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Abstract

Taking into account the fact that the contractive conditions carry out the magnificent role in es-
tablishing coincidence and common fixed points, we introduce generalized condition (B) for self maps in
G-metric spaces and utilize it to establish a unique fixed point, a unique common fixed point, and a unique
coincidence point. Conclusively, we deal with two questions about the survival of a fixed point in Abbas
et al. [M. Abbas, G. V. R. Babu, and G. N. Alemayehu, On common fixed points of weakly compatible
mappings satisfying generalized condition, Filomat 25 (2011), 9-19] and on the survival of contractive
condition which assure the fixed point at the discontinuity of a map in Rhoades [B. E. Rhoades, Con-
tractive definitions and continuity, Fixed Point Theory and its Applications (Berkeley 1986), Contemp.
Math. (Amer. Math. Soc.), 72 (1988), 233—245]. Further, we introduce circle, fixed circle, common fixed
circle, and u0-generalized condition (B) via G-metric to establish fixed circle and common fixed circle
theorems. Also, we give examples and an application to solve Volterra-Hammerstein non-linear integral
equation in order to demonstrate the significance of obtained results.

1 Introduction and Preliminaries

Mustafa and Sims [21] proposed an important extension of metric spaces, as G-metric spaces or generalized
metric spaces. Firstly, we recollect some basic definitions for these spaces.

Definition 1 ([21]) Let G : U × U × U → R+ be a function on a non-empty set U satisfying

1. G(u, v,w) = 0 if u = v = w,

2. G(u, u, v) > 0, whenever u 6= v,

3. G(u, u, v) ≤ G(u, v,w), with w 6= v,

4. G(u, v,w) = G(u,w, v) = G(v,w, u) = . . . (symmetry in variables),

5. G(u, v,w) ≤ G(u, a, a) + G(a, v,w) (rectangle inequality),

where u, v,w, a ∈ U . Then the function G is G-metric (generalized metric) on U and the pair (U ,G) is a
G-metric space.

If we have G(u, v, v) = G(v, u, u), u, v ∈ U , then (U ,G) is a symmetric G-metric space. Here it is magnificent
to observe that there exist G-metric spaces, which are not symmetric.
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Example 1 ([21]) Let U = {2, 3} and G-metric G : U × U × U → R+ be defined as

G(2, 2, 3) = G(3, 2, 2) = 1, G(2, 2, 2) = G(3, 3, 3) = 0,

G(2, 3, 3) = G(3, 2, 3) = G(3, 3, 2) = 2.

Clearly, G(3, 2, 2) 6= G(3, 3, 2). Therefore G is not symmetric.

Proposition 1 ([21]) The function dG : U × U → R+ of a G-metric space (U ,G) defined by

dG(u, v) = G(u, v, v) + G(v, u, u), u, v ∈ U

is a metric on U .

If G is symmetric, dG = 2G(u, v, v), and if G is not symmetric 32G(u, v, v) ≤ dG(u, v) ≤ 3G(u, v, v), u, v ∈ U .

Definition 2 ([21]) Let (U ,G) be a G-metric space.

1. A sequence {un} in U is a G-Cauchy sequence if there exists n0 ∈ N so that lim
n→∞

G(ul, um, un), l,m, n ≥
n0 exists and is finite.

2. A sequence {un} is G-convergent if for ε > 0, there is a number u ∈ U so that n,m ≥ n0, n0 ∈ N ,
G(u, un, um) < ε.

3. (U ,G) is G-complete if every G-Cauchy sequence {un} in U is convergent to a point u ∈ U so that
lim

n,m→∞
G(u, un, um) = 0, n,m ∈ N.

Proposition 2 ([21]) The subsequent assumptions are equivalent in G-metric space (U ,G):

1. {un} is G-convergent to u in U .

2. G(un, um, u)→ 0 as n,m→∞.

3. G(un, un, u)→ 0 as n→∞.

4. G(un, u, u)→ 0 as n→∞.

Definition 3 ([11]) Two self maps f and A are weakly compatible if they commute at their coincidence
point, that is, fAu∗ = Afu∗ if fu∗ = Au∗, u∗ ∈ U .

For details on the weaker forms of commutativity allude to Singh and Tomar [28].

Berinde [7] launched weak contraction (later, he renamed it almost contraction [8]) to establish a fixed
point that need not be unique.

Definition 4 ([7]) A self map h of a metric space (U , d) is (δ, L)-contraction or weak contraction if there
exists L ≥ 0 and δ ∈ (0, 1) so that

d(hu, hv) ≤ δd(u, v) + Ld(v, hu), u, v ∈ U .

Later Babu et al. [5] extended it to condition (B) to prove a unique fixed point.

Definition 5 ([5]) A self map h of metric space (U , d) is the condition (B) if there exists L ≥ 0 and δ ∈ [0, 1)
so that

d(hu, hv) ≤ δd(u, v) + Lmin(d(u, hu), d(v, hv), d(u, hv), d(v, hu)), u, v ∈ U .
The condition (B) implies almost contraction / weak contraction / (δ, L)−contraction. However, its reverse
implication may not hold true. It is fascinating to see that condition (B) is not essentially continuous.
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Abbas et al. [1] extended the condition (B) to a pair of maps as a generalized condition (B) and on the
other hand, Abbas and Ilic [2] extended it as a generalized almost h−contraction.

Definition 6 ([1] (see, [2] also)) A self map h of a metric space (U , d) satisfies generalized condition (B)
associated with the self map f of U if there exists L ≥ 0 and δ ∈ (0, 1) so that

d(hu, hv) ≤ δM(u, v) + Lmin{d(fu, hu), d(fv, hv), d(fu, hv), d(fv, hu)},

where

M(u, v) = max

{
d(fu, fv), d(fu, hu), d(fv, hv),

d(fu, hv) + d(fv, hu)

2

}
.

Noticeably, for f = I, the generalized condition (B) is similar to condition (B). It is interesting to notice
that the Banach contraction [6], the almost contraction [8], the Kannan maps [18], the Chatterjea maps [9],
and the Zamfirescu maps[32], including quasi-contractions 0 ≤ δ < 1 [10] are incorporated in generalized
condition (B) [1] and perform a remarkable role in establishing a coincidence point and common fixed points.
In this work, we introduce a generalized condition (B) for two pairs of self maps in G-metric spaces. As a
by-product, we answer in affi rmative to two problems proposed by Abbas et al. [1] and an open problem
proposed by Rhoades [27]. Our conclusions generalize, improve, and extend numerous conclusions available
in the literature [1]—[3], [5], [8]—[10], [17]—[19], [26], [32], and so on elucidating the significance of a generalized
condition (B) in G-metric space. Further, motivated by the fact that a self map may not always have a unique
fixed point, the exploration of the geometry of the non-unique fixed points is quite natural, we investigate the
geometry of a set of fixed points via G-metric. Examples and an application of solving Volterra-Hammerstein
non-linear integral equations via generalized condition (B) are provided to demonstrate the significance of
established conclusions in G-metric space.

2 Main Results

First, we put forward generalized condition (B) in G-metric space.

Definition 7 Let f, h,A, and T be self maps of G-metric space (U ,G). Suppose there exists L ≥ 0 and
δ ∈ [0, 1) so that

G(Au, T v, T v) ≤ δM(u, v, v) + Lmin{G(fu,Au,Au),G(hv, T v, T v),G(fu, T v, T v),G(hv, hv,Au)} (1)

where

M(u, v, v) = max

{
G(fu, hv, hv),G(Au, fu, fu),G(hv, T v, T v), 1

2
[G(Au, hv, hv) + G(fu, T v, T v)]

}
, u, v ∈ U .

Inequality (1) is called a generalized condition (B) for two pairs of self maps in G-metric space.

Theorem 1 Let f, h,A, and T be self-maps of a G-metric space (U ,G) so that T U ⊂ fU , AU ⊂ hU and verify
the generalized condition (B) (1). If fU or hU is closed, then pairs {f,A} and {h, T } have a coincidence point.
Besides f, h,A, and T have a unique common fixed point, if pairs {f,A} and {h, T } are weakly compatible.

Proof. Let u0 ∈ U . Since AU ⊂ hU and T U ⊂ fU , there exists u1 ∈ U , so that hu1 = Au0, and there exists
u2 ∈ U so that fu2 = T u1, so by continuing, we can construct two sequences {un} and {vn} in U as follows{

v2n+1 = hu2n+1 = Au2n,
v2n+2 = fu2n+2 = T u2n+1,

(2)

Firstly, we claim
lim
n→∞

G(v2n+1, v2n+2, v2n+2) = 0.
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We observe that

G(v2n+1, v2n+2, v2n+2)

= G(Au2n, T u2n+1, T u2n+1)

≤ δmax

{
{G(fu2n, hu2n+1, hu2n+1),G(Au2n, fu2n, fu2n),G(hu2n+1, T u2n+1, T u2n+1),

1

2
(G(Au2n, hu2n+1, hu2n+1) + (G(fu2n, T u2n+1, T u2n+1))

}
+ Lmin

{
G(fu2n,Au2n,Au2n),

G(hu2n+1, T u2n+1, T u2n+1),G(fu2n, T u2n+1, T u2n+1),G(hu2n+1, hu2n+1,Au2n)

}
= δmax

{
G(v2n, v2n+1, v2n+1),G(v2n+1, v2n, v2n),G(v2n+1, v2n+2, v2n+2),

1

2
(G(v2n+1, v2n+1, v2n+1) + G(v2n, v2n+2, v2n+2))

}
+ Lmin

{
G(v2n, v2n+1, v2n+1)

G(v2n+1, v2n+2, v2n+2),G(v2n, v2n+2, v2n+2),G(v2n+1, v2n+1, v2n+1)

}
≤ δmax

{
G(v2n, v2n+1, v2n+1),G(v2n+1, v2n, v2n),G(v2n+1, v2n+2, v2n+2),

1

2
[G(v2n, v2n+1, v2n+1) + G(v2n+1, v2n+2, v2n+2)]

}
+Lmin

{
G(v2n, v2n+1, v2n+1),G(v2n+1, v2n+2, v2n+2, 0)

}
≤ δmax{G(v2n, v2n+1, v2n+1),G(v2n+1, v2n, v2n),G(v2n+1, v2n+2, v2n+2)}.

If G(v2n, v2n+1, v2n+1) ≤ G(v2n+1, v2n+2, v2n+2), then

G(v2n+1, v2n+2, v2n+2) ≤ δG(v2n+1, v2n+2, v2n+2) < G(v2n+1, v2n+2, v2n+2),

which is a contradiction. So

G(v2n+1, v2n+2, v2n+2) ≤ δG(v2n, v2n+1, v2n+1)

≤ δ2G(v2n−1, v2n, v2n)

≤ δ3G(v2n−2, v2n−1, v2n−1)

... . . .

≤ δ2n+1G(v0, v1, v1),

that is, G(vn+1, vn+2, vn+2) ≤ δn+1G(v0, v1, v1). For all m > n, n,m ∈ N, we have

G(vn, vm, vm) ≤ G(vn, vn+1, vn+1) + G(vn+1, vn+2, vn+2) + ...+ G(vm−1, vm, vm)

≤ δn(1 + δ + ...+ δm−n)G(v0, v1, v1)

≤ δn 1− δm−n+1

1− δ G(v0, v1, v1)→ 0 as n→∞,

that is, {vn} is a convergent sequence in (U ,G). So its subsequence {v2n+2} = {fu2n+2} is also convergent.
Suppose fU is closed. Hence, there exists z ∈ fU so that {v2n+2} → z, consequently {vn} → z.
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Also, there exists u∗ ∈ U so that z = fu∗. We submit that z = Au∗, otherwise utilizing rectangular
inequality and inequality (1) for u =u∗ and v = u2n+1,

G(Au∗, fu∗, fu∗) ≤ G(Au∗, T u2n+1, T u2n+1) + G(T u2n+1, fu∗, fu∗)

≤ δmax

{
G(fu∗, hu2n+1, hu2n+1),G(Au∗, fu∗, fu∗),

G(hu2n+1, T u2n+1, T u2n+1),
1

2
(G(Au∗, hu2n+1, hu2n+1) + G(fu∗, T u2n+1, T u2n+1))

}
+Lmin

{
G(fu∗,Au∗,Au∗),G(hu2n+1, T u2n+1, T u2n+1),G(fu∗, T u2n+1, T u2n+1),

G(hu2n+1, hu2n+1,Au∗)}+ G(v2n+1, fu
∗, fu∗)

}
= δmax

{
G(z, v2n+1, v2n+1),G(Au∗, z, z),G(v2n+1, v2n+2, v2n+2),

1

2
(G(Au∗, v2n+1, v2n+1) + G(z, v2n+2, v2n+2))

}
+ Lmin

{
G(z,Au∗,Au∗),

G(v2n+1, v2n+2, v2n+2),G(z, v2n+2, v2n+2) + G(v2n+1, v2n+1,Au∗)
}

+G(v2n+1, fu
∗, fu∗). (3)

Taking G-metric as continuous and letting n→∞, we get

G(Au∗, fu∗, fu∗) ≤ δG(Au∗, fu∗, fu∗) < G(Au∗, fu∗, fu∗),

which is a contradiction. Then Au∗ = fu∗ = z, that is, u∗ is a coincidence point for A and f.

On the other hand, AU ⊆ hU implies that z ∈ hU and there is a point v∗ ∈ U so that hv∗ = z. Next, we
submit that T v∗ = z, if not by using inequality (1) we get

G(z, T v∗, T v∗) = G(Au∗, T v∗, T v∗)

≤ δmax

{
G(fu∗, hv∗, hv∗),G(Au∗, fv∗, fv∗),G(〈v∗, T v∗, T v∗),

1

2
[G(Au∗, hv∗, hv∗) + G(fu∗, T v∗, T v∗)]

}
+ Lmin

{
G(fu∗,Au∗,Au∗),

G(hv∗, T v∗, T v∗),G(fu∗, T u∗, T u∗),G(hu∗, hu∗,Au∗)
}

≤ δG(fu∗, T v∗, T v∗) + L.0

< G(z, T v∗, T v∗),

which is a contradiction. Then T v∗ = z and v∗ is a coincidence point for h and T . Utilizing the weak
compatibility of the pair {f,A}, Az = Afu∗ = fAu∗ = fz, that is, Az = fz. Similarly, utilizing the weak
compatibility of the pair {h, T } we get hz = T z. Now, we assert z = fz, if not by utilizing inequality (1),
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we obtain

G(fz, z, z) = G(Az, T v∗, T v∗)

≤ δmax

{
G(fz, hv∗, hv∗),G(Az, fz, fz),G(hv∗, T v∗, T v∗),

1

2
(G(Az, hv∗, hv∗) + G(fz, T v∗, T v∗))

}
+Lmin

{
G(fz,Au∗,Au∗), G(hv∗, T v∗, T v∗),G(fz, T z, T z),G(hz, hz,Az)

}
≤ δG(fz, z, z) + L.0

< G(fz, z, z),

which is a contradiction. Hence, z = fz = Az.
On the same lines, we conclude that z = hz = Tz, that is, z is a common fixed point for f, h,A, and T .

If we assume w to be one more common fixed point and utilize inequality (1) we obtain

G(z, w∗, w∗) = G(Az, T w∗, T w∗)

≤ δmax

{
G(fz, hw∗, hw∗),G(Az, fz, fz),G(hw∗, T w∗, T w∗),

1

2
(G(Az, hw∗, hw∗) + G(fz, T w∗, T w∗))

}
+ Lmin

{
G(fz,Az,Az),

G(hw∗, T w∗, T w∗),G(fz, T w∗, T w∗),G(hw∗, hw∗,Az)
}

= δmax

{
G(z, w∗, w∗),G(z, z, z),G(w∗, w∗, w∗),

1

2
(G(z, w∗, w∗) + G(z, w∗, w∗))

}
+ Lmin

{
G(z, z, z),

G(hw∗, T w∗, T w∗),G(fz, T w∗, T w∗),G(hw∗, hw∗,Az)
}

≤ δG(z, w∗, w∗) + L.0

< G(z, w∗, w∗),

which is a contradiction. Hence, z is unique.
Theorem 1 is an enhancement of Theorem 2.1 [17] to four maps utilizing a closedness of the range space to

G-metric spaces, which is more natural than the completeness of the space. Also, it extends and generalizes
Theorem 3.2 [1], Theorem 2.3 [5], Theorem 1 and 2 [7], and so on existing in the literature.
Now, if A = T and f = h, we get the subsequent definition in G-metric space.

Definition 8 Let f and A be self maps of a G-metric space (U ,G). If there exist L ≥ 0 and δ ∈ [0, 1) such
that

G(Au,Av,Av)) ≤ δM(u, v, v) + Lmin{G(fu,Au,Au),G(fv,Av,Av),G(fu,Av,Av),G(fv, fv,Au)}, (4)

where

M(u, v, v) = max

{
G(fu, fv, fv),G(Au, fu, fu),G(fv,Av,Av), 1

2
[G(Au, fv, fv) + G(fu,Av,Av)]

}
,

for u, v ∈ U , then this inequality is called a generalized condition (B) for a pair of self maps in G-metric
space.



698 Volterra-Hammerstein Non-linear Integral Equation

Theorem 2 Theorem 1 is true even if we substitute

M(u, v, v) = max{G(fu, hv, hv),G(fu,Au,Au) + G(hv, T v, T v),G(fu, T v, T v) + G(hv,Au,Au)}

in inequality (1) by

M ′(u, v, v) = max

{
G(fu, hv, hv),

1

2
(G(fu,Au,Au) + G(hv, T v, T v)), 1

2
(G(fu, T v, T v) + G(hv,Au,Au))

}
.

If A = T and f = h, we have the subsequent corollary.

Corollary 1 Let f and A be self- maps of a G-metric space (U ,G) so that AU ⊆ fU and verify the generalized
condition (B) (4). If fU is closed, then the pair {f,A} has a coincidence point. Besides f and A have a unique
common fixed point, if a pair {f,A} is weakly compatible.

Corollary 1 extends Corollary 2.2 [17] to G-metric spaces.

Corollary 2 Corollary 1 is true even if we substitute

M(u, v, v) = max{G(fu, fv, fv),G(fu,Au,Au),G(fv,Av,Av),G(fu,Av,Av),G(fv,Au,Au)}

in inequality (1) by

M ′(u, v, v, ) = max

{
G(fu, fv, fv),

1

2
[G(fu,Au,Au) + G(fv,Av,Av)], 1

2
[(G(fu,Av,Av) + G(fv,Au,Au)]

}
.

Now, we support our conclusions with two subsequent examples.

Example 2 Let U = [0, 2] be endowed with a G-metric

G(u, v,w) = max{|u− v|, |u−w|, |v−w|}.

Consider the maps as

fu =

{
2− u, 0 ≤ u ≤ 1,
3
2 , 1 < u ≤ 2,

, hu =

 2u, 0 ≤ u < 1,
1, u = 1,
2, 1 < u ≤ 2,

Au =

{
u, 0 ≤ u ≤ 1,
u
2 , 1 < u ≤ 2,

, and T u =

{
1, 0 ≤ u ≤ 1,
3
4 , 1 < u ≤ 2.

Noticeably, (U ,G) is a G-metric space, hU = [0, 2] is closed, T U = { 34 , 1} ⊂ fU = [1, 2] and AU = [0, 1] ⊂ hU .
Choosing δ = 4

5 , in Theorem 1, we get

1. For u, v ∈ [0, 1], we obtain

G(Au, T v, T v) = |1− u| ≤ 8

5
|1− u| = 4

5
G(fu, fu,Au).

2. For u ∈ [0, 1) and v ∈ (1, 2], we obtain

G(Au, T v, T v) =
1

2
|2u− 1| ≤ 6

5
=

4

5
G(hu, T v, T v).

3. For 1 < u ≤ 2 and v ∈ [0, 1], we obtain

G(Au, T v, T v) =
1

2
|2− u| ≤ 12

5
|3− u| = 4

5
G(fu,Au,Au).
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4. For u, v ∈ (1, 2], we obtain

G(Au, T v, T v) =
1

2
|u− 1| ≤ 1 =

4

5
G(hv, T v, T v).

That is, maps f, h,A and T satisfy generalized condition (1). Also, 1 is a coincidence point satisfying
fA1 = Af1 = 1, and hT 1 = T h1 = 1, so the pairs {f,A} and {h, T } are weakly compatible. Also, f, h,A,
and T are discontinuous at 1. Consequently, suppositions of Theorem 1 are validated. Hence, 1 is a unique
common fixed point for the four maps.

Example 3 Let U = R+ be endowed with a G-metric

G(u, v,w) = max{|u− v|, |u−w|, |v−w|}.

Define f and A by

fu =

 2u+ 1, 0 ≤ u < 2,
2, u = 2,
5, u > 2,

and Au =

{
u+2
2 , 0 ≤ u ≤ 2,
4
3 , u > 2.

Noticeably, fU = [1, 5] is closed and AU = [1, 2] ⊂ fU . Taking δ = 2
3 , in Corollary 1, we get

1. For u, v ∈ [0, 2], we have

G(Au,Av,Av) =
1

2
|u− v| ≤ 4

3
|u− v| = 2

3
G(fu, fv, fv).

2. For u ∈ [0, 2) and v > 2, we have

G(Au,Av,Av) =
1

6
|3u− 2| ≤ 22

9
=

2

3
G(hv, T v, T v).

3. For u > 2 and v ∈ [0, 2], we have

G(Au,Av,Av) =
1

6
|3v− 2| ≤ 22

9
=

2

3
G(fu,Au,Au).

4. For u, v ∈ (2,∞), we have G(Au,Av,Av) = 0.

That is, maps f and A satisfy the generalized condition (1). Also, 2 is a coincidence point satisfying fA2 =
Af2 = 2, so pair {f,A} is weakly compatible. Also, f and A are discontinuous at 2.
Consequently, all the suppositions of Corollary 1 are verified and 2 is a unique common fixed point for the
maps f and A.

Remark 1 (i) We have evidenced common fixed point and coincidence point theorems for two pairs of self
maps in a G-metric space (U ,G) via generalized condition (B) without utilizing continuity or its variant
like reciprocal continuity, weak reciprocal continuity, conditional reciprocal continuity, sub-sequential
continuity, sequential continuity of type (Af ) or (Ah), and so on (see, Tomar and Karapinar [29]).
Further, the more natural notion, closedness of range space is taken in place of completeness of space.
Our conclusions extend, generalize, and refine the conclusions of Abbas et al. [1]—[4], Babu et al. [5],
Banach [6], Berinde [7]—[8], Chatterjea [9], Ćiríc [10], Kannan [18], Kikina et al. [19], Zamfirescu
[32], and references therein to the G-metric spaces.

(ii) Abbas et al. [1] presented an open problem, if Theorem 3.1 [1] is true for 1
2 < δ < 1? Here, we

answer in the affi rmative, in a non-complete G-metric space. It is clear from Examples 2 and 3 that
our Theorem 1 and Corollary 1 are valid for δ = 4

5 and δ = 2
3 respectively, taking the closedness of any

one of the range spaces fU (or hU) and the pairs (f,A) and (h, T ) to be weakly compatible.
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(iii) Abbas et al. [1] posed one more problem: Under what additional assumptions, either on a pair of
self maps or on the domain of pair of self maps, do the maps satisfying condition (B) has a common
fixed point? We also answer this problem in the affi rmative in a non-complete G-metric space. By
assuming containment of an involved pair of self maps and one of the range spaces to be closed, the
given discontinuous and a weakly compatible pair of self maps have a unique common fixed point (refer
to Example 3).

(iv) If G-metric space (U ,G) is not symmetric, a generalized condition (B) does not turn down to any metric
condition. Consequently, our conclusions do not turn down to the coincidence and common fixed point
theorems already present in metric spaces (U , dG).

(v) Theorems 1, 6 and Corollaries 1, 2 (see, Examples 2 and 3) support a significant fact that there exist
contractive conditions in G-metric spaces assuring the common fixed point at the point of discontinuity
of a self map (answer to Rhoades problem in [27]).

Now, motivated by the exploration of the geometry of the set of fixed points (see, [12]—[16], [20], [22]—[25],
[30]—[31], and so on), of a self-map, we define the circle, the fixed circle, and the common fixed circle via
G-metric and introduce u0-generalized conditions to obtain the fixed circle and common fixed circle theorems.

Definition 9 A circle CGu0,r with radius r > 0 having centre at u0 ∈ U in G-metric space (U ,G) is defined as

CGu0,r = {u ∈ U : G(u, u0, u0) = r}. (5)

Define

rA = inf{G(Au, u, u) : u 6= Au, u ∈ U},
rT = inf{G(T u, u, u) : u 6= T u, u ∈ U},
r
f

= inf{G(fu, u, u) : u 6= fu, u ∈ U},
r
h

= inf{G(hu, u, u) : u 6= hu, u ∈ U},
rAT = inf{G(Au, T u, T u) : Au 6= T u, u ∈ U},
r
fh

= inf{G(fu, hu, hu) : fu 6= hu, u ∈ U},

and r∗ = inf{rA , rT , rf , rh , rAT , rfh} for four self maps f, h,A, T and r∗ = inf{rA , rT , rAT } for two self maps
A and T .

Definition 10 Let CGu0,r be a circle having radius r and centre at u0 in G-metric space (U ,G). Then CGu0,r is
known as a fixed circle of map A : U → U if Au = u, u ∈ CGu0,r.

Definition 11 Let CGu0,r∗ be a circle having radius r
∗ and centre at u0 in G-metric space (U ,G). Then CGu0,r∗

is known as a common fixed circle of two maps A, T : U → U if Au = T u = u, u ∈ CGu0,r∗ .

Definition 12 Let CGu0,r∗ be a circle having radius r
∗ and centre at u0 in G-metric space (U ,G). Then CGu0,r∗

is known as a common fixed circle of four maps f, h,A, T : U → U if Au = T u = fu = hu = u, u ∈ CGu0,r∗ .

Definition 13 Let A : U → U be a self map in G-metric space (U ,G). Suppose there exists u0 ∈ U , L ≥ 0
and δ ∈ [0, 1) so that for G(Au, u, u) > 0, u ∈ U , we have

G(Au, u, u) ≤ δmax

{
G(Au, u0, u0),G(Au, u, u), 1

2
(G(Au, u0, u0) + G(u, u0, u0))

}
+Lmin

{
G(Au0, u, u),G(Au0, u0, u0),G(Au,Au0,Au0),G(Au0,Au,Au)

}
. (6)

Then, inequality (6) is called a u0-generalized condition (B) for a self map A in G-metric space.
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Definition 14 Let A and T be self maps of a G-metric space (U ,G). Suppose there exists u0 ∈ U , L ≥ 0
and δ ∈ [0, 1) so that for G(Au, T u, T u) > 0, u ∈ U , we have

G(Au, T u, T u)) ≤ δM(u, u0, u0) + Lmin

{
G(T u,Au,Au),G(T u0,Au0,Au0),

G(Au0,Au0, T u),G(T u0, T u0,Au)
}
, (7)

where

M(u, u0, u0) = max

{
G(T u, T u0, T u0),G(Au, T u, T u),G(Au,Au0,Au0),

1

2
[G(Au, T u0, T u0) + G(T u,Au0,Au0)]

}
.

Then, inequality (7) is called a u0-generalized condition (B) for a single pair of self maps in G-metric space.

Definition 15 Let f, h, S, and T be self maps of a G-metric space (U ,G). Suppose there exists u0 ∈ U ,
L ≥ 0, and δ ∈ [0, 1) so that for G(Au, hu, hu) > 0, u ∈ U , we have

G(Au, hu, hu) ≤ δM′(u, u0, u0) + Lmin

{
G(fu,Au,Au),G(T u0, fu0, T u0),G(Au, fu0, fu0),

G(hu, T u0, T u0)
}
,

where

M′(u, u0, u0) = max

{
G(T u, fu0, fu0),G(T u, fu, fu),G(fu, T u0, T u0),

1

2
[G(T u, hu0, hu0) + G(fu,Au0,Au0)]

}
. (8)

Then, inequality (8) is called a u0-generalized condition (B) for two pairs of self maps in G-metric space.

Next, we explore new fixed-circle results via u0-generalized condition (B) in G-metric spaces for a single
map, a pair, and two pairs of self maps .

Theorem 3 Suppose there exists a self-map A : U → U in G-metric space (U ,G) so that for u, u0 ∈ U ,

1. a map A satisfies a u0-generalized condition (B) (6),

2. rA ≤ G(Au, u0, u0) ≤ G(Au, u, u).

Then CGu0,rA , a circle having radius rA and centre at u0 in (U ,G) is a fixed circle of A.

Proof. Suppose Au0 6= u0, that is, G(Au0, u0, u0) > 0. Now, using hypotheses 1 and 2,

G(Au0, u0, u0)) ≤ δmax

{
G(Au0, u0, u0),G(Au0, u0, u0),

1

2
[G(Au0, u0, u0) + G(u0, u0, u0)]

}
+Lmin

{
G(Au0, u0, u0),G(Au0, u0, u0),G(Au0,Au0,Au0),G(Au0,Au0,Au0)

}
= δmax

{
G(Au0, u0, u0),G(Au0, u0, u0),

1

2
G(Au0, u0, u0)

}
+ L.0

≤ δG(Au0, u0, u0),
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which is a contradiction. Hence, Au0 = u0. If rA = 0, then CGu0,rA = {u0} and Au0 = u0, that is, CGu0,rA is a
fixed circle of A, and the result is concluded. So, let rA > 0 and u ∈ CGu0,rA be any point such that Au 6= u.
From definition of rA, G(Au, u, u) > rA. Again, since G(Au, u, u) > 0,

G(Au, u, u)) ≤ δmax

{
G(Au, u0, u0),G(Au, u, u), 1

2
[G(Au, u0, u0) + G(u, u0, u0)]

}
+Lmin

{
G(Au0, u, u),G(Au0, u0, u0),G(Au,Au0,Au0),G(Au0,Au,Au)

}
= δmax

{
G(Au, u0, u0),G(Au, u, u), 1

2
[G(Au, u0, u0) + r]

}
+ L.0

≤ δG(Au, u, u),

which is a contradiction. Hence, Au = u, for all u ∈ CGu0,rA , that is, A fixes the circle C
G
u0,rA .

Example 4 Let U = R and a G-metric G : U × U × U → R+ be

G(u, v,w) = max{|u− v|, |v−w|, |w− u|}.

Define A : U → U as

Au =

{
u, u ∈ (−5, 5),
u
5 , otherwise.

Now,

rA = inf

{
4u

5
: u ≥ 5

}
= 4.

If u0 = 0, then for u ∈ U , a map A satisfies all the suppositions of Theorem (3) with δ ∈ [ 29 , 1) and L ≥ 0.
Hence, CG0,3 = {−4, 4} is a fixed circle of A.

Theorem 4 Suppose there exist self-maps A, T : U → U in G-metric space (U ,G) so that for u, u0 ∈ U ,

1. a pair of maps A, T satisfies the u0-generalized condition (B) (7),

2. G(Au, u0, u0) ≤ G(Au, T u, T u),

3. G(T u, u0, u0) ≤ G(Au, T u, T u),

4. Au0 = T u0 = u0,

5. A (or T ) satisfies the u0-generalized condition (B) (6).

Then CGu0,r∗ is a common fixed circle of A and T .

Proof. Let r∗ = 0. Then CGu0,r∗ = {u0} and CGu0,r∗ is a common fixed circle of A and T , and this concludes
the result. So presume that r∗ > 0 and u ∈ CGu0,r∗ be any point so that Au 6= T u, that is, G(Au, T u, T u) > 0.
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Now, using hypotheses 1—3,

G(Au, T u, T u)) ≤ δmax

{
G(T u, T u0, T u0),G(Au, T u, T u),G(Au,Au0,Au0),

1

2
[G(Au, T u0, T u0) + G(T u,Au0,Au0)]

}
+ Lmin

{
G(T u,Au,Au),G(T u0,Au0,Au0),

G(Au0,Au0, T u),G(T u0, T u0,Au)
}

= δmax

{
G(T u, u0, u0),G(Au, T u, T u),G(Au, u0, u0),

1

2
[G(Au, u0, u0) + G(T u, u0, u0)]

}
+Lmin

{
G(T u,Au,Au),G(u0, u0, u0),G(u0, u0, T u),G(u0, u0,Au)

}
= δG(Au, T u, T u),

which is a contradiction. So, Au = T u. Now, suppose A satisfies u0-generalized condition (B) (6), then
following the pattern of Theorem 3, Au = u = T u. If we assume, T satisfies u0-generalized condition (B)
(6), then again following the similar pattern T u = u = Au. Consequently, Au = T u = u, u ∈ CGu0,r∗ , that is,
CGu0,r∗ is a common fixed circle of A and T .

Example 5 Let U = R and a G-metric G : U × U × U → R+ be

G(u, v,w) = max{|u− v|, |v−w|, |w− u|}.

Define A, T : U → U as

Au =

{
u, u ∈ [0, 12),
u
4 , otherwise,

and T u =

{
u, u ∈ [0, 12),
u
2 , otherwise.

Now,

rA = inf{3u

4
: u ≥ 12} = 9,

rT = inf{u
2

: u ≥ 12} = 6,

rAT = inf{u
4

: u ≥ 12} = 3,

that is, r∗ = inf{rA , rT , rAT } = 3. If u0 = 0, then for all u ∈ U , maps A and T validate the suppositions of
Theorem 4 for δ ∈ [ 12 , 1) and L ≥ 0. Hence, CG0,3 = {−3, 3} is a common fixed circle of A and T .

Theorem 5 Suppose there exist self-maps f, h,A, T : U → U in G-metric space (U ,G) so that AU ⊆ fU or
T U ⊆ hU and pairs {A,h} and {T ,f} are weakly compatible so that

1. two pairs of maps (f, h) and (A, T ) satisfy the u0-generalized condition (B) (8),

2. G(T u, u0, u0) ≤ G(T u, fu, fu),

3. G(fu, u0, u0) ≤ G(T u, fu, fu),

4. G(′T u, fu, fu) ≤ G(Au, hu, hu),

5. Au0 = T u0 = fu0 = hu0 = u0,

6. map A (or h) and T (or f) satisfy a u0-generalized condition (B) (6).
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Then CGu0,r∗ is a common fixed circle of f, h,A, and T .

Proof. Let r∗ = 0, then CGu0,r∗ = {u0} and CGu0,r∗ is a common fixed circle of f, h,A, and T , and the validation
of conclusion is complete. So presume that r∗ > 0 and u∗ ∈ CGu0,r∗ be any point so that u

∗ = Au 6= T u. Now,
using hypotheses 1—5,

G(Au, hu, hu)) ≤ δmax

{
G(T u, fu0, fu0),G(T u, fu, fu),G(fu, T u0, T u0),

1

2
[G(T u, hu0, hu0) + G(fu,Au0,Au0)]

}
+ Lmin

{
G(fu,Au0,Au0),

G(T u0, fu0, fu0),G(Au, fu0, fu0),G(hu, T u0, T u0)
}

= δmax

{
G(T u, u0, u0),G(T u, fu, fu),G(fu, u0, u0),

1

2
[G(T u, u0, u0) + G(fu, u0, u0)]

}
+ Lmin

{
G(fu, u), u0),

G(T u0, fu0, fu0),G(Au, u0, u0),G(hu, u0, u0)

}
≤ δmax

{
G(T u, fu, fu),G(T u, fu, fu),G(T u, fu, fu),

1

2
[G(T u, fu, fu) + G(T u, fu, fu)]

}
≤ δG(Au, hu, hu),

which is a contradiction. Hence, Au = hu = u∗. On the other hand, AU ⊆ fU implies that u∗ ∈ fU and
there exists a point v ∈ U so that fv = u∗. Next, we submit that fv = T v, if not by using inequality (8) and
hypothesis 4, we get

G(T v, fv, fv) ≤ G(Av, hv, hv)

≤ δmax

{
G(T v, fu0, fu0),G(T v, fv, fv),G(fv, T u0, T u0),

1

2
[G(T v, hu0, hu0) + G(fv,Au0,Au0)]

}
+ Lmin

{
G(fv,Au0,Au0),

G(T u0, fu0, fu0),G(Av, fu0, fu0),G(hu, T u0, T u0)
}

= δmax

{
G(T v, u0, u0),G(T v, fv, fv),G(fv, u0, u0),

1

2
[G(T v, u0, u0) + G(fv, u0, u0)]

}
+ Lmin

{
G(fv, u0, u0),

G(T u0, u0, u0),G(Av, u0, u0),G(hu, u0, u0)

}
≤ δmax

{
G(T (v, fv, fv),G(T v, fv, fv),G(T v, fv, fv),

1

2
[G(T v, fv, fv) + G(T v, fv, fv)]

}
= δG(T v, fv, fv),
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which is a contradiction. Then T v = fv = u∗ and v is a coincidence point for T and f. Utilizing weak
compatibility of the pair {A,h}, Au∗ = Ahu = hAu = hu∗, that is, Au∗ = hu∗. Similarly, utilizing the weak
compatibility of the pair {T , f} we get T u∗ = fu∗.
Suppose A satisfies u0-generalized condition (B) (6), then following the pattern of Theorem 3, Au∗ = u∗,

consequently, Au∗ = hu∗ = u∗, u∗ ∈ CGu0,r∗ . If we suppose that T satisfies u0-generalized condition (B) (6),
then again following the similar pattern T u∗ = fu∗ = u∗, u∗ ∈ CGu0,r∗ . A similar result holds if we assume that
h as well f satisfies the u0-generalized condition (B) (6), that is, CGu0,r∗ is a common fixed circle of A, T , f,
and h.

Example 6 Let U = R and a G-metric G : U × U × U → R+ be

G(u, v,w) = max{|u− v|, |v−w|, |w− u|}.

Define A, T : U → U as

Au =

{
u, u ∈ [−10, 10],

2, otherwise,
T u =

{
u, u ∈ (−10, 10),

0, otherwise,

fu =

{
u, u ∈ (−10, 10),
u
5 , otherwise,

and hu =

{
u, u ∈ [−10, 10],

5, otherwise.

Now, AU ⊆ fU , T U ⊆ hU , pairs {A,h}, {T ,f} are weakly compatible, and

rA = inf{|u− 2| : u ∈ (−∞, 10) ∪ (10,∞)} = 8,

rT = inf{|u| : u ∈ (−∞, 10] ∪ (10,∞)} = 10,

rAT = inf{|2− 0| : u ∈ (−∞, 10) ∪ (10,∞)} = 2,

rA = inf{4u

5
: u ∈ (−∞, 10] ∪ [10,∞)} = 8,

r
h

= inf{|u− 5| : u ∈ (−∞, 10) ∪ [10,∞)} = 5,

r
fh

= inf{ |25− u|
5

: u ∈ (−∞, 10) ∪ [10,∞)} = 3,

that is, r∗ = inf{rA , rT , rf , rh , rAT , rfh} = 2. If u0 = 5, then for all u ∈ U maps A, T , f, and h validate the
suppositions of Theorem 5 with δ ∈ [ 23 , 1) and L ≥ 0. Hence, CG5,2 = {3, 7} is a common fixed circle of maps
A, T , f, and h.

Remark 2 (i) Noticeably, the radius of the fixed circle, as well as the common fixed circle is independent
of the selection of center in Theorems 3, 4, and 5 (see, Examples 4, 5, and 6).

(ii) Theorems 4 and 5 have answered, in the setting of G-metric space, regarding the existence of the condi-
tions to make any circle CGu0,r as the common fixed circle for two as well as four self-maps respectively
(see, Examples 5, and 6).

(iii) The investigation of new conditions which ensure a disc to be fixed by self-map is also very significant.
If we replace the equality in (5) (Definition 9) by less than or equal to sign, we get the definition of a
disc in a G-metric space. On the lines of Definition 10-12, we may define the fixed discs and common
fixed discs (for a pair and two pairs of self-maps) and by slightly modifying the postulates of Theorems
3, 4, and 5, we may establish the fixed disc and common fixed disc conclusions. For more fixed disc
conclusions, we refer to [15], [25], [31], and so on.
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3 Application

We utilize Theorem 1 to investigate the solution for a system of non-linear Volterra-Hammerstein integral
equations in real-valued and measurable functions on (0,∞), that is, U = L2((0,∞),R). Define d : U × U →
R+ so that

d(f, h) =

∫ ∞
0

|f(u)− h(u)|du,

for each f, h ∈ U . Endow U with a G-metric as

G(u, v,w) = max{d(u, v), d(v,w), d(u,w)}, u, v,w ∈ U .

Clearly, (U ,G) is a G-metric space. Assume the system of Volterra-Hammerstein non-linear integral equations
to be

u(t) = p1(t)− p2(t) + λ

∫ t

0

m(t, s)qi(s, u(s))ds+ µ

∫ ∞
0

k(t, s)hj(s, u(s))ds, (9)

t ∈ [0,∞), where p1, p2 are known, with p1(t) ≥ p2(t), λ, µ are real numbers, m(t, s), k(t, s), qi, hj ,
i 6= j, i, j = 1, 2, and are real-valued functions measurable in t and s on [0,∞), so that the subsequent
conditions are satisfied

(C1) supu∈[0,∞)
∫∞
0
|m(t, s)|dt = M1 <∞ ;

(C2) supu∈[0,∞)
∫∞
0
|k(t, s)|dt = M2 <∞ ;

(C3) qi ∈ U , i = 1, 2 and there exists K1 > 0 so that for s ∈ [0,∞)

|qi(s, u(s))− qj(s, v(s))| ≤ K1|u(s)− v(s)| ;

(C4) hi ∈ U and there exists K2 > 0 so that for s ∈ [0,∞)

|hi(s, u(s))− hj(s, v(s))| ≤ K2|u(s)− v(s)| for all u, v ∈ U .

Theorem 6 Under the conditions (C1)—(C4), assume that the subsequent postulates hold

(a) µ
∫∞
0
k(t, s)hi

(
s, λ

∫ s
0
m(s, t)qj(t, u(t))dt+ p1(s)− p2(s)

)
ds = 0, i 6= j and i, j = 1, 2.

(b) For u ∈ U

λ

∫ t

0

m(t, s)qi(s, u(s))ds = −p1 + p2 + µ

∫ ∞
0

k(t, s)hi(s, u(s))ds = Γi(s) ∈ U .

(c) For some Γi(t) ∈ U . there exists Θi(t) ∈ U such that

−p2(t) + λ

∫ t

0

m(t, s)qi(s, u(s)− Γi)(s) + p2(s)ds

= −p1 + µ

∫ ∞
0

k(t, s)
(
hi(s,Γi(s)− p2(s))− hi(s, u(s))

)
ds = Θi(t), i = 1, 2.

Then the system of Volterra-Hammerstein non-linear integral equations (9) has a unique solution in U if
|µ|K2M2 < 1 and |λ|K1M1

1−|µ|K2M2
< 1.
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Proof. Define f, h,A, and T as

fu(t) = u(t)− p1(t) + µ

∫ ∞
0

k(t, s)h2(s, u(s))ds,

hu(t) = u(t)− p1(t) + µ

∫ ∞
0

k(t, s)h1(s, u(s))ds,

Au(t) = −p2(t) + λ

∫ t

0

m(t, s)q1(s, u(s))ds,

T u(t) = −p2(t) + λ

∫ t

0

m(t, s)q2(s, u(s))ds.

The point u is a solution of (9) if and only if u is a common fixed point for f, h,A, and T . We assert that
the postulates of Theorem 1 are valid. Firstly, we show that the maps are self maps on U .

|Au(t)| ≤ |p2(t)|+ |λ|
∫ t

0

|m(t, s)q1(s, u(s))|ds

≤ |p2(t)|+ |λ| sup
t∈[0,∞)

|m(t, s)|
∫ t

0

|q1(s, u(s))|ds

and ∫ ∞
0

|Au(t)|dt ≤
∫ ∞
0

|p2(t)|dt+ |λ| sup
t∈[0,∞)

∫ ∞
0

(
|m(t, s)|

∫ ∞
0

|q1(s, u(s))|ds
)
dt.

Since p2 ∈ U and using conditions (C1), we get∫ ∞
0

|Au(t)|dt ≤
∫ ∞
0

|p2(t)|dt+ |λ|M1

∫ ∞
0

|q1(s, u(s))|ds < +∞.

Hence, A ∈ U . Similarly, we find T ∈ U .
For map f, since u, p1, h2 ∈ U and using (C2), we get∫ ∞

0

|fu(t)|dt ≤
∫ ∞
0

|p1(t)|+
∫ ∞
0

|u(t)|dt+M2|µ|
∫ ∞
0

|h2(s, u(s))|ds < +∞.

Hence, f ∈ U , similarly h ∈ U . Now, we assert that T U ⊆ fU , by using (a) we get

f(T u(t) + p1(t)) = T u(t) + µ

∫ ∞
0

k(t, s)h2(s, p1 − p2 + λ

∫ t

0

m(t, s)q1(t, u(t))dt)ds

= T u(t).

Hence, T U ⊆ fU . Similarly, we find AU ⊆ hU . Now, we prove that fU is G-closed. Take a sequence {un} ⊆ U
converging to u ∈ U and the sequence {fun} converges to v. We claim that v = fu ∈ fU , by using condition
(C4), we get

d(fun, fu) =

∫ ∞
0

|fun − fu|dt ≤ d(un, u) +

∫ ∞
0

|µ|M2

∫ ∞
0

|h1(s, un(s))− h2(s, u(s))|ds

≤ d(un, u) + |µ|M2K2

∫ ∞
0

|un(s)− u(s)|ds

= (1 + |µ|M2K2)d(un, u)→ 0 as n→∞,

that is, limn→∞ G(un, u, u) = 0. Hence, fU is G-closed.
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Next, we establish that pair {f,A} is weakly compatible. Suppose that u is a coincidence point for f and
A, we have

fAu = Au− p1(t) + µ

∫ ∞
0

(
k(t, s)h2(s,−p2 + λ

∫ s

0

m(s, t)q1(t, u(t)))dt
)
ds

= −p2(t) + λ

∫ t

0

m(t, s)q1(s, u(s))ds− p1(t)

+µ

∫ ∞
0

(
k(t, s)h2(s,−p2 + λ

∫ s

0

m(s, t)q1(t, u(t)))dt
)
ds,

Afu = −p2(t) + λ

∫ t

0

(
m(t, s)q1(s, u(s)− p1 + µ

∫ ∞
0

k(t, s)h2(t, u(t)))dt
)
ds,

|fAu−Afu| =

∣∣∣∣−p1(t)− p2(t) + λ

∫ t

0

m(t, s)q1(s, u(s))ds

+µ

∫ ∞
0

(
k(t, s)h2(s,−p2 + λ

∫ s

0

m(s, t)q1(t, u(t))dt
)
ds+ p2(t)−

λ

∫ t

0

(
m(t, s)q1(s, u(s)− p1 + µ

∫ ∞
0

k(t, s)h2(t, u(t))dt)
)
ds

∣∣∣∣
=

∣∣∣∣λ ∫ t

0

m(t, s)q1(s, u(s))ds+ µ

∫ ∞
0

(
k(t, s)h2(s,Γ2(s)− p2(s))ds

)
+µ

∫ ∞
0

k(t, s)h2(s, u(s))ds− λ
∫ t

0

m(t, s)q1(s, u(s)− Γ1(s) + p2(s))ds

∣∣∣∣ .
From (b) and (c), we get

|fAu−Afu| =

∣∣∣∣−p1 + p2 + µ

∫ ∞
0

k(t, s)h1(s, u(s))ds+ p1 − p2

+µ

∫ ∞
0

k(t, s)h2(s, u(s))ds

∣∣∣∣
=

∣∣∣∣µ∫ ∞
0

k(t, s)
(
h1(s, u(s))− h2(s, u(s))

)
ds

∣∣∣∣
≤

∫ ∞
0

|k(t, s)|
∣∣h1(s, u(s))− h2(s, u(s))∣∣ds

≤ K

∫ ∞
0

|k(t, s)|.|u(s)− u(s)|ds = 0.

Hence, the pair {f,A} is weakly compatible. On the same pattern, the pair {h, T } is also weakly compatible.
Now,

d(Au, T v) =

∫ ∞
0

|Au(s)− T v(s)|ds

≤ |λ|
∫ ∞
0

|m(t, s)|(|q1(s, u(s))− q2(s, v(s))|ds

≤ |λ|K1M1

∫ ∞
0

|u(s)− v(s)|ds

= |λ|K1M1d(u, v).
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Similarly,

d(fu, hv) ≤ |u(t)− v(t)− µ
∫ ∞
0

k(t, s)(h1(s, u(s))− h2(s, v(s))ds|

≥ d(u, v)− |µ|K2M2d(u, v)

= (1− |µ|K2M2)d(u, v).

Hence,

d(Au, T v) ≤ |λ|K1M1

1− |µ|K2M2
d(fu, hv),

that is,

G(Au, T v, T v) ≤ δG(fu, hv, hv)

≤ δM(u, v, v) + Lmin{G(fu,Au, u),G(hv, T v, T v),G(fu, T v, T v),G(Au, hv, hv)},

where δ = |λ|K1M1

1−|µ|K2M2
< 1. Consequently, all the postulates of Theorem 1 are valid and f, h,A, and T have a

unique common fixed point and this point is the solution of a system (9).

Remark 3 Pathak et al. [26] studied system (9) in a metric space, so Theorem 6 generalizes Theorem 4.1
[26] to G-metric spaces.

4 Conclusion

We have established the existence and uniqueness of a fixed point, coincidence point, and common fixed
point for a single pair and two pairs of discontinuous self maps via generalized condition (B) in G-metric
spaces. Our theorems and corollaries are improved and enhanced versions of renowned conclusions wherein
completeness and continuity have not been utilized. We have provided a novel explanation to two open
problems of Abbas et al. [1] regarding the range of δ and additional assumptions, either on pair of self maps
or on the domain of pair of self maps, satisfying condition (B) for the survival of common fixed points and
to a problem of Rhoades [27] on the question of the existence of contractive map having a fixed point at
the point of discontinuity in a non-complete G-metric space. Further, we have introduced circle, fixed circle,
common fixed circle, via novel u0-generalized condition (B) to examine the geometry of a set of fixed points in
a G-metric space. It is relevant to examine some conditions which exclude the possibility of an identity map
in Theorems 3, 4, and 5 in some future work. Illustrative examples and an application to find the solution
of the Volterra-Hammerstein non-linear integral equation authenticate the utility of our conclusions.

Acknowledgement. The authors thank the referee for his / her constructive comments, in particular,
for calling our attention to the references [20] and [25].
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