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Abstract

Incited by the lately proposed exciting concept of the α-admissibility type S, in this manuscript, we
come by a couple of fixed point results involving Geraghty functions in b-metric-like context. Further, our
findings complement, extend and unify several known results in the existing studies and also bring forth
some new theorems as consequences. Moreover, we construct suitable non-trivial numerical examples to
endorse our obtained results. Finally, we claim that the notion of cyclic (α, β)-admissible mappings of
type S, coined by Mongkolkeha et al. [J. Nonlinear Sci. Appl., 11(9):1056-1069, 2018], is equivalent to
that of cyclic (α, β)-admissible mappings.

1 Introduction and Preliminaries

Metric fixed point theory comes out as an intensive research domain since the remarkable Banach contraction
principle, [4], in 1922. Instinctively, umpteen articles came to the light where generalizations of the metric
notion are studied by revising the basic metric axioms [5, 6, 8, 9, 12, 13, 14, 16, 19, 20, 22, 27]. Maybe one
of such compelling extensions is the idea of b-metric-like spaces. Alghamdi et al. [2] conceived the notion of
a b-metric-like space as a proper generalization of the partial metric spaces, metric-like spaces and b-metric
spaces, which is as follows.

Definition 1 ([2]) Let ∆ be a non-empty set and s ≥ 1 be a given real number. Suppose the mapping
d : ∆×∆→ [0,∞) satisfies:

(i) d(ρ, %) = 0 implies that ρ = %;

(ii) d(ρ, %) = d(%, ρ), for all ρ, % ∈ ∆;

(iii) d(ρ, %) ≤ s[d(ρ, z) + d(z, %)], for all ρ, %, z ∈ ∆.

Then (∆, d) is called a b-metric-like space with the coeffi cient s.

The notions of Cauchy sequences, completeness, open subsets on b-metric-like spaces are defined in [2] and
furthermore, the continuity in such spaces is defined in [7]. For more notions and topological developments
in b-metric-like spaces, readers are referred to [2, 7, 18] and the references therein. However, the notion of
α-admissibility was initially introduced by Samet et al. [28] in the standard metric space setting.
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Definition 2 ([28]) Let ∆ be any non-empty set and also suppose that α : ∆×∆→ [0,∞) be any mapping.
A self-mapping Γ defined on ∆ is called an α-admissible mapping if the following condition holds:

ρ, % ∈ ∆ with α(ρ, %) ≥ 1 implies that α(Γρ,Γ%) ≥ 1.

In a recent article, Sintunavarat [30] coined a new kind of α-admissibility in the b-metric context, which
is termed as α-admissibility of type S and was defined as follows:

Definition 3 ([30]) Let α : ∆×∆→ [0,∞) be any mapping where ∆ is a non-empty set and also let s be
a given real number such that s ≥ 1. A mapping Γ : ∆ → ∆ is said to be an α-admissible mapping of type
S if the following holds:

ρ, % ∈ ∆ with α(ρ, %) ≥ s implies that α(Γρ,Γ%) ≥ s.

Bringing into play this interesting concept and also altering distance functions, the author affi rmed several
fixed point results along with some non-trivial numerical examples. For a purposeful study, the readers are
referred to [23, 30] for more terminologies, theories and results on this notion. Subsequently, we bring up
the idea of a Geraghty function which was originated by Geraghty [15].

Definition 4 ([15]) A function β : [0,∞) → (0, 1) is called a Geraghty function if (rn) ⊆ [0,∞) and
limn→∞β(rn) = 1+ implies that limn→∞rn = 0+.

In this article, before all else, we explore a couple of exciting fixed point theorems involving α-admissible
self-maps and Geraghty functions in the setting of b-metric-like spaces. Our achieved results are demonstrated
by competent constructive and non-trivial numerical examples. Additionally, we infer a number of fixed
point results from the obtained theorems as consequences in various abstract spaces. Further, we make an
important remark on the concept of cyclic (α, β)-admissible mappings of type S regarding its equivalency
with the previous kind of cyclic (α, β)-admissible mappings.

2 Fixed Point Results

This section revolves around a couple of fixed point results related to α-admissible self-maps involving a
Geraghty function. We construct non-trivial numerical examples to validate the achieved findings as well.

Theorem 1 Let (∆, d) be a complete b-metric-like space with coeffi cient s such that s ≥ 1, and let Γ be any
α-admissible self-map of type S. Assume that whenever α(ρ, %) ≥ s with ρ 6= %, Γ satisfies

s3(d(Γρ,Γ%) + l)α(ρ,Γρ)α(%,Γ%) ≤ β(M(ρ, %))M(ρ, %) + l (1)

for s ≥ 1, where

M(ρ, %) = max

{
d(ρ, %), d(ρ,Γρ), d(%,Γ%),

d(ρ,Γ%) + d(%,Γρ)

4s

}
,

β is a Geraghty function and l ≥ 1. Suppose

(i) there exists ρ0 ∈ ∆ such that α(ρ0,Γρ0) ≥ s;

(ii) α has transitive property of type S, that is, for all ρ, %, z ∈ ∆,

α(ρ, %) ≥ s and α(%, z) ≥ s implies that α(ρ, z) ≥ s;

(iii) Γ is continuous;

(iiia) if there exists a sequence (ρn) with limn→∞ρn = u and α(ρn, ρn+1) ≥ s, then

α(ρn, u) ≥ s and α(u,Γu) ≥ 1

s
.



568 Some Fixed Point Theorems Involving α-Admissible Self-Maps

Then Fix(Γ) 6= ∅, with d(u, u) = 0 where u ∈ Fix(Γ).

Proof. From condition (i), there is a ρ0 ∈ ∆ such that α(ρ0,Γρ0) ≥ s holds. Now, utilizing this, we define
a sequence (ρn) by ρn = Γnρ0 for all n ∈ N0 where N0 = N∪{0}. If ρp = ρp+1 for some p ∈ N0, then Γ must
have a fixed point ρp ∈ ∆. So, we assume ρn 6= ρn+1 for all n ∈ N0. Since Γ is an α-admissible self-map of
type S, we have

α(ρ1,Γρ1) ≥ s.

Similarly, applying mathematical induction, we get

α(ρn,Γρn) ≥ s,

for all n ∈ N0. Hence from (1), we have

d(Γρn,Γρn+1) + l ≤s3(d(Γρn,Γρn+1) + l)α(ρn,Γρn)α(ρn+1,Γρn+1)

≤β(M(ρn, ρn+1))M(ρn, ρn+1) + l

where

M(ρn, ρn+1) = max

{
d(ρn, ρn+1), d(ρn, ρn+1), d(ρn+1, ρn+2),

d(ρn, ρn+2) + d(ρn, ρn)

4s

}
≤ max

{
d(ρn, ρn+1), d(ρn+1, ρn+2),

s[d(ρn, ρn+1) + d(ρn+1, ρn+2) + d(ρn, ρn+1) + d(ρn+1, ρn)]

4s

}
= max

{
d(ρn, ρn+1), d(ρn+1, ρn+2),

3d(ρn, ρn+1) + d(ρn+1, ρn+2)

4

}
= max

{
d(ρn, ρn+1), d(ρn+1, ρn+2)

}
.

When M(ρn, ρn+1) = d(ρn+1, ρn+2), then

d(ρn+1, ρn+2) + l ≤ s3(d(ρn+1, ρn+2) + l)α(ρn+1,Γρn+1)α(ρn+2,Γρn+2)

≤ β(d(ρn+1, ρn+2))d(ρn+1, ρn+2) + l

< d(ρn+1, ρn+2) + l,

a contradiction. Hence M(ρn, ρn+1) = d(ρn, ρn+1) and

d(ρn+1, ρn+2) + l ≤ s3(d(ρn+1, ρn+2) + l)α(ρn+1,Γρn+1)α(ρn+2,Γρn+2)

≤ β(d(ρn, ρn+1))d(ρn, ρn+1) + l

< d(ρn, ρn+1) + l. (2)

So, we have d(ρn+1, ρn+2) < d(ρn, ρn+1). Hence (d(ρn, ρn+1)) is a decreasing sequence of reals. Let

lim
n→∞

d(ρn, ρn+1) = r.

First we suppose, r > 0. Then from (2), we get

d(ρn+1, ρn+2) ≤ β(d(ρn, ρn+1))d(ρn, ρn+1),

this implies
d(ρn+1, ρn+2)

d(ρn, ρn+1)
≤ β(d(ρn, ρn+1)) < 1.
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Letting n→∞ and using the Sandwich theorem, we obtain

lim
n→∞

β(d(ρn, ρn+1)) = 1

which implies that
lim
n→∞

d(ρn, ρn+1) = 0.

Next, we show that (ρn) is Cauchy. On the contrary, suppose the sequence is not Cauchy. Then for any
given ε > 0, there exist two subsequences of naturals, say (mk) and (nk) such that mk > nk > k with

d(ρmk , ρnk) ≥ ε and d(ρmk , ρnk−1) < ε.

Using the triangular inequality, we get

ε ≤ d(ρmk , ρnk) ≤ s[d(ρmk , ρnk−1) + d(ρnk−1, ρnk)] < s[ε+ d(ρnk−1, ρnk)]. (3)

Taking limit as k →∞, we get
ε

s
≤ lim sup

k→∞
d(ρmk , ρnk−1) ≤ ε.

Again, we know,

d(ρmk+1, ρnk) ≤ s[d(ρmk+1, ρmk) + d(ρmk , ρnk)]

< sd(ρmk+1, ρmk) + s2[d(ρmk , ρnk−1) + d(ρnk−1, ρnk)].

Letting k →∞, we obtain
lim sup
k→∞

d(ρmk+1, ρnk) ≤ s2ε. (4)

Furthermore, employing the triangle inequality,

ε ≤ d(ρmk , ρnk) ≤ s[d(ρmk , ρmk+1) + d(ρmk+1, ρnk)].

Utilizing (4) and letting k →∞, we have

ε ≤ s lim sup
k→∞

d(ρmk+1, ρnk)

and that leads to
ε

s
≤ lim sup

k→∞
d(ρmk+1, ρnk) ≤ s2ε.

Finally,
ε

s
≤ lim sup

k→∞
d(ρmk+1, ρnk) ≤ s lim sup

k→∞
[d(ρmk+1, ρnk+1) + d(ρnk+1, ρnk)].

As k →∞,
ε

s2
≤ lim sup

k→∞
d(ρmk+1, ρnk+1). (5)

Moreover,

d(ρmk+1, ρnk+1) ≤ s[d(ρmk+1, ρnk) + d(ρnk , ρnk+1)]

≤ s3ε+ sd(ρnk , ρnk+1).

Letting k →∞,
lim sup
k→∞

d(ρmk+1, ρnk+1) ≤ s3ε. (6)

From (5) and (6), we obtain
ε

s2
≤ lim sup

k→∞
d(ρmk+1, ρnk+1) ≤ s3ε. (7)
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Since α has transitive property of type S, using this repeatedly we have

α(ρmk , ρnk) ≥ s.

Further, we claim that ρmk 6= ρnk . Otherwise, we have ρmk = ρnk , that is Γρmk = Γρnk , i.e., ρmk+1 = ρnk+1,
which implies that

d(ρmk , ρmk+1) < d(ρmk−1, ρmk) < · · · < d(ρnk , ρnk+1) = d(ρmk , ρmk+1),

and this is impossible. Hence from (1)

s3(d(Γρmk ,Γρnk) + l) ≤ s3(d(Γρmk ,Γρnk) + l)α(ρmk
,Γρmk

)α(ρnk
,Γρnk

)

≤ β(M(ρmk , ρnk))M(ρmk , ρnk) + l, (8)

where

M(ρmk , ρnk) = max

{
d(ρmk , ρnk), d(ρmk , ρmk+1), d(ρnk , ρnk+1),

d(ρmk , ρnk+1) + d(ρnk , ρmk+1)

4s

}
≤ max

{
d(ρmk , ρnk), d(ρmk , ρmk+1), d(ρnk , ρnk+1),

s[d(ρmk , ρnk) + d(ρnk , ρnk+1) + d(ρnk , ρmk) + d(ρmk , ρmk+1)]

4s

}
.

Letting k →∞, we have
lim sup
k→∞

M(ρmk , ρnk) ≤ lim sup
k→∞

d(ρmk , ρnk). (9)

Therefore from (3), (8) and (9),

s3 lim sup
k→∞

d(Γρmk ,Γρnk) + l ≤ s3[lim sup
k→∞

d(Γρmk ,Γρnk) + l]

≤ s3[lim sup
k→∞

d(Γρmk ,Γρnk) + l]α(ρmk
,Γρmk

)α(ρnk
,Γρnk

)

≤ lim sup
k→∞

β(M(ρmk , ρnk)) lim sup
k→∞

M(ρmk , ρnk) + l, (10)

so,

s3 lim sup
k→∞

d(ρmk+1, ρnk+1) ≤ lim sup
k→∞

β(M(ρmk , ρnk)) lim sup
k→∞

M(ρmk , ρnk)

≤ lim sup
k→∞

β(M(ρmk , ρnk)) lim sup
k→∞

d(ρmk , ρnk)

≤ lim sup
k→∞

β(M(ρmk , ρnk))sε

and using (7), we obtain

s3 ε

s2
≤ lim sup

k→∞
β(M(ρmk , ρnk))sε,

sε ≤ lim sup
k→∞

β(M(ρmk , ρnk))sε.

Now we conclude
lim sup
k→∞

β(M(ρmk , ρnk)) ≥ 1.

This implies
lim sup
k→∞

β(M(ρmk , ρnk)) = 1.
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Hence we have
lim sup
k→∞

M(ρmk , ρnk) = 0. (11)

Using (11) in (10), we have
s3 lim sup

k→∞
d(ρmk+1, ρnk+1) ≤ 0

which implies that
lim sup
k→∞

d(ρmk+1, ρnk+1) = 0.

Now using triangle inequality, we get

d(ρmk , ρnk) ≤ s[d(ρmk , ρmk+1) + d(ρmk+1, ρnk)]

≤ sd(ρmk , ρmk+1) + s2[d(ρmk+1, ρnk+1) + d(ρnk+1, ρnk)].

This leads to
lim sup
k→∞

d(ρmk , ρnk) = 0,

which is a contradiction, as for any given ε > 0, we have

d(ρmk , ρnk) ≥ ε.

Therefore, (ρn) is a Cauchy sequence. Since (∆, d) is complete, there exists u ∈ ∆ such that

lim
n→∞

ρn = u,

which implies limn→∞ d(ρn, u) = 0. So limm,n→∞ d(ρm, ρn) = 0. In a similar manner, we can prove that
d(u, u) = 0.

(iii) If Γ is continuous, then
Γu = lim

n→∞
Γρn = lim

n→∞
ρn+1 = u,

and this implies that u is a fixed point of Γ.
(iiia) Here we have the sequence (ρn) with limn→∞ρn = u and α(ρn, ρn+1) ≥ s. Hence α(ρn, u) ≥ s and

α(u,Γu) ≥ 1
s . Suppose that d(u,Γu) > 0. So, there does not exist some n1 ∈ N such that for all n ≥ n1, we

get
ρn = u.

Hence, there exists a subsequence (ρrk) of (ρn) such that

ρrk 6= u.

Taking into account this fact and α(ρn, u) ≥ s, we have from (1),

s3(d(Γρn,Γu) + l)α(ρn,Γρn)α(u,Γu) ≤β(M(ρn, u))M(ρn, u) + l

⇒ d(Γρn,Γu) + l ≤β(M(ρn, u))M(ρn, u) + l, (12)

for all n, where

M(ρn, u) = max

{
d(ρn, u), d(ρn,Γρn), d(u,Γu),

d(ρn,Γu) + d(u,Γρn)

4s

}
.

Letting n→∞, we get
lim
n→∞

M(ρn, u) = d(u,Γu).

From (12),
lim
n→∞

d(Γρn,Γu) ≤ lim
n→∞

β(M(ρn, u)) lim
n→∞

M(ρn, u),
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which implies
d(u,Γu) ≤ lim

n→∞
β(M(ρn, u))d(u,Γu).

Then we have limn→∞ β(M(ρn, u)) ≥ 1. So, limn→∞ β(M(ρn, u)) = 1. Now, we conclude that

lim
n→∞

M(ρn, u) = 0.

Hence, we have d(u,Γu) = 0. Then u is a fixed point of Γ. Therefore in both cases, Γ has a fixed point.
To warrant the uniqueness of the secured fixed point, we need the following additional hypothesis along

with those of Theorem 1.

Theorem 2 Let Γ be any α-admissible self-map of type S on a complete b-metric-like space (∆, d). Also
suppose that Γ satisfies all the hypotheses of Theorem 1. If for any

u, v ∈ Fix(Γ) with u 6= v, we have α(u, v) ≥ s,

then Γ has a unique fixed point.

Proof. Let u, v ∈ Fix(Γ). Then u = Γu and v = Γv. Also α(u, v) ≥ s and u 6= v. Hence from (1)

d(Γu,Γv) + l ≤ s3(d(Γu,Γv) + l)α(u,Γu)α(v,Γv) ≤ β(M(u, v))M(u, v) + l

where

M(u, v) = max

{
d(u, v), d(u,Γu), d(v,Γv),

d(u,Γv) + d(v,Γu)

4s

}
= max {d(u, v), d(u, u), d(v, v)}
=d(u, v).

Therefore,
d(u, v) + l ≤ β(d(u, v))d(u, v) + l,

which implies
d(u, v) < d(u, v),

which is impossible. So, Γ has a unique fixed point.
Here we recall the definition of well-posedness of a fixed point problem.

Definition 5 (see [10]) Let Γ be any self-map defined on a metric space (∆, d). Then the fixed point
problem concerning Γ is said to be well-posed if the followings hold:

(i) Γ has a unique fixed point z ∈ ∆;

(ii) for any sequence (ρn) in ∆ such that

lim
n→∞

d(ρn,Γρn) = 0,

we have
lim
n→∞

d(ρn, z) = 0.

The succeeding theorem ensures that our derived Theorem 1 is also well-posed.

Theorem 3 Let (ρn) ⊆ ∆ such that limn→∞ d(ρn,Γρn) = 0, where (∆, d) is a b-metric-like space with
coeffi cient s ≥ 1. If Γ is a continuous function, then the fixed point problem is well-posed.
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Proof. Let z be the unique fixed point of Γ. Also suppose that (ρn) is a sequence with

lim
n→∞

d(ρn,Γρn) = 0.

Now,
d(ρn, z) = d(ρn,Γz) ≤ s[d(ρn,Γρn) + d(Γρn,Γz)]. (13)

Letting n→∞ in (13). Then
lim
n→∞

d(ρn, z) ≤ 0,

which implies that
lim
n→∞

d(ρn, z) = 0.

Hence the fixed point problem is well-posed.
Now we recollect the notion of limit shadowing property of a fixed point problem.

Definition 6 (see [29]) Let Γ be a self-map defined on a metric space (∆, d). Then the fixed point problem
involving Γ is said to possesses limit shadowing property in ∆ if for any sequence (ρn) in ∆ such that

lim
n→∞

d(ρn,Γρn) = 0,

we have z ∈ ∆ with
lim
n→∞

d(Γnz, ρn) = 0.

Employing these auxiliary criteria, we can claim that the mentioned problem also possesses limit shad-
owing property.

Theorem 4 Let (ρn) ⊆ ∆ such that limn→∞ d(ρn,Γρn) = 0 where (∆, d) is a b-metric-like space with
coeffi cient s ≥ 1. Also suppose that z is a fixed point of Γ. If Γ is a continuous function, then Theorem 1
possesses limit shadowing property.

Proof. From well-posedness property, we have

lim
n→∞

d(ρn, z) = 0.

Therefore, limn→∞d(z, ρn) = 0 implies limn→∞d(Γnz, ρn) = 0. Therefore the fixed point problem has the
limit shadowing property.
The following constructive example validates Theorem 1.

Example 1 We consider the set

∆ = {0, 2n, 3n : n ∈ N, n ≥ 3} ,

and define a mapping d : ∆×∆→ R by

d(ρ, %) =



0, if ρ = % = 0;

1
2n+1 , if ρ = 2n, % = 0 or ρ = 0, % = 2n;

1
3n+1 , if ρ = 3n, % = 0 or ρ = 0, % = 3n;

1
ρ + 1

% , elsewhere.

Then (∆, d) is a complete b-metric-like space with s = 3. Let us define a self-map Γ on ∆ by

Γρ =


0, if ρ = 0;

2n+1, if ρ = 2n;

3n+1, if ρ = 3n.
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Define α : ∆×∆→ [0,∞) as

α(ρ, %) =

{
ρ%, if ρ = 2n, % = 2m or ρ = 3n, % = 3m;

1
ρ% , if ρ = 2n, % = 3m or ρ = 3n, % = 2m

and
α(0, ρ) = α(ρ, 0) = 0, for ρ 6= 0, α(0, 0) = 3.

Also consider the Geraghty function as

β(t) = e−2t, t ∈ R+

and take l = 54. Let ρ, % ∈ ∆ with α(ρ, %) ≥ s. Then either ρ = 2n, % = 2m or ρ = 3n, % = 3m

and so α(Γρ,Γ%) ≥ s. Therefore, Γ is an α-admissible mapping of type S. Now, let ρ, % ∈ ∆ such that
α(ρ, %) ≥ s = 3 with ρ 6= %. Then the following two cases arise.

Case-I: When ρ = 2n, % = 2m, n,m ∈ N with n 6= m. Then Γρ = 2n+1, Γ% = 2m+1 and so

s3(d(Γρ,Γ%) + l)α(ρ,Γρ)α(%,Γ%) = 27

{
1

2n+m+2
+ 54

} 1

22n+2m+2

≤ 54.

Also,
β(M(ρ, %))M(ρ, %) + l ≥ 54.

Hence we can claim that

s3(d(Γρ,Γ%) + l)α(ρ,Γρ)α(%,Γ%) ≤ β(M(ρ, %))M(ρ, %) + l

holds for this case.
Case-II: When ρ = 3n, % = 3m, n,m ∈ N with n 6= m. In this case, in a similar manner we can

prove that

s3(d(Γρ,Γ%) + l)α(ρ,Γρ)α(%,Γ%) ≤ β(M(ρ, %))M(ρ, %) + l

holds. Further, 0 ∈ ∆ such that α(0,Γ0) = α(0, 0) ≥ s = 3 and α has transitive property of type S. Also Γ
is continuous here. Hence Theorem 1 can be applied here. Then Γ has a fixed point and it is 0.

Now we state another result concerning α-admissible self-maps of type S. Since, the proof is quite
analogous to that of Theorem 1, we skip the proof here.

Theorem 5 Let (∆, d) be any complete b-metric-like space with coeffi cient s and Γ be any α-admissible
self-map of type S. Assume that, whenever α(ρ, %) ≥ s with ρ 6= %, Γ satisfies

(α(ρ,Γρ)α(%,Γ%) + 1)s
3d(Γρ,Γ%) ≤ (s2 + 1)β(M(ρ,%))M(ρ,%)

for s ≥ 1, where

M(ρ, %) = max

{
d(ρ, %), d(ρ,Γρ), d(%,Γ%),

d(ρ,Γ%) + d(%,Γρ)

4s

}
,

and β is a Geraghty function. Suppose

(i) there exists ρ0 ∈ ∆ such that α(ρ0,Γρ0) ≥ s;

(ii) α has the transitive property of type S;

(iii) Γ is continuous;
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(iiia) if there exists a sequence (ρn) with limn→∞ρn = u and α(ρn, ρn+1) ≥ s, then

α(ρn, u) ≥ s and α(u,Γu) ≥ 1

s
.

Then Fix(Γ) 6= ∅, with d(u, u) = 0 where u ∈ Fix(Γ).

By means of the succeeding numerical example, we authenticate our aforementioned result.

Example 2 We consider the set ∆ = N ∪ {0} and define a mapping d : ∆×∆→ R such that

d(ρ, %) =


0, if ρ = % = 0;

4
n , if ρ = n, % = 0 or ρ = 0, % = n;

2
(

1
n + 1

m

)
, if ρ = n, % = m.

Then (∆, d) is a complete b-metric-like space with s = 2. Let us define a self-map Γ on ∆ by

Γρ =


0, if ρ = 0;

8ρ+ 1, if ρ is even;

8ρ+ 2, if ρ is odd.

Define α : ∆×∆→ [0,∞) as

α(ρ, %) =

 ρ+ %, if ρ, % both are even or both are odd;

1
100

(
1
ρ + 1

%

)
, if one of ρ, % is even and the other one is odd;

with
α(0, ρ) = α(ρ, 0) = 0, for ρ 6= 0, α(0, 0) = 2

and the Geraghty function as
β(t) = e−

t
4 , t ∈ R+.

Then clearly Γ is an α-admissible mapping of type S. Let ρ, % ∈ ∆ with α(ρ, %) ≥ s = 2 and ρ 6= %. Then
the following two cases arise.
Case-I: When ρ, % both be even, say ρ = 2n, % = 2m, n,m ∈ N. Then

Γρ = 16n+ 1, Γ% = 16m+ 1

and
α(ρ,Γρ) =

1

100

( 1

2n
+

1

16n+ 1

)
, α(%,Γ%) =

1

100

( 1

2m
+

1

16m+ 1

)
.

Also,

s3d(Γρ,Γ%) = 16
( 1

16n+ 1
+

1

16m+ 1

)
.

Therefore,

M(ρ, %) = max

{
d(ρ, %), d(ρ,Γρ), d(%,Γ%),

d(ρ,Γ%) + d(%,Γρ)

4s

}
≥ d(ρ, %)

= 2

(
1

2n
+

1

2m

)
≥ 16

( 1

16n+ 1
+

1

16m+ 1

)
= s3d(Γρ,Γ%). (14)
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Again it is clear that M(ρ, %) ≤ 2. So

β(M(ρ, %)) = e−
M(ρ,%)

4 ≥ e− 1
2 ,

i.e.,
e
1
2 β(M(ρ, %)) ≥ 1. (15)

Hence from (14) and (15), we get

s3d(Γρ,Γ%) ≤ e 12 β(M(ρ, %))M(ρ, %). (16)

Now
α(ρ,Γρ)α(%,Γ%) + 1 ≤ 1.01.

This implies
ln(α(ρ,Γρ)α(%,Γ%) + 1) ≤ ln(1.01),

so,
e
1
2 ln(α(ρ,Γρ)α(%,Γ%) + 1) ≤ e 12 ln(1.01) ≤ ln(5).

Thus
ln(α(ρ,Γρ)α(%,Γ%) + 1) ≤ e− 1

2 ln(5). (17)

From (16) and (17), we get

s3d(Γρ,Γ%) ln(α(ρ,Γρ)α(%,Γ%) + 1) ≤ β(M(ρ, %))M(ρ, %) ln(5)

= β(M(ρ, %))M(ρ, %) ln(s2 + 1).

Then
(α(ρ,Γρ)α(%,Γ%) + 1)s

3d(Γρ,Γ%) ≤ (s2 + 1)β(M(ρ,%))M(ρ,%).

Case-II: When ρ, % both be odd. In this case, we can similarly prove that

(α(ρ,Γρ)α(%,Γ%) + 1)s
3d(Γρ,Γ%) ≤ (s2 + 1)β(M(ρ,%))M(ρ,%).

Further, 0 ∈ ∆ such that α(0,Γ0) = α(0, 0) ≥ s = 2 and α has the transitive property of type S. Also Γ is
continuous here. Hence by Theorem 5, Γ has a fixed point and it is 0.

Remark 1 It is worth mentioning that the previously illustrated examples (Example 1 and 2) are not applica-
ble to validate several comparable results on various abstract spaces for example, metric spaces, metric-like
spaces and b-metric spaces. More precisely the said examples are not applicable to [1, Theorem 2.1], [11,
Theorem 3], [17, Theorems 4,6], [21, Theorem 6] and [26, Theorem 4].

Remark 2 The uniqueness of the fixed point attained in Theorem 5 can be obtained by imposing some
additional hypotheses similar to Theorem 2.

Remark 3 Implementing some surplus conditions in the lines of Theorem 3—4, it can be easily vindicated
that Theorem 5 is also well-posed and possesses limit shadowing property.

3 Consequences in Other Metric Spaces

In this section, we present several fixed point results in various abstract spaces which can be easily inferred
from our explored findings.
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Corollary 1 Let (∆, d) be a complete b-metric space with coeffi cient s ≥ 1 and Γ be any α-admissible
self-map of type S defined on ∆. Assume that whenever α(ρ, %) ≥ s with ρ 6= %, Γ satisfies

s3(d(Γρ,Γ%) + l)α(ρ,Γρ)α(%,Γ%) ≤ β(M(ρ, %))M(ρ, %) + l,

where

M(ρ, %) = max

{
d(ρ, %), d(ρ,Γρ), d(%,Γ%),

d(ρ,Γ%) + d(%,Γρ)

4s

}
,

β is a Geraghty function and l ≥ 1. Suppose

(i) there exists ρ0 ∈ ∆ such that α(ρ0,Γρ0) ≥ s;

(ii) α has the transitive property of type S;

(iii) Γ is continuous;

(iiia) if there exists a sequence (ρn) with limn→∞ρn = u and α(ρn, ρn+1) ≥ s, then

α(ρn, u) ≥ s and α(u,Γu) ≥ 1

s
.

Then Fix(Γ) 6= ∅.

Proof. Since a b-metric space is also a b-metric-like space, the result holds from Theorem 1.

Corollary 2 Let (∆, d) be a complete b-metric space with coeffi cient s ≥ 1 and Γ be any α-admissible
self-map of type S. Assume that whenever α(ρ, %) ≥ s with ρ 6= %, Γ satisfies

s3(d(Γρ,Γ%) + l)α(ρ,Γρ)α(%,Γ%) ≤ β(d(ρ, %))d(ρ, %) + l

where β is a Geraghty function and l ≥ 1. Suppose

(i) there exists ρ0 ∈ ∆ such that α(ρ0,Γρ0) ≥ s;

(ii) α has the transitive property of type S;

(iii) Γ is continuous;

(iiia) if there exists a sequence (ρn) with lim
n→∞

ρn = u and α(ρn, ρn+1) ≥ s, then

α(ρn, u) ≥ s and α(u,Γu) ≥ 1

s
.

Then Γ has a fixed point.

Proof. If M(ρ, %) = d(ρ, %), we can claim this result from Corollary 1.

Corollary 3 ([17]) Let (∆, d) be a complete metric space and Γ be any α-admissible self-map of type S on
∆. Assume that whenever α(ρ, %) ≥ 1 with ρ 6= %, Γ satisfies

(d(Γρ,Γ%) + l)α(ρ,Γρ)α(%,Γ%) ≤ β(d(ρ, %))d(ρ, %) + l,

where β is a Geraghty function and l ≥ 1. Suppose

(i) there exists ρ0 ∈ ∆ such that α(ρ0,Γρ0) ≥ 1;

(ii) α has the transitive property;
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(iii) Γ is continuous;

(iiia) if there exists a sequence (ρn) with limn→∞ρn = u and α(ρn, ρn+1) ≥ 1, then

α(ρn, u) ≥ 1 and α(u,Γu) ≥ 1.

Then Fix(Γ) 6= ∅.

Proof. This can be readily concluded from Corollary 2 by taking s = 1.

Corollary 4 Let (∆, d) be a complete b-metric space with coeffi cient s ≥ 1 and Γ be any α-admissible
self-map of type S on ∆. Assume that, whenever α(ρ, %) ≥ s with ρ 6= %, Γ satisfies

(α(ρ,Γρ)α(%,Γ%) + 1)s
3d(Γρ,Γ%) ≤ (s2 + 1)β(M(ρ,%))M(ρ,%),

where

M(ρ, %) = max

{
d(ρ, %), d(ρ,Γρ), d(%,Γ%),

d(ρ,Γ%) + d(%,Γρ)

4s

}
,

and β is a Geraghty function. Suppose

(i) there exists ρ0 ∈ ∆ such that α(ρ0,Γρ0) ≥ s;

(ii) α has the transitive property of type S;

(iii) Γ is continuous;

(iiia) if there exists a sequence (ρn) with limn→∞ρn = u and α(ρn, ρn+1) ≥ s, then

α(ρn, u) ≥ s and α(u,Γu) ≥ 1

s
.

Then Fix(Γ) 6= ∅.

Proof. This can be easily deduced from Theorem 5 with the fact that a b-metric space is always a b-metric-
like space.

Corollary 5 Let (∆, d) be any complete b-metric space with coeffi cient s ≥ 1 and Γ be any α-admissible
self-map of type S. Assume that, whenever α(ρ, %) ≥ s with ρ 6= %, Γ satisfies

(α(ρ,Γρ)α(%,Γ%) + 1)s
3d(Γρ,Γ%) ≤ (s2 + 1)β(d(ρ,%))d(ρ,%)

where β is a Geraghty function and s ≥ 1. Suppose

(i) there exists ρ0 ∈ ∆ such that α(ρ0,Γρ0) ≥ s;

(ii) α has the transitive property of type S;

(iii) Γ is continuous;

(iiia) for any sequence (ρn) with limn→∞ρn = u and α(ρn, ρn+1) ≥ s, then

α(ρn, u) ≥ s and α(u,Γu) ≥ 1

s
.

Then Fix(Γ) 6= ∅.

Proof. Considering M(ρ, %) = d(ρ, %), we can obtain this corollary from Corollary 4.
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Corollary 6 Let (∆, d) be any complete metric space and Γ be any α-admissible self-map of type S. Assume
that, whenever α(ρ, %) ≥ 1 with ρ 6= %, Γ satisfies

(α(ρ,Γρ)α(%,Γ%) + 1)d(Γρ,Γ%) ≤ 2β(d(ρ,%))d(ρ,%)

where β is a Geraghty function. Suppose

(i) there exists ρ0 ∈ ∆ such that α(ρ0,Γρ0) ≥ 1;

(ii) α has the transitive property;

(iii) Γ is continuous;

(iiia) for any sequence (ρn) with limn→∞ρn = u and α(ρn, ρn+1) ≥ 1, then

α(ρn, u) ≥ 1 and α(u,Γu) ≥ 1.

Then Fix(Γ) 6= ∅.

Proof. When s = 1, this result is obvious from Corollary 5.

4 Remark on Cyclic (α, β)-Admissibility of Type S

Lately, in their research article, Mongkolkeha and Sintunavarat [23] coined the notion of a cyclic (α, β)-
admissible mapping of type S in a b-metric framework. First of all, we note down the definition of such a
kind of mapping.

Definition 7 ([23]) Suppose that ∆ is a non-empty set, s is any real number such that s ≥ 1 and Γ : ∆→ ∆
be any self-map. Also suppose that α, β : ∆→ [0,∞) be two mappings. Then Γ is a cyclic (α, β)-admissible
mapping of type S if

(i) α(ρ) ≥ s for some ρ ∈ ∆ implies β(Γρ) ≥ s;

(ii) β(ρ) ≥ s for some ρ ∈ ∆ implies α(Γρ) ≥ s.

Now, if we consider a couple of mappings α1, β1 : ∆→ [0,∞) such that

α1(ρ) =
1

s
α(ρ) and β1(ρ) =

1

s
β(ρ),

then, it can be easily verified that, whenever α(ρ) ≥ s for some ρ ∈ ∆, then

α1(ρ) =
1

s
α(ρ) ≥ 1

too. Similarly

β1(ρ) =
1

s
β(ρ) ≥ 1

whenever β(ρ) ≥ s for some ρ ∈ ∆. Hence the Definition 7 reduces to that of [3, Definition 2.1]. Therefore,
whenever a self-map Γ is a cyclic (α, β)-admissible mapping of type S, then Γ is a cyclic (α1, β1)-admissible
mapping. We illustrate the above discussion with the help of the example presented in [23, Example 3.2].
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Example 3 Let ∆ = [0,∞) and Γ : ∆→ ∆ be defined by

Γρ =

{
3 + | sin ρ|, if ρ ∈ [3, 4],

1
ρ+1 , otherwise.

Now we consider two mappings α, β : ∆→ [0,∞) as

α(ρ) =

{
ρ2, if ρ ∈ [3, 4],

1, otherwise;

and

β(ρ) =

{
2ρ, if ρ ∈ [3, 4],

1
ρ+1 , otherwise.

It can be easily checked that Γ is a cyclic (α, β)-admissible mapping of type S and also not a cyclic (α, β)-
admissible mapping. Now we define two mappings α1, β1 : ∆→ [0,∞) as

α1(ρ) =

{
ρ2

2 , if ρ ∈ [3, 4],

1
2 , otherwise;

and

β1(ρ) =

{
ρ, if ρ ∈ [3, 4],

1
2(ρ+1) , otherwise.

Whenever α1(ρ) ≥ 1, then we have ρ ∈ [3, 4] and hence Γρ = 3 + | sin ρ|, ρ ∈ [3, 4]. Therefore β1(Γρ) ≥ 1.
Again if β1(ρ) ≥ 1, then we have ρ ∈ [3, 4] and so Γρ = 3 + | sin ρ|, ρ ∈ [3, 4]. Consequently α1(Γρ) ≥ 1.
Then Γ is a cyclic (α1, β1)-admissible mapping.

Remark 4 The previous discussion and Example 3 reveal that the set of cyclic (α, β)-admissible mappings
of type S is contained in the collection of cyclic (α, β)-admissible mappings defined in [3] and therefore the
idea of cyclic (α, β)-admissible mapping of type S adds nothing new to the literature.

5 Application

The fixed point theorems proved here pave the way for an application concerning the necessary conditions
for the existence and uniqueness of the solutions to the following kind of integral equations:

µ(ι) = f

(
ι,

∫ %(ι)

0

g(ι, κ, µ(ρ(κ)))dκ

)
(18)

where ι ∈ [0,∞). We will ensure such an existence by applying Theorem 1. Let BC[0,∞) be the space of
all real, bounded and continuous functions on the interval [0,∞). We endow it with the b-metric like

d(ι, κ) = sup{|ι(t)|+ |κ(t)| : t ∈ [0,∞)}.

Theorem 6 Suppose that the following assumptions are satisfied:

(i) ρ, % : [0,∞) −→ [0,∞) are continuous functions so that

Λ = sup{|%(t)| : t ∈ [0,∞)} < 1

2
;
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(ii) the function f : [0,∞)× R −→ R is continuous so that

∣∣f(ι, µ)∣∣ ≤ ∣∣µ∣∣
for all ι ∈ [0,∞) and µ ∈ R;

(iii) the function g : [0,∞)2 × R −→ R is continuous so that

∣∣∣g(ι, κ, µ(ρ(κ)))
∣∣∣ ≤ |µ(ρ(κ))|

for all ι, κ ∈ [0,∞);

(iv) M = max{f(ι, 0) : ι ∈ [0,∞)} <∞ and G = sup
{∣∣∣g(ι, κ, 0)

∣∣∣ : ι ∈ [0,∞)
}
<∞.

Then the integral equation (18) admits at least one solution in the space BC[0,∞).

Proof. Let us consider the operator Υ : BC[0,∞) −→ BC[0,∞) defined by

Υ(µ)(ι) = f
(
ι,

∫ %(ι)

0

g(ι, κ, µ(ρ(κ)))dκ).

In view of the given assumptions, we infer that the function Υ(µ) is continuous for arbitrary µ ∈ BC[0,∞).
Now, we show that Υ(µ) is bounded in BC[0,∞). As

|Υ(µ)(ι)| =
∣∣∣∣∣f(ι,

∫ %(ι)

0

g(ι, κ, µ(ρ(κ)))dκ)

∣∣∣∣∣
≤
∣∣∣∣∣
∫ %(ι)

0

g(ι, κ, µ(ρ(κ)))dκ

∣∣∣∣∣
≤
∫ %(ι)

0

|g(ι, κ, µ(ρ(κ)))| dκ

≤
∫ %(ι)

0

∣∣∣µ(ρ(κ))
∣∣∣dκ

≤
∫ %(ι)

0

‖µ‖dκ

= ‖µ‖%(ι) ≤ Λ‖µ‖.
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Due to the above inequality, the function Υ is bounded. Now, we show that Υ satisfies all the conditions of
Theorem 1. Let µ1, µ2 be some elements of BC[0,∞). Then we have

|Υ(µ1)(ι)|+ |Υ(µ2)(ι)|

≤
∣∣∣∣∣f(ι,

∫ %(ι)

0

g(ι, κ, µ1(ρ(κ)))dκ)

∣∣∣∣∣+

∣∣∣∣∣f(ι,

∫ %(ι)

0

g(ι, κ, µ2(ρ(κ)))dκ)

∣∣∣∣∣
≤

∣∣∣∣∣
∫ %(ι)

0

g(ι, κ, µ1(ρ(κ)))dκ

∣∣∣∣∣+

∣∣∣∣∣
∫ %(ι)

0

g(ι, κ, µ2(ρ(κ)))dκ

∣∣∣∣∣
≤

∫ %(ι)

0

[|µ1(ρ(κ))|+ |µ2(ρ(κ))|]dκ

≤ %(ι)(d(µ1, µ2))

≤ Λd(µ1, µ2)

≤ 1

2
M(ρ, %) + 1− 1

≤ 1

1 + e−3M(ρ,%)+1 tanh(M(ρ, %))
M(ρ, %) + 1− 1

= β(M(ρ, %))M(ρ, %) + 1− 1,

where β (t) = 1
1+e−3x+1 tanh(x) , l = 1 and α(ρ, %) = 1. Thus, we obtain that

s3(d(Γρ,Γ%) + l)α(ρ,Γρ)α(%,Γ%) ≤ β(M(ρ, %))M(ρ, %) + l.

Using Theorem 1, we obtain that the operator Υ admits a fixed point. Thus, the functional integral equation
(18) admits at least one solution in BC[0,∞).
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