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Abstract

In this article, we give a new alternate proof of the multinomial theorem using a simple first order
partial differential equation. Although the multinomial theorem is a combinatorial result, our proof is
different than usual methods and may be interesting for a student familiar with the basics of partial
differential equations. The binomial theorem can be obtained as a special case.

1 Main Result

Multinomial theorem, as the name indicates is the result that applies to multiple variables. It is more general
than binomial theorem which holds for only two variables. There are several applications of this theorem,
it gives the number of ways of putting n distinct things into m distinct bins, with k1 things in the 1st bin,
k2 things in the 2nd bin, and so on. In statistical mechanics, given a number distribution {ni} on a set of
N total items, ni represents the number of items to be given the label i, where i is the label of the energy
state. This coeffi cient also gives the number of distinct ways to permute a multiset of n elements.
This theorem provides a method of evaluating an nth degree expression of the form (x1+x2+ · · ·+xm)n,

where n is an integer. The theorem states as follows:

Theorem 1 Let m be any positive integer and n be any nonnegative integer, then the multinomial formula
is as follows:

(x1 + x2 + · · ·+ xm)n =
∑

k1+k2+···+km=n

n!

k1! k2! · · · km!
xk11 x

k2
2 · · ·xkmm ,

where ki are nonnegative integers.

There are several methods to prove this theorem, for example Kuldeep Kataria in [1] proved this theorem
using probabilistic method, the other method is using induction. Interested readers may see [2] for some
more interpretation. In this note, we develop a new method by using the solution of first order partial
differential equation. To achieve this, let us consider a first order partial differential equation ∂u1

∂x1
− ∂u1

∂x2
= 0

with the following initial condition u1(0, x2) = xn2 . In order to get the integral (characteristic) curves, we
solve dx1

1 = dx2
−1 . The solution is x1 + x2 = c, hence the solution of partial differential equation is given

by f(x1 + x2). After using initial condition, the solutions is given by u1(x1, x2) = (x1 + x2)
n. Now, let us

assume y1 = x1 + x2 and solve ∂u2
∂y1
− ∂u2

∂x3
= 0 with the initial condition u2(0, x3) = xn3 . The solution in

this case is u2(y1, x3) = (y1 + x3)n, which implies u2(y1, x3) = (x1 + x2 + x3)n. Following the same manner,
after defining ym−2 = x1 + x2 + · · ·+ xm−1, we obtain um−1(ym−1, xm) = (x1 + x2 + · · ·+ xm)n. Hence, the
function u(x1, x2, · · · , xm) = (x1 + x2 + · · ·+ xm)

n is solution of the above equations with the given initial
conditions.
Next, we apply series method to solve the same set of partial differential equations. In order to achieve

this, let us consider again our first equation ∂u1
∂x1
− ∂u1

∂x2
= 0 with u1(0, x2) = xn2 . To check for uniqueness,
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let us define a function φ(x2) = xn2 . It is not diffi cult to see that this function is analytic. Moreover,
∂u1
∂x2
(0, 0) = φ

′
(0) = 0. So, if we compare our equation with the equation ∂u1

∂x1
= F (x1, x2, u1, p), then F = p,

which is analytic at (0, 0, 0, 0). Hence, Cauchy-Kovalevsky theorem ([3]) ensures the existence of unique
analytic solution which can be obtain as a series. In order to get the series, we need to compute the values
of coeffi cients, which are value of the derivatives of u1 at (0, 0). One can easily derive the following values

∂u1
∂x2

(0, 0) = 0, · · · , ∂
n−1u1

∂xn−12

(0, 0) = 0,
∂nu1
∂xn2

(0, 0) = n!.

We denote u1x1 =
∂u1
∂x1

and so on. Since u1x1 = u1x2 , we obtain u1x1x2 = u1x2x2 and u1x1x1 = u1x1x2 =
u1x2x2 . Similarly, we have

∂2u1
∂x1∂x2

(0, 0) = 0 but
∂nu1

∂x1∂x2 · · · ∂x2
(0, 0) = n!

and so on. One can observe that when k1 + k2 = n, the value of Dk1
x1D

k2
x2u1(0, 0) = n!, otherwise it is zero.

Hence, the series solution is given by

u1(x1, x2) =
∑
(k1,k2)

Dk1
x1D

k2
x2u(0, 0)

k1!k2!
xk11 x

k2
2 ,

where D denotes the partial derivative and Dk1
x1D

k2
x2u =

∂k1+k2u

∂x
k1
1 ∂x

k2
2

, and ki ≥ 0, i = 1, 2. Putting values, we

obtain

u1(x1, x2) =
∑

(k1+k2=n)

n!

k1!k2!
xk11 x

k2
2 .

So, using uniqueness, we obtain

(x1 + x2)
n =

∑
(k1+k2=n)

n!

k1!k2!
xk11 x

k2
2 .

Now, define y1 = x1+x2 and other point is x3, we solve the following partial differential equations ∂u2∂y1
− ∂u2
∂x3

=

0 with u2(0, x3) = xn3 . Using the same analysis above, we get the solution

u2(y1, x3) =
∑

(k1+k2=n)

n!

k1!k2!
yk11 x

k2
3 =

∑
(k1+k2=n)

n!

k1!k2!
(x1 + x2)

k1xk23 .

Using the formula for (x1 + x2)k1 , we obtain

u2(x1, x2, x3) =
∑

(k1+k2=n)

n!

k1!k2!

∑
(r1+r2=k1)

k1!

r1!r2!
xr11 x

r2
2 x

k2
3 ,

which after simplification is ∑
(r1+r2+k2=n)

n!

r1!r2!k2!
xr11 x

r2
2 x

k2
3 .

In order to make notation uniform, we can write

u2(x1, x2, x3) =
∑

(k1+k2+k3=n)

n!

k1!k2!k3!
xk11 x

k2
2 x

k3
3 .
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Following the similar manner after defining ym−2 = x1 + x2 + · · ·+ xm−1, we obtain

um−1(ym−1, xm) =
∑

(k1+k2+k3+···+km=n)

n!

k1!k2!k3! · · · km!
xk11 x

k2
2 x

k3
3 · · ·xkmm ,

where ki ≥ 0, i = 1, 2, · · · ,m. Since the solution is unique, hence both obtained solution should coincides.
Thus, we obtain the multinomial theorem

(x1 + x2 + · · ·+ xm)n =
∑

(k1+k2+k3+···+km=n)

n!

k1!k2!k3! · · · km!
xk11 x

k2
2 x

k3
3 · · ·xkmm .
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