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Abstract

General solution functions g, h, f : R2 → R of the following three functional equations

g(ux− vy, uy + v(x+ y)) = g(x, y)g(u, v),
h(ux− vy, uy + v(x− y)) = h(x, y)h(u, v),

f(vx+ uy, vy − ux) = f(x, y)f(u, v)

are determined without any regularity assumptions on the unknown functions. These equations arise
from the problem of characterizing certain determinants and permanents.

1 Introduction

It is easily seen that the 2× 2 determinant function defined by

d(x, y) := det

(
x y
y x

)
= x2 − y2

satisfies the functional equations

f(ux+ vy, uy + vx) = f(x, y)f(u, v), (1)

f(ux− vy, uy − vx) = f(x, y)f(u, v), (2)

while the 2× 2 permanent function defined by

p(x, y) := per

(
x y
y x

)
= x2 + y2

satisfies the functional equation

f(ux+ vy, uy − vx) = f(x, y)f(u, v). (3)

The functional equation (1), as well as its pexiderized version, was solved by Chung and Sahoo [2] in 2002,
while the functional equation (3) was solved first in 2003 by Jung and Bae [6]. The equation (3) was solved
again in 2014 by Chung and Chang [3] using a different technique. The functional equation (1) was extended
to

f(ux+ vy, uy + vx, zw) = f(x, y, z)f(u, v, w)

∗Mathematics Subject Classifications: 39B22, 15A15.
†Department of Mathematics and Statistics, Faculty of Science and Technology, Thammasat University, Pathum Thani

12120, Thailand
‡Department of Mathematics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand

561



562 Functional Equations Characterizing Certain Determinants and Permanents

and was solved by Chung and Sahoo [2] in 2002, while the functional equations (2) and (3) were, respectively,
generalized to

f(ux− vy, uy − vx, zw) = f(x, y, z)f(u, v, w), (4)

f(ux+ vy, uy − vx, zw) = f(x, y, z)f(u, v, w), (5)

and were solved by Choi et al. [1] in 2016; see also [4], [5] for related problems. Closer analysis reveals that
earlier techniques used for solving (1)—(5) are not suffi cient to solve the pexiderized version of (3) which is

f(ux+ vy, uy − vx) = g(x, y)h(u, v). (6)

In [8], the authors solved, among other things, (6) using the unit circle and trigonometric transformation.
Indeed, to solve (6), it suffi ces to solve its non—pexiderized version, viz.,

f(vx+ uy, vy − ux) = f(x, y)f(u, v). (7)

In another direction, from the identity

per

(
ux− vy uy + v(x+ y)

uy + v(x+ y) vx+ u(x+ y)

)
= per

(
x y
y x+ y

)
per

(
u v
v u+ v

)
.

If the 2× 2 permanent function g : R2 → R is defined by

g(x, y) := per

(
x y
y x+ y

)
= x2 + xy + y2,

then this function g satisfies

g(ux− vy, uy + v(x+ y)) = g(x, y)g(u, v), (8)

while the functional equation

h(ux− vy, uy + v(x− y)) = h(x, y)h(u, v) (9)

is satisfied by the 2× 2 permanent function h : R2 → R defined by

h(x, y) := per

(
x y
y x− y

)
= x2 − xy + y2.

It is thus a natural question to search for general solution functions g, h : R2 → R of the two functional
equations (8) and (9). The objective of this work is to solve both (8) and (9) by employing a new technique
which can also be applied to give a simple treatment of the functional equation (7), solved in [8].

2 Main Results

Our analysis involves the use of the exponential and E : R → R and multiplicative function M : R → R
which are generically defined [7, Chapter 1], respectively, as general solutions of the following two functional
equations

E(x+ y) = E(x)E(y), M(xy) =M(x)M(y).

Theorem 1 General solution functions g, h : R2 → R of the functional equations (8) and (9) are given by

• for the functional equation (8): g ≡ 0, or g ≡ 1, or

g(x, y) =M
(√

x2 + xy + y2
)
E(θ1);
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• for the functional equation (9): h ≡ 0, or h ≡ 1, or

h(x, y) =M
(√

x2 − xy + y2
)
E(θ2),

where M and E are the multiplicative and exponential functions defined above, and θ1 and θ2 are
the angular coordinates of the polar coordinates of ((2x + y)/2,−

√
3y)/2) and ((2x − y)/2,−

√
3y/2),

respectively.

Proof. To solve (8), note first that if g is a constant function solution of (8), then either g ≡ 0 or g ≡ 1.
Assume now that g is a non—constant solution of (8). Substituting x by x + y/

√
3, y by −2y/

√
3, u by

u+ v/
√
3 and v by −2v/

√
3 into (8), we have

g
(
ux− vy + (uy + vx)/

√
3,−2(uy + vx)/

√
3
)
= g

(
x+ y/

√
3,−2y/

√
3
)
g
(
u+ v/

√
3,−2v/

√
3
)
. (10)

Define the function G : C→ R by

G(x+ iy) = g(x+ y/
√
3,−2y/

√
3) (x, y ∈ R). (11)

Then for z = x+ iy, w = u+ iv ∈ C, using (10) and (11), we get

G(zw) = G(ux− vy + i(uy + vx)) = g
(
ux− vy + (uy + vx)/

√
3,−2(uy + vx)/

√
3
)

= g
(
x+ y/

√
3,−2y/

√
3
)
g
(
u+ v/

√
3,−2v/

√
3
)
= G(x+ iy)G(u+ iv)

= G(z)G(w). (12)

Writing complex numbers in polar form

z = r1(cos θ1 + i sin θ1), w = r2(cos θ2 + i sin θ2),

where r1, r2 ∈ R≥0, and the angular coordinates θ1, θ2 ∈ R are considered mod 2π, and substituting into
(12), we get

G(r1r2(cos (θ1 + θ2) + i sin (θ1 + θ2))) = G(r1(cos θ1 + i sin θ1))G(r2(cos θ2 + i sin θ2)). (13)

Define the function G̃ : R≥0 × R→ R by

G̃(r, θ) = G(r(cos θ + i sin θ)), (14)

where θ is considered mod 2π; note that the function G̃ is periodic mod 2π in the second variable θ. Using
(13), we have

G̃(r1r2, θ1 + θ2) = G̃(r1, θ1)G̃(r2, θ2). (15)

Taking θ1 = θ2 = 0 in (15), we get
G̃(r1r2, 0) = G̃(r1, 0)G̃(r2, 0). (16)

Define the function M : R≥0 → R by
M(x) = G̃(x, 0). (17)

Using (16) and (17), we deduce that M is multiplicative. In another direction, setting r1 = r2 = 1 in (15),
we have

G̃(1, θ1 + θ2) = G̃(1, θ1)G̃(1, θ2). (18)

Define the periodic function E : R→ R, with period 2π, by

E(y) = G̃(1, y). (19)
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From (18) and (19), we see that E is an exponential function, which is periodic with period 2π. Taking
r2 = 1, θ1 = 0 in (15), and applying (14), (17), (19), we obtain

G(r1(cos θ2 + i sin θ2)) = G̃(r1, 0)G̃(1, θ2) =M(r1)E(θ2),

and the first part follows.
To solve (9), if h is a constant function solution, then clearly either h ≡ 0 or h ≡ 1. Assume now that h

is a non—constant solution of (9). Replacing x by x−y/
√
3, y by −2y/

√
3, u by u−v/

√
3 and v by −2v/

√
3

into (9), we have

h
(
ux− vy − (uy + vx)/

√
3,−2(uy + vx)/

√
3
)
= h

(
x− y/

√
3,−2y/

√
3
)
h
(
u− v/

√
3,−2v/

√
3
)
, (20)

Define the function H : C→ R by

H(x+ iy) = h
(
x− y/

√
3,−2y/

√
3
)

(x, y ∈ R). (21)

Putting z = x+ iy, w = u+ iv ∈ C, using (20) and (21), we get

H(zw) = H(ux− vy + i(uy + vx)) = h
(
ux− vy − (uy + vx)/

√
3,−2(uy + vx)/

√
3
)

= h
(
x− y/

√
3,−2y/

√
3
)
h
(
u− v/

√
3,−2v/

√
3
)
= H(x+ iy)H(u+ iv)

= H(z)H(w),

which is of the form of (12). Using similar arguments as in the first part, the second assertion follows.
That the function solutions so obtained do indeed satisfy the corresponding functional equations are easily
verified.

As a by-product, we now solve (7) using the technique presented in Theorem 1.

Theorem 2 General solution functions f : R2 → R of the functional equation (7) are given by f ≡ 0, or
f ≡ 1, or

f(x, y) =M
(√

x2 + y2
)
E(θ0),

where M and E are the multiplicative and exponential functions, θ0 is the angular coordinate of the polar
coordinate of (y,−x).

Proof. If f is a constant function solution of (7), then either f ≡ 0 or f ≡ 1. Assume henceforth that f is
a non—constant solution of (7). Substituting x by −x and u by −u into (7), we have

f(−uy − vx, vy − ux) = f(−x, y)f(−u, v). (22)

Interchanging x with y and u with v, (22) becomes

f(−uy − vx, ux− vy) = f(−y, x)f(−v, u). (23)

Putting F (x, y) := f(−y, x), the equation (23) becomes

F (ux− vy, uy + vx) = F (x, y)F (u, v). (24)

Defining the function F̃ : C→ R via

F̃ (x+ iy) = F (x, y) (x, y ∈ R), (25)

and substituting into (24), we get

F̃ (zw) = F̃ (ux− vy + i(uy + vx)) = F (ux− vy, uy + vx) = F (x, y)F (u, v)

= F̃ (x+ iy)F̃ (u+ iv) = F̃ (z)F̃ (w),

which is of the form of (12). Proceeding in the same manner as in the proof of Theorem 1, the desired result
follows. It is easily verified that the functions so obtained satisfy (7).
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