(a) is defined in Equation (7), and

Φ0,0(a, b) =
( λ

αβ

)2 1

b(a+ b)
. (20)

Proof. Putting j = 0 in Equation (12), we get

Φ0,l(a, b) =

∫ +∞

0

yl+β−1(
1 + yβ

λ

)αb+1
[∫ y

0

xβ−1(
1 + xβ

λ

)aα+1 dx
]
dy

=
λ

aαβ

∫ +∞

0

yl+β−1(
1 + yβ

λ

)αb+1
[

1− 1(
1 + yβ

λ

)aα
]
dy

=
λ

aαβ
[Φl(b)− Φl(a+ b)].

Equations (19) and (20) can be proved by noting that

3F2(a, b, c; c, d; 1) =2 F1(a, b; d; 1) =
Γ(d)Γ(d− a− b)
Γ(d− a)Γ(d− b) .

Theorem 2 The generalized product moment for the PoLo distribution is given as

µj,lr,s,n,m,k =
Cr−1

(r − 1)!(s− r − 1)!(m+ 1)s−2

(αβ
λ

)2
×
r−1∑
i=0

s−r−1∑
t=0

(−1)i+t
(
r − 1

i

)(
s− r − 1

t

)
Φj,l(γr−i − γs−t, γs−t). (21)
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Proof. Based on the definition of µj,lr,s,n,m,k, we can write

µj,lr,s,n,m,k =
Cr−1

(r − 1)!(s− r − 1)!(m+ 1)s−2

∫ +∞

0

∫ y

0

xjyl[F̄ (x)]m[1− F̄ (x)m+1]r−1

×[F̄ (x)m+1 − F̄ (y)m+1]s−r−1[F̄ (y)]γs−1f(x)f(y)dxdy.

Using Equation (3), for m 6= 0 and 1 ≤ r < s ≤ n, after some operations, we get

µj,lr,s,n,m,k =
Cr−1

(r − 1)!(s− r − 1)!(m+ 1)s−2

(αβ
λ

)2 ∫ +∞

0

∫ y

0

xj+β−1(
1 + xβ

λ

) yl+β−1(
1 + yβ

λ

)
×[F̄ (x)]m+1[1− F̄ (x)m+1]r−1[F̄ (x)m+1 − F̄ (y)m+1]s−r−1[F̄ (y)m+1]

γs
m+1 dxdy

=
Cr−1

(r − 1)!(s− r − 1)!(m+ 1)s−2

(αβ
λ

)2 r−1∑
i=0

(−1)i
(
r − 1

i

)
×
∫ +∞

0

∫ y

0

xj+β−1(
1 + xβ

λ

) yl+β−1(
1 + yβ

λ

) [F̄ (x)m+1]i+1[F̄ (x)m+1 − F̄ (y)m+1]s−r−1[F̄ (y)m+1]
γs
m+1 dxdy

=
Cr−1

(r − 1)!(s− r − 1)!(m+ 1)s−2

(αβ
λ

)2 r−1∑
i=0

s−r−1∑
t=0

(−1)i+t
(
r − 1

i

)(
s− r − 1

t

)
×
∫ +∞

0

∫ y

0

xj+β−1(
1 + xβ

λ

)α(γr−i−γs−t)+1 yl+β−1(
1 + yβ

λ

)α(γs−t)+1 dxdy
=

Cr−1
(r − 1)!(s− r − 1)!(m+ 1)s−2

(αβ
λ

)2
×
r−1∑
i=0

s−r−1∑
t=0

(−1)i+t
(
r − 1

i

)(
s− r − 1

t

)
Φj,l(γr−i − γs−t, γs−t).

The result given in Equation (21) is proved.

In case of record values, an exact expression for the product moment from the PoLo distribution cannot
be obtained.

Remark 4 Setting j = 0, l = 0 and using Equation (11), Equation (21) reduces to an identity and it is

s−r−1∑
t=0

(−1)t
(
s− r − 1

t

)
1

γs−t
=
Cr−1(s− r − 1)!(m+ 1)r−1

Cs−1
, m 6= 1. (22)

Remark 5 Setting m = 0, k = 1 in Equation (21), we get the result for order statistics, that is,

µj,lr,s,n,0,1 = µj,lr,s:n =
n!

(r − 1)!(s− r − 1)!(n− s)!

(αβ
λ

)2
×
r−1∑
i=0

s−r−1∑
t=0

(−1)i+t
(
r − 1

i

)(
s− r − 1

t

)
Φj,l(s− r − t+ i, n− s+ t+ 1), (23)

where Φj,l(a, b) is defined in Equation (13).

3 Moments of gos for Case II

Single moments

This paragraph focuses on the single moments of the gos, beginning with the following theorem.
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Theorem 3 The single moment for the PoLo distribution is

µjr,n,m̃,k = Cr−1

(αβ
λ

) r∑
i=0

ai(r)Φj(γi). (24)

Proof. By the definition of µjr,n,m̃,k, we have

µjr,n,m̃,k = Cr−1

r∑
i=1

ai(r)

∫ +∞

0

xj [F̄ (x)]γi−1f(x)dx

= Cr−1

(αβ
λ

) r∑
i=1

ai(r)

∫ +∞

0

xj+β−1(
1 + xβ

λ

)αγi+1 dx.
In view of Equation (7), we get

µjr,n,m̃,k = Cr−1

(αβ
λ

) r∑
i=0

ai(r)Φj(γi).

Remark 6 Setting j = 0 in Equation (24), we obtain

r∑
i=0

ai(r)

γi
=

1

Cr−1
. (25)

Remark 7 Setting m1 = m2 = · · · = mn−1 = m and using Equation (5) in Equation (24), we get

µjr,n,m,k =
Cr−1

(r − 1)!

1

(m+ 1)r−1

(αβ
λ

) r−1∑
i=0

(−1)i
(
r − 1

i

)
Φj(γr−i),

as specified in Equation (10).

Product moments

In this paragraph, the product moments of the gos are investigated.

Theorem 4 The generalized product moment for the PoLo distribution is given as

µj,lr,s,n,m̃,k = Cs−1

(αβ
λ

)2[ s∑
t=r+1

a
(r)
t (s)

(
r∑
i=1

ai(r)Φj,l(γi − γt, γt)
)]

. (26)

Proof. We have

µj,lr,s,n,m̃,k = Cs−1

∫ +∞

0

∫ y

0

xjyl

[
s∑

i=r+1

a
(r)
i (s)

{
F̄ (y)

F̄ (x)

}γi]( r∑
i=1

ai(r)
{
F̄ (x)

}γi) f(x)

F̄ (x)

f(y)

F̄ (y)
dxdy

= Cs−1

s∑
t=r+1

a
(r)
t (s)

[
r∑
i=1

ai(r)

∫ +∞

0

yl{F̄ (y)}γt
(∫ y

0

xj
{
F̄ (x)

}γi−γt f(x)

F̄ (x)
dx

)
f(y)

F̄ (y)
dy

]

= Cs−1

(αβ
λ

)2 s∑
t=r+1

a
(r)
t (s)

[
r∑
i=1

ai(r)

∫ +∞

0

yl+β−1(
1 + yβ

λ

)α(γt)+1
(∫ y

0

xj+β−1(
1 + xβ

λ

)α(γi−γt)+1 dx
)
dy

]
.

Hence the result follows by an application of Equation (12).
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Corollary 1 For the single moment of the PoLo distribution, we have

µlr,n,m̃,k = Cs−1

(αβ
λ

) s∑
i=0

ai(s)Φl(γi) (27)

as given in Theorem 3.

Proof. Putting j = 0 in Equation (26) and using Equation (18), we get

µlr,s,n,m̃,k = Cs−1

(αβ
λ

)[ s∑
t=r+1

a
(r)
t (s)

(γi − γt)

(
r∑
i=1

ai(r)
{

Φl(γt)− Φl(γi)
})]

= Cs−1

(αβ
λ

)[ s∑
t=r+1

a
(r)
t (s)Φl(γt)

(
r∑
i=1

ai(r)

(γi − γt)

)]

+Cs−1

(αβ
λ

)[ r∑
i=1

ai(r)Φl(γi)

(
s∑

t=r+1

a
(r)
t (s)

(γi − γt)

)]
.

Now, by virtue of the results of [5], we have

r∑
i=1

ai(r)

γi − γj
=

r∏
j=1

1

γi − γj
, j 6= i, γj 6= γi, 1 ≤ i ≤ r ≤ n,

and
s∑

i=r+1

a
(r)
i (s)

γi − γj
=

s∏
j=r+1

1

γi − γj
, j 6= i, γj 6= γi, r + 1 ≤ i ≤ s ≤ n.

Therefore,

µlr,s,n,m̃,k = Cs−1

(αβ
λ

)[ s∑
t=r+1

a
(r)
t (s)Φl(γt)

(
r∏
j=1

1

γi − γj

)]

+Cs−1

(αβ
λ

)[ r∑
i=1

ai(r)Φl(γi)

(
s∏

j=r+1

1

γi − γj

)]
.

The desired result follows.

Remark 8 Setting j = 0 and l = 0 in Equation (26), we get

r∑
i=1

s∑
t=r+1

ai(r)a
r
t (s)

γiγt
=

1

Cs−1
. (28)

Combining Equations (25) and (28), we determine another identity, which is

s∑
t=r+1

art (s)

γt
=
Cr−1
Cs−1

.

Remark 9 Setting m1 = m2 = · · · = mn−1 = m and using Equation (6), Theorem 4 reduces to Theorem 2.
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4 Numerical Computations

Here, we calculate the means and variances for order statistics (Tables 1 and 2) and gos (Tables 3 and 4) but
the results are obtained for progressive type II censoring with a suitable adjustment ofm1,m2, . . . ,mn−1. All
computations are obtained using Mathematica. Mathematica, like other algebraic manipulation packages,
allows for arbitrary precisions, so the accuracy of the given values is not an issue. In case of order statistics,
based on [6], the following identities are used to check the calculation of means and variances:

n∑
r=1

µjr,n,0,1 = nµj1,1,0,1, j = 1, 2.

For any fixed sample size n, increase in r results in increase in mean and variance. For any fixed r increase
in sample size n leads to decrease in variance, which is universally true.

n (β=2, α=2, λ=1)
r 1 2 3 4 5 6 7
1 0.785398 0.490874 0.386563 0.329039 0.291337 0.264189 0.243444
2 1.07992 0.699495 0.559136 0.479848 0.427073 0.388663
3 1.27014 0.839854 0.678067 0.585399 0.523097
4 1.41356 0.947713 0.770735 0.668469
5 1.53003 1.03620 0.847435
6 1.62879 1.111710
7 1.714970

Table 1: Means of order statistics from the PoLo distribution

n (β=2, α=2, λ=1)
r 1 2 3 4 5 6 7
1 0.383150 0.092376 0.050569 0.034590 0.026234 0.021113 0.017658
2 0.500443 0.110707 0.058796 0.039587 0.029730 0.023766
3 0.586744 0.123216 0.064035 0.042589 0.031730
4 0.658988 0.133590 0.068305 0.044990
5 0.722498 0.142739 0.072064
6 0.779943 0.151051
7 0.832768

Table 2: Variances of order statistics from the PoLo distribution

n (β=2, α=2, λ=1, m=1, k=2)
r 1 2 3 4 5 6 7
1 0.245437 0.164519 0.132095 0.113462 0.10099 0.091895 0.084883
2 0.163177 0.114685 0.093996 0.081674 0.073235 0.066982
3 0.093712 0.067686 0.056240 0.049276 0.044434
4 0.051193 0.037659 0.031602 0.027866
5 0.027288 0.020344 0.017202
6 0.014339 0.010800
7 0.007464

Table 3: Means of gos from the PoLo distribution
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n (β=2, α=2, λ=1, m=1, k=2)
r 1 2 3 4 5 6 7
1 0.106428 0.044362 0.028005 0.020460 0.016116 0.013294 0.011313
2 0.104325 0.048536 0.032074 0.024031 0.019236 0.016045
3 0.074010 0.036652 0.024947 0.019025 0.015410
4 0.045702 0.023573 0.016385 0.012662
5 0.026333 0.013984 0.009875
6 0.014601 0.007927
7 0.007911

Table 4: Variances of gos from the PoLo distribution
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