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Abstract

With the idea of normal family, we intend to deal with the uniqueness problems of entire functions
that share two rational functions with their k-th derivatives. The result obtained in the paper improves
and generalizes the result due to Chen and Zhang [2]. Some relevant examples are exhibited to show
that the conditions of our result are the best possible.

1 Introduction, Definitions and Results

In this paper, by a meromorphic (resp. entire) function we shall always mean meromorphic (resp. entire)
function in the open complex plane C. We use the standard notations of Nevanlinna theory e.g., N(r, f),
m(r, f), T (r, f), N(r, a; f), N(r, a; f), m(r, a; f) etc. (see [4, 12]). We denote by S(r, f) a quantity, not
necessarily the same at each of its occurrence, that satisfies the condition S(r, f) = o{T (r, f)} as r → ∞
except possibly a set of finite linear measure.
Let f(z) and g(z) be two non-constant meromorphic functions in the complex plane C and Q(z) be a

rational function or a finite complex number. If g(z)−Q(z) = 0 whenever f(z)−Q(z) = 0, we write f(z) =
Q(z)⇒ g(z) = Q(z). We say that a non-constant meromorphic function f(z) “partially”shares Q(z) with a
non-constant meromorphic function g(z) if either f(z) = Q(z)⇒ g(z) = Q(z) or g(z) = Q(z)⇒ f(z) = Q(z).
If f(z) = Q(z) ⇒ g(z) = Q(z) and g(z) = Q(z) ⇒ f(z) = Q(z), we then write f(z) = Q(z) ⇔ g(z) = Q(z)
and we say that f(z) and g(z) share Q(z) IM (ignoring multiplicity). If f(z) −Q(z) and g(z) −Q(z) have
the same zeros with the same multiplicities, we write f(z) = Q(z) 
 g(z) = Q(z) and we say that f(z) and
g(z) share Q(z) CM (counting multiplicity).
Let R(z) = P (z)

Q(z) 6≡ 0 be a rational function, where P (z) and Q(z) are co-prime polynomials. We define
the degree of R as deg(R) = deg(P ) − deg(Q). If R(z) ≡ 0, then we define deg(R) = −∞. Thus if R
is a non-zero polynomial, then deg(R) = deg(R). It is easy to verify that deg

(
R′

R

)
= −1, if R(z) is a

non-constant rational function. Therefore lim
z→∞

R′(z)
R(z) = 0, if R(z) is a non-zero rational function. If R1 and

R2 are two non-zero rational functions, then deg
(
R1

R2

)
= deg(R1)− deg(R2).

We recall that the order ρ(f) of meromorphic function f(z) is defined by

ρ(f) = lim sup
r→∞

log T (r, f)

log r
.

Furthermore when f(z) is an entire function, we have

ρ(f) = lim sup
r→∞

log T (r, f)

log r
= lim sup

r→∞

log logM(r, f)

log r
,
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where M(r, f) = max
|z|=r

|f(z)|. Let f be an entire function. We know that f can be expressed by the power

series f(z) =
∞∑
n=0

anz
n. We denote by

µ(r, f) = max
n∈N,|z|=r

{|anzn|}, ν(r, f) = sup{n : |an|rn = µ(r, f)}.

Clearly for a polynomial P (z) = anz
n + an−1z

n−1 + . . .+ a0, an 6= 0, we have

µ(r, P ) = |an|rn and ν(r, P ) = n

for all r suffi ciently large.
Let h be a meromorphic function in C. Then h is called a normal function if there exists a positive real

number M such that h#(z) ≤M for ∀ z ∈ C, where

h#(z) =
|h′(z)|

1 + |h(z)|2

denotes the spherical derivative of h.
Let F be a family of meromorphic functions in a domain D ⊂ C. We say that F is normal in D if

every sequence {fn} ⊆ F contains a subsequence which converges spherically and uniformly on the compact
subsets of D (see [11]).
During the last four decades the uniqueness theory of entire and meromorphic functions has become a

prominent branch of the value distribution theory (see [12]). In the uniqueness theory an important subtopic
that a meromorphic function and it’s derivative share some values or functions or set is well investigated.

Rubel and Yang [10] were the first to study the entire functions that share values with their derivatives.
In 1977 they proved the following important theorem.

Theorem 1 ([10]) Let a and b be complex numbers such that b 6= a and let f(z) be a non-constant entire
function. If f(z) = a
 f ′(z) = a and f(z) = b
 f ′(z) = b, then f(z) ≡ f ′(z).

In 1980, G. G. Gundersen [3] improved Theorem 1 and obtained the following result.

Theorem 2 ([3]) Let f be a non-constant meromorphic function, a and b be two distinct finite values. If
f(z) = a
 f ′(z) = a and f(z) = b
 f ′(z) = b, then f(z) ≡ f ′(z).

Mues and Steinmetz [8] generalized Theorem 1 from sharing values CM to IM and obtained the following
result.

Theorem 3 ([8]) Let a and b be complex numbers such that b 6= a and let f(z) be a non-constant entire
function. If f(z) = a⇔ f ′(z) = a and f(z) = b⇔ f ′(z) = b, then f(z) ≡ f ′(z).

In general the condition that f(z) and f ′(z) have two shared values in the above theorems is necessary.
This may be seen by the example

f(z) = ee
z

z∫
0

e−e
t (

1− et
)
dt.

In this case, we have
f ′(z)− 1

f(z)− 1
= ez

so that f(z) = 1⇔ f ′(z) = 1, but f(z) 6≡ f ′(z).
In 2006, Li and Yi [6] improved Theorem 1 with the idea of “partially” sharing values. Actually they

proved the following result.
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Theorem 4 ([6]) Let a and b be two complex numbers such that b 6= a, 0 and let f(z) be a non-constant
entire function. If f(z) = a
 f ′(z) = a and f ′(z) = b⇒ f(z) = b, then f(z) ≡ f ′(z).

Remark 1 Since b 6= a, one may assume that b 6= 0 in Theorem 1. So Theorem 4 improves Theorem 1 with
the idea of “partially” sharing values.

In the same paper, Li and Yi [6] exhibited the following example to show that the condition “b 6= 0”can
not be omitted in Theorem 4. Let

f(z) = Ce
a
C z + a− C, where C ∈ C \ {0}.

Note that f ′(z) 6= 0. Clearly f(z) = a 
 f ′(z) = a and f ′(z) = 0 ⇒ f(z) = 0, but f(z) 6≡ f ′(z). In 2009,
Qi, Lü and Chen [9] asked the following question.

Question 1 What will happen if the sharing values a and b are replaced by sharing two non-zero polynomials
Q1 and Q2 in Theorem 4 ?

To give an affi rmative answer of the above Question 1, Qi, Lü and Chen [9] obtained the following result.

Theorem 5 ([9]) Let Q1(z) = a1z
p + a1,p−1z

p−1 + . . . + a1,0 and Q1(z) = a2z
p + a2,p−1z

p−1 + . . . + a2,0
be two polynomials such that deg(Q1) = degQ2 = p ∈ N ∪ {0} and a1, a2(a2 6= 0) are two distinct
complex numbers. Let f(z) be a transcendental entire function. If f(z) = Q1(z) 
 f ′(z) = Q1(z) and
f ′(z) = Q2(z)⇒ f(z) = Q2(z), then f(z) ≡ f ′(z).

In the same paper, Qi, Lü and Chen [9] exhibited the following example to show that the hypothesis that
f(z) is transcendental can not be omitted in Theorem 5.
Let

f(z) = z3, Q1(z) = 2z3 − 3z2 and Q2(z) = z3.

Then
f ′(z)−Q1(z)
f(z)−Q1(z)

= 2 and f ′(z) = Q2(z)⇒ f(z) = Q2(z), but f(z) 6≡ f ′(z).

Now observing Theorem 5, Chen and Zhang [2] emerged the following question in 2011.

Question 2 Does Theorem 5 hold when Q1 and Q2 are respectively replaced by two rational functions R1
and R2 ?

Now taking the possible answer of Question 2 into back ground, Chen and Zhang [2] obtained the following
result.

Theorem 6 ([2]) Let R1(z) and R2(z) be two non-zero rational functions such that lim
z→∞

R2(z)
R1(z)

6= 1 and

deg(R1) = deg(R2) and let f(z) be a transcendental entire function. If f(z) = R1(z) 
 f ′(z) = R1(z) and
f ′(z) = R2(z)⇒ f(z) = R2(z), then one of the following cases must occur:

(i) f(z) ≡ f ′(z);

(ii) f ′(z) = R2(z) + Cλeλz and (λ − 1)R′1(z) = λR2(z) − R′2(z), where C and λ 6= 1 are two non-zero
constants. In fact, R1(z) and R2(z) are two polynomials.

In the same paper, Chen and Zhang [2] exhibited the following example to show that the hypothesis that
f is transcendental can not be omitted in Theorem 6.
Let

f(z) = z4, R1(z) = 2z4 − 4z3 and R2(z) = z4.
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Then
f ′(z)−R1(z)
f(z)−R1(z)

= 2 and f ′(z) = R2(z)⇒ f(z) = R2(z),

but neither f(z) 6≡ f ′(z) nor f ′(z) = R2(z) + Cλeλz and (λ− 1)R′1(z) = λR2(z)−R′2(z).
From Theorem 6, it is clear that Theorem 6 is the improvement of Theorem 5. Also the result obtained

in Theorem 6 is no doubt a useful contribution in the field of uniqueness problems of entire functions that
share two small functions with their derivatives. But unfortunately there is an error in the proof of Theorem
6 although the techniques of the proof of Theorem 6 are so novelty. Now we explicitly point out the error
that occurred in the proof of Theorem 6.
In the last section of the proof of Theorem 6, the authors have concluded that

f ′(z) = R2(z) + Cλeλz

and
(λ− 1)R′1(z) = λR2(z)−R′2(z),

where R1(z) and R2(z) are two non-zero polynomials. But the equality (λ− 1)R′1(z) = λR2(z)−R′2(z) does
not hold for two non-zero polynomials of same degree. Therefore at a glance from the proof of Theorem 6,
we solely have f (k) ≡ f as the conclusion of Theorem 6.
On the other hand in the same paper authors [2] have exhibited the following example to show that the

conclusion (ii) of Theorem 6 can not be deleted.
Let

f(z) = 2e
z
2 +

1

2
z2, R1(z) = 2z − 1

2
z2 and R2(z) = z.

Note that f ′(z) 6= R2(z). Then

f ′(z)−R1(z)
f(z)−R1(z)

=
1

2
and f ′(z) = R2(z)⇒ f(z) = R2(z),

but neither f(z) 6≡ f ′(z) nor f ′(z) = R2(z) + Cλeλz and (λ− 1)R′1(z) = λR2(z)−R′2(z).
The above example has no relevancy to fortify the argument “conclusion (ii) of Theorem 6 can not be

deleted”because in the above example we have deg(R1) 6= deg(R2).
Therefore our first objective to write this paper is to find out the correct form of Theorem 6 without

imposing any other conditions.
Our second objective to write this paper is to solve the following questions.

Question 3 What will happen if the first derivative f ′(z) in Theorem 6 is replaced by the general derivative
f (k)(z) ?

Question 4 What will happen if one replace the condition “deg(R1) = deg(R2)” by “deg(R1) 6= deg(R2)”
in Theorem 6 ?

Now in this paper taking the possible answers of the above questions into back ground, we obtain the
following result which not only rectify Theorem 6 but also improves and generalizes Theorem 6 in a more
compact way.

Theorem 7 Let R1(z) and R2(z) be two non-zero rational functions such that lim
z→∞

R2(z)
R1(z)

6= 1 and let f(z)

be a non-constant entire function. Suppose f(z) = R1(z) 
 f (k)(z) = R1(z) and f (k)(z) = R2(z)⇒ f(z) =
R2(z). Now

(I) when deg(R1) = deg(R2), then f(z) ≡ f (k)(z).

(II) when deg(R1) 6= deg(R2), then one of the following two cases must occur:
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(II1) f(z) ≡ f (k)(z);
(II2) f (k)(z) = R2(z)+Cecz and (λ−1)R

(k)
1 (z) = λR2(z)−R(k)2 (z), where C, c and λ(6= 1) are non-zero

constants such that ck = λ and R1(z), R2(z) reduce to polynomials.

Remark 2 Let us take k = 1. Then from Theorem 7 we can easily get a theorem which is the improvement
as well as the generalization of Theorem 6.

Remark 3 Let us take k = 1 and deg(R1) = deg(R2). Then from Theorem 7 we can easily get a theorem
which is the rectification of Theorem 6.

Remark 4 The following example shows that the condition “ lim
z→∞

R2(z)
R1(z)

6= 1” in Theorem 7 is sharp.

Example 1 Let f(z) = 1
4

(
e2z + e−2z

)
+ 3

4z, k = 2 and R1(z) = R2(z) = z. Note that f ′′(z) − R2(z) =

e2z + e−2z − z and f(z) − R2(z) = 1
4

(
e2z + e−2z − z

)
and so f ′′(z) = R2(z) ⇒ f(z) = R2(z). Also we see

that deg(R1) = deg(R2) and lim
z→∞

R2(z)
R1(z)

= 1. On the other hand we have

f(z)−R1(z) =
1

4

(
e2z + e−2z − z

)
, f ′′(z)−R1(z) = e2z + e−2z − z

and so f(z) = R1(z) 
 f ′′(z) = R1(z), but f ′′(z) 6≡ f(z).

Remark 5 The following examples shows that the condition “f (k) = R2 ⇒ f = R2”in Theorem 7 is sharp.

Example 2 Let f(z) = z + Cecz, k = 2, c =
√

2, λ = 2, R1(z) = 2z and R2(z) = z. Then f ′′(z) − R2(z)
has infinitely many zeros whereas f(z)−R2(z) has no zeros and so f ′′(z) = R2(z) 6⇒ f(z) = R2(z). Also we
see that deg(R1) = deg(R2) and lim

z→∞
R2(z)
R1(z)

= 1
2 6= 1. On the other hand we have f(z)− R1(z) = Cecz − z,

f ′′(z)−R1(z) = 2 (Cecz − z) and so f(z) = R1(z) 
 f ′′(z) = R1(z), but f ′′(z) 6≡ f(z).

Example 3 Let f(z) = e
√
2z − e−

√
2z + z, k = 2, R1(z) = 2z and R2(z) = 1. It is clear that f ′′(z) =

R2(z) 6⇒ f(z) = R2(z). Also we see that deg(R1) 6= deg(R2) and lim
z→∞

R2(z)
R1(z)

= 0 6= 1. On the other hand we

have
f(z)−R1(z) = e

√
2z − e−

√
2z − z, f ′′(z)−R1(z) = 2

(
e
√
2z − e−

√
2z − z

)
and so f(z) = R1(z) 
 f ′′(z) = R1(z), but neither f ′′(z) ≡ f(z) nor f ′′(z) = R2(z) + Cecz and (λ −
1)R′′1 (z) = λR2(z)−R′′2 (z).

Example 4 Let f(z) = 1
4e
2z + 3

4z, k = 2, c = 2, λ = 4, R1(z) = z and R2(z) = 1. It is clear that

f ′′(z) = R2(z) 6⇒ f(z) = R2(z). Also we see that deg(R1) 6= deg(R2) and lim
z→∞

R2(z)
R1(z)

= 0 6= 1. On the other

hand we have
f(z)−R1(z) =

1

4

(
e2z − z

)
, f ′′(z)−R1(z) = e2z − z

and so f(z) = R1(z) 
 f ′′(z) = R1(z), but neither f ′′(z) ≡ f(z) nor f ′′(z) = R2(z) + Cecz and (λ −
1)R′′1 (z) = λR2(z)−R′′2 (z).

Remark 6 We give an example to show that the conclusion (II2) of Theorem 7can not be deleted.

Example 5 Let f(z) = z + Cecz, c = λ = 1
2 , R1(z) = 2− z and R2(z) = 1. Then f ′(z)− R2 has no zeros

and so f ′(z) = R2(z)⇒ f(z) = R2(z). Also we see that deg(R1) 6= deg(R2) and lim
z→∞

R2(z)
R1(z)

= 0 6= 1. On the

other hand we have

f(z)−R1(z) = Cecz + 2z − 2, f ′(z)−R1(z) =
1

2
(Cecz + 2z − 2)

and so f(z) = R1(z) 
 f ′(z) = R1(z). Thus f(z) satisfies all the conditions of Theorem 7, where f ′(z) =
R2(z) + Cecz and (λ− 1)R′1(z) = λR2(z)−R′2(z).
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2 Lemmas

In this section we introduce the following lemmas which will be needed in the paper.

Lemma 1 ([5, Lemma 1.3.1]) P (z) =
∑n
i=1 aiz

i where an 6= 0. Then for all ε > 0, there exists r0 > 0
such that ∀ r = |z| > r0 the inequalities (1− ε)|an|rn ≤ |P (z)| ≤ (1 + ε)|an|rn hold.

Lemma 2 ([5, Theorem 3.1]) If f(z) is an entire function of order ρ(f), then

ρ(f) = lim sup
r−→∞

log ν(r, f)

log r
.

Lemma 3 ([5, Theorem 3.2]) Let f(z) be a transcendental entire function and 0 < δ < 1
4 . Suppose that

at the point z with |z| = r the inequality

|f(z)| > M(r, f)ν(r, f)−
1
4+δ

holds. Then there exists a set F ⊂ R+ of finite logarithmic measure, i.e.,
∫
F
1
t dt < +∞ such that

f (m)(z) =

(
ν(r, f)

z

)m
(1 + o(1))f(z)

holds for all m ∈ N ∪ {0} and r 6∈ F .

Lemma 4 ([13]) Let F be a family of meromorphic functions in the unit disc ∆ such that all zeros of
functions in F have multiplicity greater than or equal to l and all poles of functions in F have multiplicity
greater than or equal to j and α be a real number satisfying −l < α < j. Then F is not normal in any
neighborhood of z0 ∈ ∆, if and only if there exist

(i) points zn ∈ ∆, zn → z0,

(ii) positive numbers ρn, ρn → 0+ and

(iii) functions fn ∈ F ,

such that ρ−αn fn(zn + ρnζ) → g(ζ) spherically locally uniformly in C, where g(z) is a non-constant mero-
morphic function. The function g(z) may be taken to satisfy the normalisation g#(ζ) ≤ g#(0) = 1(ζ ∈ C).

Remark 7 Clearly if all functions in F are holomorphic (so that the condition on the poles is satisfied
vacuously for arbitrary j), we may take −1 < α <∞.

Lemma 5 ([7]) Let f(z) be a meromorphic function of infinite order on C. Then there exist points zn →∞
such that for every N > 0, f#(zn) > |zn|N , if n is suffi ciently large.

Lemma 6 ([1]) Let f(z) be a meromorphic function on C with finitely many poles. If f(z) has bounded
spherical derivative on C, then f(z) is of order at most 1.

3 Proof of Theorem 7

Suppose R1(z) = Q1(z)
Q2(z)

and R2(z) = Q3(z)
Q4(z)

, whereQi(z) (i = 1, 2, 3, 4) are polynomials such thatQ1(z), Q2(z)
and Q3(z), Q4(z) are co-prime respectively. Also we define P1(z) = Q1(z)Q4(z) and P2(z) = Q2(z)Q3(z).
Since lim

z→∞
R2(z)
R1(z)

6= 1, it follows that R1(z) 6≡ R2(z). If f(z) is a polynomial, then f(z) − R1(z) and

f (k)(z)−R1(z) cannot have same zeros with same multiplicities, which contradicts the fact that f(z)−R1(z)
and f (k)(z) − R1(z) share 0 CM. Therefore f(z) is a transcendental entire function. We now discuss the
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following two cases.

Case 1. Suppose that ρ(f) < +∞. Let

α(z) =
f (k)(z)−R1(z)
f(z)−R1(z)

.

We claim that α(z) 6≡ 0. If not, suppose α(z) ≡ 0. Then we have f (k)(z) = R1(z). Since f(z) is a
transcendental entire function, it follows that R1(z) is a polynomial. Then by integration, we have f(z) =
P(z), where P(z) is a polynomial of degree deg(R1) + k. This shows that f(z) is a polynomial, which is a
contradiction. Hence α(z) 6≡ 0. If α(z) ≡ 1, then we have f (k)(z) ≡ f(z), which is one of the conclusion of
our result. Next we suppose α(z) 6≡ 1. Consequently f (k)(z) 6≡ f(z). Since f(z)−R1(z) and f (k)(z)−R1(z)
share 0 CM, one can easily deduce that α(z) has no zeros and poles. Note that

ρ

(
f (k) −R1
f −R1

)
≤ max

{
ρ
(
f (k) −R1

)
, ρ (f −R1)

}
= max

{
ρ
(
f (k)

)
, ρ(f)

}
= ρ(f) < +∞

and so ρ(α) < +∞. Therefore we can assume that α(z) = eγ(z), where γ(z) is a polynomial. Hence

f (k)(z)−R1(z)
f(z)−R1(z)

= eγ(z). (1)

We claim that γ(z) is a constant polynomial. If not, suppose that γ(z) is a non-constant polynomial. Let
deg(γ) = m ≥ 1 and γ(z) = cmz

m + cm−1z
m−1 + . . .+ c0, where ci ∈ C for i = 0, 1, . . . ,m and cm 6= 0. Now

from (1), we have

eγ(z) =

f(k)(z)
f(z) −

R1(z)
f(z)

1− R1(z)
f(z)

, i.e., γ(z) = log

f(k)(z)
f(z) −

R1(z)
f(z)

1− R1(z)
f(z)

,

where log h is the principle branch of the logarithm. Therefore by Lemma 1, we have

|cm|rm(1 + o(1)) = |γ(z)| =

∣∣∣∣∣∣log

f(k)(z)
f(z) −

R1(z)
f(z)

1− R1(z)
f(z)

∣∣∣∣∣∣ . (2)

Since f is a transcendental entire function, M(r, f) → ∞ as r → ∞. Again let M(r, f) = |f(zr)|, where
zr = reiθr and θr ∈ [0, 2π). We see that lim

r→∞
1

|f(zr)| = lim
r→∞

1
M(r,f) = 0. Now from Lemma 3, there exists a

subset E ⊂ (1,+∞) with finite logarithmic measure such that for some point zr = reiθr (θr ∈ [0, 2π)), r 6∈ E
and M(r, f) = |f(zr)|, we have

f (k)(zr)

f(zr)
=

(
ν(r, f)

zr

)k
(1 + o(1)). (3)

Since f(z) is a transcendental entire function, it follows that R1(z)
f(z) → 0 as |z| → ∞. Therefore from (2), (3)

and Lemma 2, we get

|cm|rm(1 + o(1)) = |γ(zr)| =

∣∣∣∣∣∣log

f(k)(zr)
f(zr)

− R1(zr)
f(zr)

1− R1(zr)
f(zr)

∣∣∣∣∣∣ = O(log r),

for |z| = r → +∞, r 6∈ E, which is impossible. Hence γ is a constant polynomial. Without loss of generality
we assume that

f (k)(z)−R1(z) ≡ λ(f(z)−R1(z)), i.e., f (k)(z) ≡ λf(z) + (1− λ)R1(z). (4)

Since f (k)(z) 6≡ f(z), it follows from (4) that λ 6= 1. Again since f(z) is an entire function and R1(z) is a
rational function, from (4) one can easily conclude that R1(z) is an entire function. Therefore R1(z) is a
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polynomial. Let z0 be a zero of f (k)(z)−R2(z). By the assumption, we have f(z0) = R2(z0). Putting z = z0
into (4), we get R1(z0) = R2(z0). Since R1(z) 6≡ R2(z), it follows that z0 must be a zero of R1(z) − R2(z).
Therefore one can easily deduce that all the zeros of f (k)(z)− R2(z) are the zeros of R1(z)− R2(z) and so
f (k)(z)−R2(z) has finitely many zeros. Since f(z) is a transcendental entire function of finite order, we can
take

f (k)(z) = R2(z) + P (z)eQ(z), (5)

where P (z) is a non-zero rational function and Q(z) is a non-constant polynomial. Now from (4) and (5),
we have

λf(z) = R2(z)− (1− λ)R1(z) + P (z)eQ(z). (6)

Differentiating k-times, we obtain from (6) that

λf (k)(z) = R
(k)
2 (z)− (1− λ)R

(k)
1 (z) +

(
P (z)Q′k + P3(z)

)
eQ(z), (7)

where P3(z) is a rational function. Now from (5) and (7), we have

R
(k)
2 (z)− λR2(z)− (1− λ)R

(k)
1 (z) +

(
(Q′k − λ)P (z) + P3(z)

)
eQ(z) ≡ 0. (8)

Clearly from (8), one can easily conclude that

(λ− 1)R
(k)
1 (z) = λR2(z)−R(k)2 (z) (9)

and (
λ−Q′k

)
P (z) = P3(z). (10)

Since R1(z) is a polynomial, from (9), we conclude that R2(z) is also a polynomial. Therefore from (5),
we observe that P (z) is a non-zero polynomial and so from (7) we conclude that P3(z) is a polynomial and
deg(P3) < deg

(
PQ′k

)
. Now (10) gives Q′k = λ and P3(z) ≡ 0. Thus Q′(z) is a constant, say Q′(z) = µ.

Then Q(z) = µz + b and µk = λ, where b ∈ C. So from (5), we have

f (k)(z) = R2(z) + P (z)eµz+b.

It is easy to deduce that deg(P3) = deg(P ′). From P3(z) ≡ 0, one can easily conclude that P (z) is a non-zero
constant. Let P (z)eb = C. Finally we have

f (k)(z) = R2(z) + Cecz (11)

and
(λ− 1)R

(k)
1 (z) = λR2(z)−R(k)2 (z), (12)

where C ∈ C \ {0} and λ ∈ C \ {0, 1} such that ck = λ. If deg(R1) = deg(R2), from (12) we must have λ = 0
and so c = 0, which is impossible. Consequently (11) is valid only when deg(R1) 6= deg(R2).

Case 2. Suppose that ρ(f) = +∞. Let F (z) = f(z)
R1(z)

. Since ρ(R1) = 0, it follows that ρ(F ) = +∞. Now
by Lemma 5, there exists {wj}j →∞(j →∞) such that for every N > 0

F#(wj) > |wj |N , if j is suffi ciently large. (13)

Since R1(z) has finitely many poles and zeros, there exists a r > 0 such that F (z) is analytic and R1(z) 6= 0,∞
inD = {z : |z| ≥ r}. Also since ωj →∞ as j →∞, without loss of generality we may assume that |ωj | ≥ r+1
for all j. Let D1 = {z : |z| < 1}. Note that

Fj(z) = F (ωj + z) =
f(ωj + z)

R1(ωj + z)
.

Since |ωj+z| ≥ |ωj |−|z|, it follows that ωj+z ∈ D for all z ∈ D1. Also since F (z) is analytic in D, it follows
that Fj(z) is analytic in D1 for all j. Thus we have structured a family (Fj)j of holomorphic functions. Note
that F#(0) = F#(wj) → ∞ as j → ∞. Now it follows from Marty’s criterion that (Fj)j is not normal at
z = 0. Then by Lemma 4, there exist
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(i) points zj ∈ D1 such that zj → 0 as j →∞,

(ii) positive numbers ρj , ρj → 0+,

(iii) a subsequence {F (ωj + zj + ρjζ) = Fj(zj + ρjζ)} of {F (ωj + z)}

such that

gj(ζ) = Fj(zj + ρjζ) =
f(ωj + zj + ρjζ)

R1(ωj + zj + ρjζ)
→ g(ζ) (14)

spherically locally uniformly in C, where g(ζ) is a non-constant entire function such that g#(ζ) ≤ g#(0) = 1.
Now from Lemma 6, we see that ρ(g) ≤ 1. Also in the proof of Zalcman’s lemma, we have

ρj ≤
M

F#(wj)
(15)

for a positive number M . Now from (13) and (15), we deduce that for every N > 0,

ρj ≤M |wj |−N (16)

for suffi ciently large values of j. We now want to prove that

ρkj
f (k)(ωj + zj + ρjζ)

R1(ωj + zj + ρjζ)
→ g(k)(ζ). (17)

From (14), we see that

ρj
f ′(ωj + zj + ρjζ)

R1(ωj + zj + ρjζ)
= g′j(ζ) + ρj

R′1(ωj + zj + ρjζ)

R21(ωj + zj + ρjζ)
f(ωj + zj + ρjζ) (18)

= g′j(ζ) + ρj
R′1(ωj + zj + ρjζ)

R1(ωj + zj + ρjζ)
gj(ζ).

Also we see that
R′1(ωj + zj + ρjζ)

R1(ωj + zj + ρjζ)
→ 0 (as j →∞). (19)

Now from (14), (18) and (19), we observe that

ρj
f ′(ωj + zj + ρjζ)

R1(ωj + zj + ρjζ)
→ g′(ζ).

Suppose

ρpj
f (p)(ωj + zj + ρjζ)

R1(ωj + zj + ρjζ)
→ g(p)(ζ).

Let

Gj(ζ) = ρpj
f (p)(ωj + zj + ρjζ)

R1(ωj + zj + ρjζ)
.

Then Gj(ζ)→ g(p)(ζ). Note that

ρp+1j

f (p+1)(ωj + zj + ρjζ)

R1(ωj + zj + ρjζ)
= G′j(ζ) + ρp+1j

R′1(ωj + zj + ρjζ)

R21(ωj + zj + ρjζ)
f (p)(ωj + zj + ρjζ)

= G′j(ζ) + ρj
R′1(ωj + zj + ρjζ)

R1(ωj + zj + ρjζ)
Gj(ζ). (20)



S. Majumder and R. Mandal 219

Now from (19) and (20), we see that

ρp+1j

f (p+1)(ωj + zj + ρjζ)

R1(ωj + zj + ρjζ)
→ G′j(ζ), i.e., ρp+1j

f (p+1)(ωj + zj + ρjζ)

R1(ωj + zj + ρjζ)
→ g(p+1)(ζ).

Then by mathematical induction we get the desired result (17).
First prove that g = 1 ⇒ g(k) = 0. Suppose that g(ζ0) = 1. Then by Hurwitz’s Theorem there exists a
sequence {ζj}, ζj → ζ0 such that (for suffi ciently large j)

gj(ζj) =
f(ωj + zj + ρjζj)

R1(ωj + zj + ρjζj)
= 1, i.e., f(ωj + zj + ρjζj) = R1(ωj + zj + ρjζj).

By the given condition, we have f (k)(ωj + zj + ρjζj) = R1(ωj + zj + ρjζj). Now from (17), we see that

g(k)(ζ0) = lim
j→∞

g(k)(ζj) = lim
j→∞

ρkj
f (k)(ωj + zj + ρjζj)

R1(ωj + zj + ρjζj)
= lim
j→∞

ρkj
R1(ωj + zj + ρjζj)

R1(ωj + zj + ρjζj)
= 0.

Thus g(ζ) = 1⇒ g(k)(ζ) = 0. Next we prove that g(k) = 0⇒ g = 1. Now from (17), we see that

ρkj
f (k)(ωj + zj + ρjζ)−R1(ωj + zj + ρjζ)

R1(ωj + zj + ρjζ)
→ g(k)(ζ). (21)

Suppose that g(k)(η0) = 0. Then by (21) and Hurwitz’s Theorem there exists a sequence {ηj}, ηj → η0
such that (for suffi ciently large j) f (k)(ωj + zj + ρjηj) = R1(ωj + zj + ρjηj). By the given condition we have
f(ωj + zj + ρjηj) = R1(ωj + zj + ρjηj). Therefore

g(η0) = lim
j→∞

f(ωj + zj + ρjηj)

R1(ωj + zj + ρjηj)
= 1.

Thus g(k) = 0⇒ g = 1. Consequently we have g = 1⇔ g(k) = 0. Note that∣∣∣∣R2(wj + zj + ρjξ)

R1(wj + zj + ρjξ)

∣∣∣∣ =

∣∣∣∣P2(wj + zj + ρjξ)

P1(wj + zj + ρjξ)

∣∣∣∣ =

{
O(1), if deg(P2) ≤ deg(P1),
O(|wj |t), if deg(P2) > deg(P1),

(22)

where t = deg(P2)− deg(P1) > 0. Now let kN > t. Therefore from (16) we have

lim
j→∞

ρkj |wj |t ≤ lim
j→∞

Mk|wj |t−kN = 0. (23)

Since ρj → 0 as j →∞, from (22) and (23), we have

ρkj

∣∣∣R2(wj + zj + ρjξ)

R1(wj + zj + ρjξ)

∣∣∣→ 0 (as j →∞). (24)

By the given condition, we have lim
z→∞

P2(z)
P1(z)

= lim
z→∞

R2(z)
R1(z)

6= 1. Also we see that

lim
j→∞

R2(wj + zj + ρjξ)

R1(wj + zj + ρjξ)
= lim
j→∞

P2(wj + zj + ρjξ)

P1(wj + zj + ρjξ)
=

 ∞, if deg(P2) > deg(P1),
0, if deg(P2) < deg(P1),
c0, if deg(P2) = deg(P1),

(25)

where c0 ∈ C \ {0, 1}. Now from (17) and (24), we see that

ρkj
f (k)(ωj + zj + ρjξ)−R2(ωj + zj + ρjξ)

R1(ωj + zj + ρjξ)
→ g(k)(ξ). (26)
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Suppose that g(k)(ξ0) = 0. Then by (26) and Hurwitz’s Theorem there exists a sequence (ξj)j , ξj → ξ0 such
that (for suffi ciently large j) f (k)(ωj + zj + ρjξj) = R2(ωj + zj + ρjξj). By the given condition we have
f(ωj + zj + ρjξj) = R2(ωj + zj + ρjξj). Therefore from (14) and (25), we have

g(ξ0) = lim
j→∞

f(ωj + zj + ρjξj)

R1(ωj + zj + ρjξj)
= lim
j→∞

R2(ωj + zj + ρjξj)

R1(ωj + zj + ρjξj)
=

 ∞, if deg(P2) > deg(P1),
0, if deg(P2) < deg(P1),
c0, if deg(P2) = deg(P1).

Since g is an entire function, it follows that g(ξ0) 6=∞. Consequently we have g(ξ0) = c1 ∈ C\{1}. Therefore
we have g(k) = 0⇒ g = c1. Since g = 1⇔ g(k) = 0, we arrive at a contradiction.
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