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Abstract

In this manuscript, we introduce some of the contraction mappings in an orthogonal metric space.
The contractions such as orthogonal α-η-GF -contraction, orthogonal α-type F -contraction, orthogonal
TAC -type S-contraction, orthogonal TAC -contraction and orthogonal Suzuki-Berinde type F -contraction
together with some of their weaker versions are discussed by the means of this manuscript. Also, various
fixed point results owing to these different contraction conditions are proved which indeed generalize the
results given in [7, 10, 13, 14]. In support of the outcomes obtained, many examples have been considered.

1 Introduction

Banach contraction principle (see [5]), given by Stefan Banach in 1922, has always been prevailing result in
fixed point theory. This is not just because of its usefulness but also due to its simple approach towards
the fixed point of a self map in a complete metric space. However later, it was examined that any self map
satisfying the Banach contraction condition is a continuous map. Since then, numerous authors have come up
with new contraction conditions which no longer required the self map to be continuous. In these conditions,
some have weaken one or the other sides of the Banach contraction inequality (see [6, 8, 15, 23, 31, 32, 33])
while others have replaced the space in consideration with more general ones (see [9, 12, 17, 22]).
In [11], M. E. Gordji et al. introduced the notion of orthogonal metric space and also proved Banach fixed

point theorem in this setting. Many attempts have been made, since then, to generalize the contractions in
orthogonal metric space by establishing new contraction mappings (see [16, 26, 28, 34]). Additionally, some
authors have worked on the concept of strong orthogonal metric space and discussed various fixed point
results over them (see [1, 20, 21]).
In this manuscript, we aim to introduce some contraction mappings in an orthogonally complete metric

space. The contractions viz. α-η-GF -contraction (see [13]), α-type F -contraction (see [10]), TAC - con-
traction (see [7]) and Suzuki-Berinde type F -contraction (see [14]) are some of the conditions which use
weaker contraction principles. Motivated by the work done in them, we propose to put forward the notion
of orthogonal α-η-GF -contraction, orthogonal α-type F -contraction, orthogonal TAC -type S-contraction,
orthogonal TAC -contraction and orthogonal Suzuki-Berinde type F -contraction and hence generalizing the
results given in [7, 10, 13, 14].

2 Preliminaries

Firstly, we discuss few of the notations used in the main section of this manuscript which are further
elaborated with the help of example. Throughout the manuscript symbols X, R, N, R+ and Z denote a
non-empty set, the set of real numbers, natural numbers, non-negative real numbers and set of integers
respectively.
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394 Generalized Contraction Mappings in Orthogonal Metric Space

Definition 1 ([11]) For a non-empty set X along with binary relation ⊥ is claimed to be an orthogonal set
(denoted by ⊥-set) when ∃ ρ0 ∈ X implies either [ρ ⊥ ρ0 ∀ ρ ∈ X] or [ρ0 ⊥ ρ ∀ ρ ∈ X]. The element ρ0 is
called an orthogonal element.

Definition 2 ([11]) For an orthogonal set (X,⊥), a sequence {ρn}n∈N ⊂ X is claimed to be an orthogonal
sequence (denoted by ⊥-sequence) when either

[
ρn ⊥ ρn+1 ∀ n ∈ N

]
or
[
ρn+1 ⊥ ρn ∀ n ∈ N

]
.

Definition 3 ([11]) For a non-empty set X along with metric d and binary relation ⊥ is claimed to be an
orthogonal metric space (written as (X,⊥, d)), if

(i) (X, d) is a metric space, and

(ii) (X,⊥) is an orthogonal set.

Definition 4 ([11]) On an orthogonal metric space (X,⊥, d), a self map g : X → X at ρ ∈ X is claimed to
be orthogonally continuous (denoted by ⊥-continuous) if for every ⊥-sequence {ρn}n∈N with ρn → ρ implies
gρn → gρ as n → ∞. In addition, g is ⊥-continuous on entire space X if g is orthogonally continuous at
every point ρ ∈ X.

Definition 5 ([11]) An orthogonal metric space (X,⊥, d) is claimed to be an orthogonally complete metric
space (denoted by ⊥-complete), if each Cauchy ⊥-sequence in X is convergent in X. Also, a function
g : X → X is said to be orthogonal preserving (written as ⊥-preserving) if ρ ⊥ ν ⇒ gρ ⊥ gν and g is called
weakly ⊥-preserving if ρ ⊥ ν ⇒ gρ ⊥ gν or gν ⊥ gρ.

Definition 6 ([24]) For a metric space (X, d), a self map g : X → X is claimed to be an α-admissible map
with respect to η, where α, η : X2 → R+, if for ρ, ν ∈ X where η(ρ, ν) ≤ α(ρ, ν)⇒ η(gρ, gν) ≤ α(gρ, gν).

Definition 7 ([25]) For a metric space (X, d), a self map g : X → X is claimed to be an α-admissible map,
where α : X2 → [0,+∞), if for each ρ, ν ∈ X with 1 ≤ α(ρ, ν)⇒ 1 ≤ α(gρ, gν).

Definition 8 ([29]) For a metric space (X, d), a self map g : X → X is claimed to be a weak α-admissible
map, where α : X2 → R+, if for each ρ ∈ X with 1 ≤ α(ρ, gρ)⇒ 1 ≤ α(gρ, ggρ).

Definition 9 ([30]) For a metric space (X, d), a self map g : X → X is claimed to be an α-admissible map
type S, where α, η : X2 → R+ and real number s with s ≥ 1, if for ρ, ν ∈ X we have s ≤ α(ρ, ν) ⇒ s ≤
α(gρ, gν).

Definition 10 ([30]) For a metric space (X, d), a self map g : X → X is claimed to be a weak α-admissible
map type S, where α, η : X2 → R+ and real number s with s ≥ 1, if for ρ ∈ X we have s ≤ α(ρ, gρ) ⇒ s ≤
α(gρ, ggρ).

Remark 1 Following are few observations from [30]:

(i) Every α-admissible map is weak α-admissible map.

(ii) Every α-admissible map type S is weak α-admissible map type S.

(iii) However, the class of α-admissible map is different from α-admissible map type S.

Definition 11 ([2]) For a metric space (X, d), a self map g : X → X is claimed to be a cyclic (α̂, β)-
admissible map, with α̂, β : X → R+, if

(i) for any ρ ∈ X, α̂(ρ) ≥ 1 implies β(gρ) ≥ 1;

(ii) for any ρ ∈ X,β(ρ) ≥ 1 implies α̂(gρ) ≥ 1.
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Definition 12 ([18]) For a metric space (X, d), a self map g : X → X is claimed to be a cyclic (α̂, β)-
admissible map type S, with α̂, β : X → R+ and real number s where s ≥ 1, if

(i) for any ρ ∈ X, α̂(ρ) ≥ s implies β(gρ) ≥ s;

(ii) for any ρ ∈ X,β(ρ) ≥ s implies α̂(gρ) ≥ s.

Remark 2 The class of cyclic (α̂, β)-admissible mappings is different from the class of cyclic (α̂, β)-admissible
mappings type S (see [18]).

Definition 13 ([13]) Denote by G, the set of all maps G : R+4 → [0,+∞) such that for all (γ1, γ2, γ3, γ4) ∈
R+4 with γ1.γ2.γ3.γ4 = 0 we have τ > 0, such that

G(γ1, γ2, γ3, γ4) = τ .

Example 1 Let G(γ1, γ2, γ3, γ4) = K.(γ1.γ2.γ3.γ4) + τ where τ > 0 and K be a non-negative real constant.
Then G ∈ G.

Example 2 Let G(γ1, γ2, γ3, γ4) = τ .eK.(γ1.γ2.γ3.γ4) where τ > 0 and K be a non-negative real constant.
Then G ∈ G.

Definition 14 ([32]) Denote by =, the family of all mappings F : (0,+∞)→ (−∞,+∞) such that

(F1) for ρ, ν ∈ (0,+∞) if ρ < ν ⇒ F (ρ) < F (ν);

(F2) for each sequence {ρn}n∈N of positive real number such that

lim
n→∞

ρn = 0 if and only if lim
n→∞

F (ρn) = −∞;

(F3) ∃ r ∈ (0, 1) then limζ→0+ ζ
rF (ζ) = 0.

Definition 15 ([3]) Denote by C, the family of all function, f : R+ ×R+ → R called as C-class function if
f is continuous map which satisfies following conditions

(i) f(ρ, ν) ≤ ρ for each (ρ, ν) ∈ R+ × R+;

(ii) f(ρ, ν) = ρ implies either ρ = 0 or ν = 0.

Definition 16 ([19]) Denote by ΩF , the family of all mappings F : R+ → (−∞,+∞) such that

(F1) for ρ, ν ∈ (0,+∞) if ρ ≤ ν ⇒ F(ρ) ≤ F(ν);

(F2) inf F = −∞;

(F3) F is continuous in (0,∞).

Lemma 1 ([27]) Define F : R+ → R an increasing mapping and let {ρn}n∈N be a sequence of positive real
numbers. Then following hold

(i) If F(ρn)→ −∞, implies ρn → 0;

(ii) If inf F = −∞ and ρn → 0, implies F(ρn)→ −∞.
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3 Main Results

For the better understanding of various contractions, we divide this section into four subsections, each of
which introduces a different contraction in an orthogonal metric space and consequently, explores various
fixed point result owing to much weaker conditions. The definitions established at the beginning of each
subsection forms basis of the results proved and also, many examples are discussed in each subsection that
further substantiate the results.

3.1 Orthogonal α-η-GF-Contraction

N. Hussain and P. Salimi were the first one to put forward the notion of α-η-GF -contraction (see [13]) in
a complete metric space. The main idea behind the paper was to obtain fixed point results in a complete
metric space as well as in a complete partially ordered metric space with the help of more general family of
mappings G.
In this subsection, firstly we introduce some of the basic definitions including orthogonal α-η-GF -

contraction and orthogonal α-η-GF -weak contraction and secondly, proceed to prove few fixed point results
in these settings. The definitions and results are further supported with the help of examples.

Definition 17 For an orthogonal metric space (X,⊥, d) with two mappings α, η : X2 → R+, we say a self
map g on X is an orthogonal α-η-continuous mapping (denoted by ⊥-α-η-continuous) if for some ρ ∈ X and
an ⊥-sequence {ρn}n∈N in X where η(ρn, ρn+1) ≤ α(ρn, ρn+1) ∀ n ∈ N and limn→∞ ρn = ρ implies

lim
n→∞

gρn = gρ.

Example 3 Let X = R+ be equipped with usual metric. Let ρ ⊥ ν ⇔ ρ.ν ∈ {ρ, ν}. Then (X,⊥, d) is an
orthogonal metric space. Define g : X → X as

g(ρ) =

{
0 ρ ∈ [0, 1);
1
2 otherwise.

Define α, η : X2 → R+ where

α(ρ, ν) =

{
4 ρ, ν ∈ [0, 1);
1
4 otherwise,

and, η(ρ, ν) = 1 for all ρ, ν ∈ X. Thus, for α(ρ, ν) ≥ η(ρ, ν), we must have ρ, ν ∈ [0, 1). The sequence
{ρn}n∈N, defined as

ρn =

{
0 n = 2m− 1, ∀ m ∈ N;
1
2m n = 2m, ∀ m ∈ N,

is an ⊥-sequence in X and α(ρn, ρn+1) ≥ η(ρn, ρn+1) ∀ n ∈ N. Also, since ρn → 0 as n → ∞, we see that
limn→∞ gρn = 0 = g0. Hence, g is ⊥-α-η-continuous however, it is not a continuous function.

Definition 18 For an orthogonal metric space (X,⊥, d) with two mappings α, η : X2 → R+, we say a
self map g : X → X on X is orthogonal α-η-GF-contraction (denoted by ⊥-α-η-GF-contraction) if for all
ρ, ν ∈ X with ρ ⊥ ν, d(gρ, gν) > 0 and η(ρ, gρ) ≤ α(ρ, ν), we have

G
(
d(ρ, gρ), d(ν, gν), d(ρ, gν), d(ν, gρ)

)
+ F

(
d(gρ, gν)

)
≤ F

(
d(ρ, ν)

)
,

where G ∈ G and F ∈ =.

Example 4 Consider X = {0, 2, 4, ..., 2k, ...} along with usual metric space. Let ρ ⊥ ν ⇔ ρ.ν ∈ {0}. Then
(X,⊥, d) is an orthogonal metric space. Define g : X → X as

g(ρ) =

{
2m−1 for ρ = 2m where m ∈ N− {1};
0 ρ ∈ {0, 2}.
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Define α, η : X2 → R+ as,

α(ρ, ν) =

{
1 ρ ∈ {0, 2};
5
2 otherwise,

and,

η(ρ, ν) =

{
1
2 ρ ∈ {0, 2};
1 otherwise.

Now by above, we have:

(I) for d(gρ, gν) > 0, we must have either ρ ∈ {0, 2} and ν = 2m where m ∈ N − {1} or ρ = 2m where
m ∈ N− {1} and ν ∈ {0, 2},

(II) for ρ ⊥ ν, either ρ = 0 or ν = 0.

Thus for (I) and (II) to hold together, we have either ρ = 0 and ν = 2m where m ∈ N−{1} or ρ = 2m where
m ∈ N− {1} and ν = 0.
Consider ρ = 0 and ν = 2m where m ∈ N−{1}. Then for such choice of ρ and ν, we have η(ρ, gρ) < α(ρ, ν).
So for F (β) = ln(β) and τ = 0.5, we have

G
(
d(ρ, gρ), d(ν, gν), d(ρ, gν), d(ν, gρ)

)
+ F

(
d(gρ, gν)

)
= τ + ln 2m−1, (1)

and,
F
(
d(ρ, ν)

)
= ln(2m). (2)

Thus from (1) and (2), we obtain

G
(
d(ρ, gρ), d(ν, gν), d(ρ, gν), d(ν, gρ)

)
+ F

(
d(gρ, gν)

)
≤ F

(
d(ρ, ν)

)
.

Hence, g is ⊥-α-η-GF-contraction on X.

Definition 19 For an orthogonal metric space (X,⊥, d) with two mappings α, η : X2 → R+, we say a self
map g : X → X on X is orthogonal α-η-GF-weak contraction (denoted by ⊥-α-η-GF-weak contraction) if
for all ρ, ν ∈ X with ρ ⊥ ν, d(gρ, gν) > 0 and η(ρ, gρ) ≤ α(ρ, ν), we have

G
(
d(ρ, gρ), d(ν, gν), d(ρ, gν), d(ν, gρ)

)
+ F

(
d(gρ, gν)

)
≤ F

(
max

{
d(ρ, ν), d(ρ, gρ), d(ν, gν),

d(ρ, gν) + d(ν, gρ)

2

})
,

where G ∈ G and F ∈ =.

Remark 3 From above definitions, we can conclude that every ⊥-α-η-GF-contraction is an ⊥-α-η-GF-weak
contraction.

Theorem 1 For an orthogonally complete metric space (X,⊥, d) with ρ0 as an orthogonal element, let
G ∈ G and F ∈ =. Suppose α, η : X2 → R+ are two functions on X2 and g : X → X is a self map such
that:

(I) g is ⊥-preserving;

(II) g is α-admissible map with respect to η;

(III) ∃ ρ0 ∈ X such that η(ρ0, gρ0) ≤ α(ρ0, gρ0);

(IV) g is ⊥-α-η-continuous;

(V) g is ⊥-α-η-GF-contraction.
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Then g possesses a fixed point. Moreover, if for all ρ, ν ∈ X such that ρ ⊥ ν, gρ = ρ and gν = ν implies
η(ρ, ρ) ≤ α(ρ, ν), then g possesses a unique fixed point.

Proof. Consider {ρn}n∈N be a sequence in X where ρn+1 = gρn = gn+1ρ0 for each n ∈ N. Since η(ρ0, gρ0) ≤
α(ρ0, gρ0), by using α-admissibility of g with respect to η, we get

η(ρ1, ρ2) = η(gρ0, g
2ρ0) ≤ α(gρ0, g

2ρ0) = α(ρ1, ρ2),

continue applying α-admissibility of g with respect to η, we obtain

η(ρn−1, ρn) ≤ α(ρn−1, ρn) ∀ n ∈ N.

Also, as ρ0, gρ0 ∈ X where (X,⊥) is an ⊥-set then repeated use of ⊥-preserving property of g, gives

[ρn−1 ⊥ ρn ∀ n ∈ N] or [ρn ⊥ ρn+1 ∀ n ∈ N].

By using given contractive property of g, we get

G
(
d(ρn−1, gρn−1), d(ρn, gρn), d(ρn−1, gρn), d(ρn, gρn−1)

)
+ F

(
d(gρn−1, gρn)

)
≤ F

(
d(ρn−1, ρn)

)
. (3)

Now since we have
d(ρn, ρn+1).d(ρn−1, ρn).d(ρn−1, ρn+1).d(ρn, ρn) = 0,

we see that ∃ τ > 0, such that

G(d(ρn, ρn+1), d(ρn−1, ρn), d(ρn−1, ρn+1), d(ρn, ρn)) = τ . (4)

On using (4) in (3), we obtain

τ + F (d(gρn−1, gρn)) ≤ F (d(ρn−1, ρn)),

that is,

F (d(ρn, ρn+1)) ≤ F (d(ρn−1, ρn))− τ ≤ F (d(ρn−2, ρn−1))− 2τ ≤ ... ≤ F (d(ρ0, ρ1))− nτ. (5)

Taking limit as n→∞ in (5) and by using F2 property of F , we have

lim
n→∞

d(ρn, ρn+1) = 0. (6)

Further by F3 property of F , there exist some 0 < r < 1, such that

lim
n→∞

(
d(ρn, ρn+1)

)r
F (d(ρn, ρn+1)) = 0. (7)

Using (6) and (7) in (5), we get(
d(ρn, ρn+1)

)r(
F (d(ρn, ρn+1))− F (d(ρ0, ρ1))

)
≤ −nτ

(
d(ρn, ρn+1)

)r ≤ 0.

On letting n→∞ in above, we have

lim
n→∞

n
(
d(ρn, ρn+1)

)r
= 0.

Then ∃ n0 ∈ N, such that

n
(
d(ρn, ρn+1)

)r ≤ 1 ∀ n ≥ n0,⇒ d(ρn, ρn+1) ≤
1

n1/r
∀ n ≥ n0.
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Now, for m > n > n0 and using triangle inequality, we obtain

d(ρn, ρm) ≤
m−1∑
i=n

d(ρi, ρi+1) ≤
∞∑
i=1

d(ρi, ρi+1) ≤
∞∑
i=1

1

n1/r
.

As 0 < r < 1, so convergence of
∑∞
i=1

1
n1/r

implies {ρn}n∈N is a Cauchy ⊥-sequence and thus by orthogonal
completeness of X, we have

lim
n→∞

ρn = ρ.

Therefore, by ⊥-α-η-continuity of g, we get

lim
n→∞

gρn = gρ ⇒ lim
n→∞

ρn+1 = ρ ⇒ ρ = gρ.

Thus g possesses a fixed point.
Next, suppose ν is another fixed point of g in X where ρ ⊥ ν then by given condition η(ρ, ρ) ≤ α(ρ, ν).

On using ⊥-α-η-GF -contraction of g over ρ and ν, we obtain

G
(
d(ρ, gρ), d(ν, gν), d(ρ, gν), d(ν, gρ)

)
+ F

(
d(gρ, gν)

)
≤ F

(
d(ρ, ν)

)
.

Since
d(ρ, gρ).d(ν, gν).d(ρ, gν).d(ν, gρ) = 0,

we see that ∃ τ > 0, such that

G
(
d(ρ, gρ), d(ν, gν), d(ρ, gν), d(ν, gρ)

)
= τ .

Therefore,
τ + F

(
d(gρ, gν)

)
≤ F

(
d(ρ, ν)

)
⇒ τ + F

(
d(ρ, ν)

)
≤ F

(
d(ρ, ν)

)
,

which holds only if d(ρ, ν) = 0 i.e. ρ = ν. Hence, g possesses a unique fixed point.

Example 5 Consider the orthogonal metric space and ⊥-α-η-GF-contraction map g defined in Example 4.

(i) (X,⊥, d) is orthogonally complete metric space: Let {ρn}n∈N be any Cauchy ⊥-sequence in X. Then
we have a subsequence {ρnk} of {ρn} such that ρnk = 0 ∀ k ≥ 1, that is, ρnk → 0 as n → ∞. Since
this happens with any Cauchy ⊥-sequence in X, we have {ρn}n∈N convergent in X. Thus (X,⊥, d) is
orthogonally complete.

(ii) g is ⊥-preserving: Since 0 ⊥ y ∀ y ∈ X, we see that g0 = 0 ⊥ gy ∀ y ∈ X. Thus g is ⊥-preserving.

(iii) g is α-admissible with respect to η: From the definition of α, η and g it can be concluded that g is
α-admissible with respect to η.

(iv) g is ⊥-continuous: For any convergent ⊥-sequence {ρn}n∈N, we have ρn → 0 as n → ∞. Then
gρn → g0 = 0 as n→∞. Therefore, g is ⊥-continuous.

Since all the conditions of Theorem 1 holds, we see that g possesses a fixed point viz. ρ = 0.

Corollary 1 For an orthogonally complete metric space (X,⊥, d) with ρ0 as an orthogonal element, let
F ∈ =. Suppose α, η : X2 → R+ are two functions on X2 and g : X → X is a self map such that

(I) g is ⊥-preserving;

(II) g is α-admissible map with respect to η;

(III) ∃ ρ0 ∈ X such that η(ρ0, gρ0) ≤ α(ρ0, gρ0);
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(IV) g is ⊥-α-η-continuous;

(V) for all ρ, ν ∈ X with d(gρ, gν) > 0, ρ ⊥ ν and η(ρ, gρ) ≤ α(ρ, ν) implies

τ + F
(
d(gρ, gν)

)
≤ F

(
d(ρ, ν)

)
.

Then g possesses a fixed point. Moreover, if for all ρ, ν ∈ X such that ρ ⊥ ν, gρ = ρ and gν = ν implies
η(ρ, ρ) ≤ α(ρ, ν), then g possesses a unique fixed point.

Proof. In Theorem 1, if we consider function G(γ1, γ2, γ3, γ4) = K.(γ1.γ2.γ3.γ4) + τ , where K ≥ 0 is a
constant and τ > 0 then the result follows.

Theorem 2 For an orthogonally complete metric space (X,⊥, d) with ρ0 as an orthogonal element, let
G ∈ G and F ∈ =. Suppose α, η : X2 → R+ are two functions on X2 and g : X → X is a self map such that

(I) g is ⊥-preserving;

(II) g is α-admissible map with respect to η;

(III) ∃ ρ0 ∈ X such that η(ρ0, gρ0) ≤ α(ρ0, gρ0);

(IV) g is ⊥-α-η-continuous;

(V) g is ⊥-α-η-GF-weak contraction.

Then g possesses a fixed point. Moreover, if for all ρ, ν ∈ X such that ρ ⊥ ν, gρ = ρ and gν = ν implies
η(ρ, ρ) ≤ α(ρ, ν), then g possesses a unique fixed point.

Proof. Working on the footprints of Theorem 1, we obtain an orthogonal sequence {ρn}n∈N in X, such that

G
(
d(ρn−1, gρn−1), d(ρn, gρn), d(ρn−1, gρn), d(ρn, gρn−1)

)
+ F

(
d(gρn−1, gρn)

)
≤ F

(
max

{
d(ρn−1, ρn), d(ρn−1, gρn−1), d(ρn, gρn),

d(ρn−1, gρn) + d(ρn, gρn−1)

2

})
. (8)

Since we have
d(ρn, ρn+1).d(ρn−1, ρn).d(ρn−1, ρn+1).d(ρn, ρn) = 0,

we see that ∃ τ > 0, such that

G(d(ρn, ρn+1), d(ρn−1, ρn), d(ρn−1, ρn+1), d(ρn, ρn)) = τ . (9)

On using (9) in (8), we obtain

τ + F (d(gρn−1, gρn)) ≤ F

(
max

{
d(ρn−1, ρn), d(ρn, ρn+1),

d(ρn−1, ρn+1)

2

})
,

≤ F

(
max

{
d(ρn−1, ρn), d(ρn, ρn+1),

d(ρn−1, ρn) + d(ρn, ρn+1)

2

})
= F

(
max

{
d(ρn−1, ρn), d(ρn, ρn+1)

})
.

Case 1 If max

{
d(ρn−1, ρn), d(ρn, ρn+1)

}
= d(ρn, ρn+1), then we have

τ + F
(
d(ρn, ρn+1)

)
≤ F (d(ρn, ρn+1)),

which is a contradiction for τ > 0.
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Case 2 If max

{
d(ρn−1, ρn), d(ρn, ρn+1)

}
= d(ρn−1, ρn), then we have

τ + F
(
d(ρn, ρn+1)

)
≤ F (d(ρn−1, ρn)),

⇒ F
(
d(ρn, ρn+1)

)
≤ F (d(ρn−1, ρn))− τ = F (d(ρn−1, ρn))− 2τ ≤ ... ≤ F (d(ρ0, ρ1))− nτ.

The proof now follows on the lines of Theorem 1.

Remark 4 In the upcoming results, we drop the condition of ⊥-α-η-continuity of g and instead consider a
weaker condition.

Theorem 3 For an orthogonally complete metric space (X,⊥, d) with ρ0 as an orthogonal element, let
G ∈ G and F ∈ =. Suppose α, η : X2 → R+ are two functions on X2 and g : X → X is a self map such that

(I) g is ⊥-preserving;

(II) g is α-admissible map with respect to η;

(III) ∃ ρ0 ∈ X such that η(ρ0, gρ0) ≤ α(ρ0, gρ0);

(IV) if {ρn}n∈N is an ⊥-sequence in X such that η(ρn, ρn+1) ≤ α(ρn, ρn+1) and ρn → ρ as n→∞, then

[ρn ⊥ ρ ∀ n] or [ρ ⊥ ρn ∀ n],

and,
[η(gρn, g

2ρn) ≤ α(gρn, ρ)] or [η(g2ρn, g
3ρn) ≤ α(g2ρn, ρ)] ∀ n ∈ N;

(V) g is ⊥-α-η-GF-contraction.

Then g possesses a fixed point. Moreover, if for all ρ, ν ∈ X with ρ ⊥ ν, gρ = ρ and gν = ν implies
η(ρ, ρ) ≤ α(ρ, ν), then g possesses a unique fixed point.

Proof. On the lines of Theorem 1, we obtain an ⊥-sequence {ρn}n∈N such that

η(ρn, ρn+1) ≤ α(ρn, ρn+1) and lim
n→∞

ρn = ρ.

Here we claim that ρ is a fixed point of g in X. By given condition, we have

[ρn ⊥ ρ ∀ n ∈ N] or [ρ ⊥ ρn ∀ n ∈ N],

and,
[η(ρn+1, ρn+2) ≤ α(ρn+1, ρ)] or [η(ρn+2, ρn+3) ≤ α(ρn+2, ρ)] ∀ n ∈ N.

Then ∃ a subsequence {ρns} of {ρn}, such that

η(ρns , gρns) ≤ α(ρns , ρ).

By ⊥-α-η-GF -contraction of g, we have

F
(
d(gρns , gρ)

)
< G

(
d(ρns , gρns), d(ρ, gρ), d(ρns , gρ), d(ρ, gρns)

)
+ F

(
d(gρns , gρ)

)
≤ F

(
d(ρns , ρ)

)
,

that is, F (d(gρns , gρ)) ≤ F (d(ρns , ρ)). From F1 property of F , we have

d(gρns , gρ) < d(ρns , ρ). (10)

Letting s→∞ in (10), gives
d(ρ, gρ) = 0.

Thus g possesses a fixed point. Further, the uniqueness of fixed point follows on the line of Theorem 1.
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Corollary 2 For an orthogonally complete metric space (X,⊥, d) with ρ0 as an orthogonal element, let
F ∈ =. Suppose α, η : X2 → R+ are two functions on X2 and g : X → X is a self map such that

(I) g is ⊥-preserving;

(II) g is α-admissible map with respect to η;

(III) ∃ ρ0 ∈ X such that η(ρ0, gρ0) ≤ α(ρ0, gρ0) ;

(IV) if {ρn}n∈N is an ⊥-sequence in X such that η(ρn, ρn+1) ≤ α(ρn, ρn+1) and ρn → ρ as n→∞, then

[ρn ⊥ ρ ∀ n] or [ρ ⊥ ρn ∀ n],

and,
[η(gρn, g

2ρn) ≤ α(gρn, ρ)] or [η(g2ρn, g
3ρn) ≤ α(g2ρn, ρ)] ∀ n ∈ N;

(V) for all ρ, ν ∈ X with d(gρ, gν) > 0, ρ ⊥ ν and η(ρ, gρ) ≤ α(ρ, ν) implies

τ + F (d(gρ, gν)) ≤ F (d(ρ, ν)).

Then g possesses a fixed point. Moreover, if for all ρ, ν ∈ X with ρ ⊥ ν, gρ = ρ and gν = ν implies
η(ρ, ρ) ≤ α(ρ, ν), then g possesses a unique fixed point.

Proof. In Theorem 3, if we consider function G(γ1, γ2, γ3, γ4) = K.(γ1.γ2.γ3.γ4) + τ , where K ≥ 0 is a
constant and τ > 0 then the result follows.

Theorem 4 For an orthogonally complete metric space (X,⊥, d) with ρ0 as an orthogonal element, let
G ∈ G and F ∈ =. Suppose α, η : X2 → R+ are two functions on X2 and g : X → X is a self map such that

(I) g is ⊥-preserving;

(II) g is α-admissible map with respect to η;

(III) ∃ ρ0 ∈ X such that η(ρ0, gρ0) ≤ α(ρ0, gρ0);

(IV) if {ρn}n∈N is an ⊥-sequence in X such that η(ρn, ρn+1) ≤ α(ρn, ρn+1) and ρn → ρ as n→∞, then

[ρn ⊥ ρ ∀ n] or [ρ ⊥ ρn ∀ n],

and,
[η(gρn, g

2ρn) ≤ α(gρn, ρ)] or [η(g2ρn, g
3ρn) ≤ α(g2ρn, ρ)] ∀ n ∈ N;

(V) g is ⊥-α-η-GF-weak contraction.

Then g possesses a fixed point. Moreover, if for all ρ, ν ∈ X with ρ ⊥ ν, gρ = ρ and gν = ν implies
η(ρ, ρ) ≤ α(ρ, ν), then g possesses a unique fixed point.

Proof. Working on the lines of Theorem 3, we obtain a subsequence {ρns} of an orthogonal sequence {ρn}
with η(ρns , gρns) ≤ α(ρns , ρ), such that

F
(
d(gρns , gρ)

)
< G

(
d(ρns , gρns), d(ρ, gρ), d(ρns , gρ), d(ρ, gρns)

)
+ F

(
d(gρns , gρ)

)
≤ F

(
max

{
d(ρns , ρ), d(ρns , gρns), d(ρ, gρ),

d(ρns , gρ) + d(ρ, gρns)

2

})
. (11)

From F1 property of F in (11), we have

d(gρns , gρ) < max

{
d(ρns , ρ), d(ρns , gρns), d(ρ, gρ),

d(ρns , gρ) + d(ρ, gρns)

2

}
. (12)

Letting s→∞ in (12), gives
d(ρ, gρ) = 0.

Thus g possesses a fixed point. Further, the uniqueness of fixed point follows on the line of Theorem 1.
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3.2 Orthogonal α-type F -contraction

The concept of α-type F -contraction was given by D. Gopal et al. in [10], and the results proved were
generalization of the contraction results in [8, 32, 33]. Here in this subsection, we discuss some basic
definitions and prove fixed point results related to orthogonal α-type F -contraction and some of its weaker
contraction conditions in succeeding results.

Definition 20 For an orthogonal metric space (X,⊥, d) and for α : X2 → (0,∞), a map g : X → X on X
is an orthogonal α-type F -contraction (denoted by ⊥-α type F -contraction) if there exist τ > 0, F ∈ = such
that for all ρ, ν ∈ X with ρ ⊥ ν, d(gρ, gν) > 0, implies

τ + α(ρ, ν)F
(
d(gρ, gν)

)
≤ F

(
d(ρ, ν)

)
.

Example 6 Let X = R+, d(ρ, ν) = |ρ− ν| and ρ ⊥ ν ⇔ either ρ = 0 or ν = 0. Then one can easily verify
that (X,⊥, d) is an orthogonal metric space. Define g : X → X as

g(ρ) =

{
3
2 ρ ∈ [10, 20);
0 otherwise.

Let α : X2 → [0,∞) be defined as α(ρ, ν) = 3/2 ∀ρ, ν ∈ X. Define F (η) = ln(η). For d(gρ, gν) > 0 and
ρ ⊥ ν to hold simultaneously, we have either ρ = 0 and ν ∈ [10, 20) or ρ ∈ [10, 20) and ν = 0.

case (i) Let ρ = 0 and ν ∈ [10, 20). Then

τ + α(0, ν) ln(d(g0, gν)) = τ +
3

2
ln(d(0, 3/2)) = τ +

3

2
ln(3/2) (13)

and
ln(d(0, ν)) = ln(ν). (14)

From (13) and (14), for τ = 1 we can conclude that g is ⊥-α type F -contraction. The case (ii) for
ρ ∈ [10, 20) and ν = 0 holds on the lines of case(i).

Definition 21 For an orthogonal metric space (X,⊥, d) and for α : X2 → (0,∞), a map g : X → X on X
is an orthogonal α-type F -weak contraction (denoted by ⊥-α type F -weak contraction) if there exist τ > 0
and F ∈ = and for all ρ, ν ∈ X with ρ ⊥ ν, d(gρ, gν) > 0, implies

τ + α(ρ, ν)F
(
d(gρ, gν)

)
≤ F

(
max

{
d(ρ, ν), d(ρ, gρ), d(ν, gν),

d(ρ, gν) + d(ν, gρ)

2

})
.

Remark 5 From the above definitions it can be easily concluded that every ⊥-α type F -contraction is an
⊥-α type F-weak contraction.

Theorem 5 For an orthogonally complete metric space (X,⊥, d) with s ≥ 1 and ρ0 as an orthogonal element,
F ∈ =. Suppose α : X2 → R+ is a map on X2 and g : X → X is a self map such that

(I) g is ⊥-preserving;

(II) g is weak α-admissible map type S;

(III) ∃ ρ0 ∈ X with s ≤ α(ρ0, gρ0);

(IV) g is ⊥-continuous;

(V) g is ⊥-α type F -contraction.

Then g possesses a fixed point. Moreover, if for all ρ, ν ∈ X with ρ ⊥ ν, gρ = ρ and gν = ν implies
s ≤ α(ρ, ν), then g possesses a unique fixed point.
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Proof. On defining a sequence {ρn}n∈N in X where ρn+1 = gρn = gn+1ρ0 for each n ∈ N and since
ρ0, gρ0 ∈ X where (X,⊥) is an ⊥-set, and by ⊥-preserving property of g, gives

[ρn+1 ⊥ ρn ∀ n ∈ N] or [ρn ⊥ ρn+1 ∀ n ∈ N],

that is, {ρn}n∈N is an ⊥-sequence in X.
Now, by given condition α(ρ0, ρ1) = α(ρ0, gρ0) ≥ s then as g is weak α-admissible map type S, we have

α(ρ1, ρ2) ≥ s continuing, we get α(ρn−1, ρn) ≥ s. Thus, we have

F
(
d(ρn, ρn+1)

)
= F

(
d(gρn−1, gρn)

)
≤ sF

(
d(gρn−1, gρn)

)
≤ α(ρn−1, ρn)F

(
d(gρn−1, gρn)

)
.

Using ⊥-α type F -contraction condition of g and for τ > 0, we get

τ + F
(
d(ρn, ρn+1)

)
≤ τ + sF

(
d(gρn−1, gρn)

)
≤ τ + α(ρn−1, ρn)F

(
d(gρn−1, gρn)

)
≤ F

(
d(ρn−1, gρn)

)
,

that is,

F
(
d(ρn, ρn+1)

)
≤ F

(
d(ρn−1, ρn)

)
− τ

≤ F
(
d(ρn−2, ρn−1)

)
− 2τ ≤ ... ≤ F

(
d(ρ0, ρ1)

)
− nτ. (15)

Taking limit as n→∞ in (15) and by F2 property of F , we have

lim
n→∞

d(ρn, ρn+1) = 0. (16)

And further, by F3 property of F , ∃ r ∈ (0, 1), implies

lim
n→∞

(
d(ρn, ρn+1)

)r
F
(
d(ρn, ρn+1)

)
= 0. (17)

From (15), we deduce that(
d(ρn, ρn+1)

)r(
F (d(ρn, ρn+1))− F (d(ρ0, ρ1))

)
≤ −n

(
d(ρn, ρn+1)

)r
τ . (18)

On letting n→∞ in (18) and using (16) and (17), we obtain

lim
n→∞

n
(
d(ρn, ρn+1)

)r
= 0.

Thus ∃ n1 ∈ N, such that
d(ρn, ρn+1) <

1

n1/r
∀ n ≥ n1.

Consider m > n > n1, then by triangle inequality, we obtain

d(ρn, ρm) ≤ d(ρn, ρn+1) + d(ρn+1, ρn+2) + ...+ d(ρm−1, ρm),

≤
∞∑
i=1

d(ρi, ρi+1),

=

∞∑
i=1

1

i1/r
.

Since the series
∑∞
i=1

1

i1/r
is convergent, which implies {ρn}n∈N is a Cauchy ⊥-sequence and thus, by

orthogonal completeness of X, ∃ ρ ∈ X for which

lim
n→∞

ρn = ρ.



A. Malhotra and D. Kumar 405

Further by ⊥-continuity of g, we get

lim
n→∞

gρn = gρ⇒ lim
n→∞

ρn+1 = gρ⇒ ρ = gρ.

Thus g possesses a fixed point.
Next, let ν be another fixed point of g such that ρ ⊥ ν. Then by given condition, we have α(ρ, ν) ≥ s.

Using ⊥-α type F -contraction property of g, we have

τ + F
(
d(gρ, gν)

)
≤ τ + sF

(
d(gρ, gν)

)
≤ τ + α(ρ, ν)F

(
d(gρ, gν)

)
≤ F

(
d(ρ, ν)

)
,

that is,
τ + F

(
d(ρ, ν)

)
≤ F

(
d(ρ, ν)

)
. (19)

Now, (19) holds only if ρ = ν. Hence, g possesses a unique fixed point.

Example 7 The self map g defined in Example 6 satisfies all conditions of above theorem and thus has a
fixed point ρ = 0.

Theorem 6 For an orthogonally complete metric space (X,⊥, d) with s ≥ 1 and ρ0 as an orthogonal element,
F ∈ =. Suppose α : X2 → R+ is a map on X2 and g : X → X is a self map such that

(I) g is ⊥-preserving;

(II) g is weak α-admissible map type S;

(III) ∃ ρ0 ∈ X with s ≤ α(ρ0, gρ0);

(IV) g is ⊥-continuous;

(V) g is ⊥-α type F -weak contraction.

Then g possesses a fixed point. Moreover, if for all ρ, ν ∈ X with ρ ⊥ ν, gρ = ρ and gν = ν implies
s ≤ α(ρ, ν), then g possesses a unique fixed point.

Proof. Working on the lines of Theorem 5, we obtain an ⊥-sequence {ρn}n∈N in X with α(ρn, ρn+1) ≥
s ∀ n ∈ N.

F
(
d(ρn, ρn+1)

)
= F

(
d(gρn−1, gρn)

)
≤ sF

(
d(gρn−1, gρn)

)
≤ α(ρn−1, ρn)F

(
d(gρn−1, gρn)

)
.

As g is ⊥-α type F -weak contraction, so we have

τ + F
(
d(ρn, ρn+1)

)
≤ τ + α(ρn−1, ρn)F

(
d(gρn−1, gρn)

)
≤ F

(
max

{
d(ρn−1, ρn), d(ρn−1, gρn−1), d(ρn, gρn),

d(ρn−1, gρn) + d(ρn, gρn−1)

2

})
= F

(
max

{
d(ρn−1, ρn), d(ρn, ρn+1),

d(ρn−1, ρn+1)

2

})
≤ F

(
max

{
d(ρn−1, ρn), d(ρn, ρn+1),

d(ρn−1, ρn) + d(ρn, ρn+1)

2

})
.

Then

τ + F
(
d(ρn, ρn+1)

)
≤ F

(
max

{
d(ρn−1, ρn), d(ρn, ρn+1)

})
. (20)
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Case 1 max

{
d(ρn−1, ρn), d(ρn, ρn+1)

}
= d(ρn, ρn+1). Then by (20), we have

τ + F
(
d(ρn, ρn+1)

)
≤ F (d(ρn, ρn+1)),

which is a contradiction for τ > 0.

Case 2 If max

{
d(ρn−1, ρn), d(ρn, ρn+1)

}
= d(ρn−1, ρn). Then by (20), we have

τ + F
(
d(ρn, ρn+1)

)
≤ F (d(ρn−1, ρn)).

Then

F
(
d(ρn, ρn+1)

)
≤ F (d(ρn−1, ρn))− τ
= F (d(ρn−1, ρn))− 2τ ≤ ... ≤ F (d(ρ0, ρ1))− nτ.

The proof now follows on the lines of Theorem 5.

Remark 6 In the upcoming result, we weaken the condition of ⊥-continuity of g.

Theorem 7 For an orthogonally complete metric space (X,⊥, d) with s ≥ 1 and ρ0 as an orthogonal element,
F ∈ =. Suppose α : X2 → R+ is a map on X2 and g : X → X is a self map such that

(I) g is ⊥-preserving;

(II) g is weak α-admissible map type S;

(III) ∃ ρ0 ∈ X with s ≤ α(ρ0, gρ0);

(IV) if there exists an ⊥-sequence {ρn}n∈N with α(ρn, ρn+1) ≥ s and ρn → ρ as n→∞, then α(ρn, ρ) ≥ s
and either [ρn ⊥ ρ ∀ n ∈ N] or [ρ ⊥ ρn ∀ n ∈ N];

(V) g is ⊥-α type F -contraction.

Then g possesses a fixed point. Moreover, if for all ρ, ν ∈ X with ρ ⊥ ν, gρ = ρ and gν = ν implies
s ≤ α(ρ, ν), then g possesses a unique fixed point.

Proof. Proceeding on the lines of Theorem 5, one can obtain {ρn}n∈N an ⊥-sequence where ρn → ρ as
n→∞ and α(ρn, ρn+1) ≥ s. Then by given condition we have, α(ρn, ρ) ≥ s and

[ρn ⊥ ρ ∀ n ∈ N] or [ρ ⊥ ρn ∀ n ∈ N].

Using ⊥-preserving property of g, we get

[gρn ⊥ gρ ∀ n ∈ N] or [gρ ⊥ gρn ∀ n ∈ N].

Since g is an ⊥-α type F -contraction, we have

F
(
d(ρn+1, gρ)

)
≤ τ + F

(
d(ρn+1, gρ)

)
= τ + F

(
d(gρn, gρ)

)
≤ τ + sF

(
d(gρn, gρ)

)
≤ τ + α(ρn, ρ)F

(
d(gρn, gρ)

)
≤ F

(
d(ρn, ρ)

)
. (21)

Using F1 property of F in (21), we obtain

d(ρn+1, gρ) < d(ρn, ρ).

Taking limit as n→∞, we obtain
d(ρ, gρ) = 0.

Thus g possesses a fixed point. Further, the uniqueness of the fixed point of g follows on the line of Theorem
5.
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Theorem 8 For an orthogonally complete metric space (X,⊥, d) with s ≥ 1 and ρ0 as an orthogonal element,
F ∈ =. Suppose α : X2 → R+ is a map on X2 and g : X → X is a self map such that

(I) g is ⊥-preserving;

(II) g is weak α-admissible map type S;

(III) ∃ ρ0 ∈ X with s ≤ α(ρ0, gρ0);

(IV) if there exists an ⊥-sequence {ρn}n∈N with α(ρn, ρn+1) ≥ s and ρn → ρ as n→∞, then α(ρn, ρ) ≥ s
and either [ρn ⊥ ρ ∀ n ∈ N] or [ρ ⊥ ρn ∀ n ∈ N];

(V) g is ⊥-α type F -weak contraction.

Then g possesses a fixed point. Moreover, if for all ρ, ν ∈ X with ρ ⊥ ν, gρ = ρ and gν = ν implies
s ≤ α(ρ, ν), then g possesses a unique fixed point.

Proof. Working on the lines of Theorem 7, we have

F
(
d(ρn+1, gρ)

)
≤ τ + F

(
d(ρn+1, gρ)

)
= τ + F

(
d(gρn, gρ)

)
≤ τ + sF

(
d(gρn, gρ)

)
≤ τ + α(ρn, ρ)F

(
d(gρn, gρ)

)
,

≤ F

(
max

{
d(ρn, ρ), d(ρn, gρn), d(ρ, gρ),

d(ρn, gρ) + d(ρ, gρn)

2

})
. (22)

Using F1 property of F in (22), we obtain

d(ρn+1, gρ) < max

{
d(ρn, ρ), d(ρn, gρn), d(ρ, gρ),

d(ρn, gρ) + d(ρ, gρn)

2

}
.

Taking limit as n→∞, we obtain
d(ρ, gρ) = 0.

Thus g possesses a fixed point. Further, the uniqueness of the fixed point of g follows on the line of Theorem
7.

Remark 7 It should be noted that Theorem 5, Theorem 6, Theorem 7 and Theorem 8 proved above are valid
even if g is considered as an α-admissible map type S.

Theorem 9 For an orthogonally complete metric space (X,⊥, d) with ρ0 as an orthogonal element, F ∈ =.
Suppose α : X2 → R+ is a map on X2 and g : X → X is a self map such that

(I) g is ⊥-preserving;

(II) g is weak α-admissible map;

(III) ∃ ρ0 ∈ X with 1 ≤ α(ρ0, gρ0);

(IV) g is ⊥-continuous;

(V) g is ⊥-α type F -contraction.

Then g possesses a fixed point. Moreover, if for all ρ, ν ∈ X with ρ ⊥ ν, gρ = ρ and gν = ν implies
1 ≤ α(ρ, ν), then g possesses a unique fixed point.
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Proof. On defining a sequence {ρn}n∈N in X where ρn+1 = gρn = gn+1ρ0 for each n ∈ N and since
ρ0, gρ0 ∈ X where (X,⊥) is an ⊥-set, and by ⊥-preserving property of g, gives

[ρn−1 ⊥ ρn ∀ n ∈ N] or [ρn ⊥ ρn+1 ∀ n ∈ N],

that is, {ρn}n∈N is an ⊥-sequence in X.
Now, by given condition α(ρ0, ρ1) = α(ρ0, gρ0) ≥ 1, then by weak α-admissibility of g, we have

α(gρ0, ggρ0) = α(ρ1, ρ2) ≥ 1 continuing, we get α(ρn−1, ρn) ≥ 1. Thus, we have

F
(
d(ρn, ρn+1)

)
= F

(
d(gρn−1, gρn)

)
≤ α(ρn−1, ρn)F

(
d(gρn−1, gρn)

)
.

Using ⊥-α type F -contraction condition of g and for τ > 0, we get

τ + F
(
d(ρn, ρn+1)

)
≤ τ + α(ρn−1, ρn)F

(
d(gρn−1, gρn)

)
≤ F

(
d(ρn−1, gρn)

)
,

that is,

F
(
d(ρn, ρn+1)

)
≤ F

(
d(ρn−1, ρn)

)
− τ

≤ F
(
d(ρn−2, ρn−1)

)
− 2τ ≤ ... ≤ F

(
d(ρ0, ρ1)

)
− nτ. (23)

Taking limit as n→∞ in (23) and by F2 property of F , we have

lim
n→∞

d(ρn, ρn+1) = 0. (24)

And further, by F3 property of F , ∃ r ∈ (0, 1), implies

lim
n→∞

(
d(ρn, ρn+1)

)r
F
(
d(ρn, ρn+1)

)
= 0. (25)

From (23), we deduce that(
d(ρn, ρn+1)

)r(
F (d(ρn, ρn+1))− F (d(ρ0, ρ1))

)
≤ −n

(
d(ρn, ρn+1)

)r
τ . (26)

On letting n→∞ in (26) and using (24) and (25), we obtain

lim
n→∞

n
(
d(ρn, ρn+1)

)r
= 0.

Thus ∃ n1 ∈ N, such that
d(ρn, ρn+1) <

1

n1/r
∀ n ≥ n1.

Consider m > n > n1, then by triangle inequality, we obtain

d(ρn, ρm) ≤ d(ρn, ρn+1) + d(ρn+1, ρn+2) + ...+ d(ρm−1, ρm),

≤
∞∑
i=1

d(ρi, ρi+1) =

∞∑
i=1

1

i1/r
.

Since the series
∑∞
i=1

1

i1/r
is convergent, which implies {ρn}n∈N is a Cauchy ⊥-sequence and thus, by

orthogonal completeness of X, ∃ ρ ∈ X for which

lim
n→∞

ρn = ρ.

Further by ⊥-continuity of g, we get

lim
n→∞

gρn = gρ⇒ lim
n→∞

ρn+1 = gρ⇒ ρ = gρ.
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Thus g possesses a fixed point.
Next, let ν be another fixed point of g such that ρ ⊥ ν. Then by given condition, we have α(ρ, ν) ≥ 1.

Using ⊥-α type F -contraction property of g, we have

τ + F
(
d(gρ, gν)

)
≤ τ + α(ρ, ν)F

(
d(gρ, gν)

)
≤ F

(
d(ρ, ν)

)
,

that is,
τ + F

(
d(ρ, ν)

)
≤ F

(
d(ρ, ν)

)
. (27)

Now, (27) holds only if ρ = ν. Hence, g possesses a unique fixed point.

Example 8 Let X = R along with usual metric space and define ρ ⊥ ν ⇔ ρ = kν ∀ ν ∈ X and for some
fixed k ∈ Z. Then (X,⊥, d) is an orthogonal metric space. Define g : X → X as

g(ρ) =

{
22
25 for ρ ∈ X − [−1, 1];
0 otherwise.

Define α : X2 → R+ as α(ρ, ν) = 1 ∀ ρ, ν ∈ X. Then for ρ ⊥ ν and d(gρ, gν) > 0 to hold together, we must
have either ρ = 0 and ν ∈ X − [−1, 1] or ρ ∈ X − [−1, 1] and ν = 0.
Consider ρ = 0 and ν ∈ X − [−1, 1] along with F = ln(β) and τ = − ln(22/25) > 0, we have

τ + α(ρ, ν)F
(
d(gρ, gν)

)
= τ + ln(22/25) = 0 (28)

and
F
(
d(ρ, ν)

)
= ln(|ν|) where ν ∈ X − [−1, 1]. (29)

Then from (28), (29) we can conclude that g is ⊥-α type F -contraction although, g is not continuous. Also,
the space (X,⊥, d) is orthogonally complete metric space (since (X, d) is complete metric space) and the
self-map g is weak α-admissible and ⊥-preserving. Next to check ⊥-continuity of g, let {ρn}n∈N be an ⊥-
sequence in X which is convergent. Then we have ρn → 0 as n→∞, that is, limn→∞ gρn = 0 = g0. Thus
g is ⊥-continuous. Since all the hypothesis of Theorem 9 hold, we see that g has a fixed point viz. ρ = 0.

Theorem 10 For an orthogonally complete metric space (X,⊥, d) with ρ0 as an orthogonal element, F ∈ =.
Suppose α : X2 → R+ is a map on X2 and g : X → X is a self map such that

(I) g is ⊥-preserving;

(II) g is weak α-admissible map;

(III) ∃ ρ0 ∈ X with 1 ≤ α(ρ0, gρ0);

(IV) g is ⊥-continuous;

(V) g is ⊥-α type F -weak contraction.

Then g possesses a fixed point. Moreover, if for all ρ, ν ∈ X with ρ ⊥ ν, gρ = ρ and gν = ν implies
1 ≤ α(ρ, ν), then g possesses a unique fixed point.

Proof. Working on the lines of Theorem 9, we obtain an ⊥-sequence {ρn}n∈N in X with α(ρn, ρn+1) ≥
1 ∀ n ∈ N.

F
(
d(ρn, ρn+1)

)
= F

(
d(gρn−1, gρn)

)
≤ α(ρn−1, ρn)F

(
d(gρn−1, gρn)

)
.

The proof now follows on the lines of Theorem 6.

Remark 8 In the upcoming result, we weaken the condition of ⊥-continuity of g.

Theorem 11 For an orthogonally complete metric space (X,⊥, d) with ρ0 as an orthogonal element, F ∈ =.
Suppose α : X2 → R+ is a map on X2 and g : X → X is a self map such that:
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(I) g is ⊥-preserving;

(II) g is weak α-admissible map;

(III) ∃ ρ0 ∈ X with 1 ≤ α(ρ0, gρ0);

(IV) if there exists an ⊥-sequence {ρn}n∈N with α(ρn, ρn+1) ≥ 1 and ρn → ρ as n→∞, then α(ρn, ρ) ≥ 1
and either [ρn ⊥ ρ ∀ n ∈ N] or [ρ ⊥ ρn ∀ n ∈ N];

(V) g is ⊥-α type F -contraction.

Then g possesses a fixed point. Moreover, if for all ρ, ν ∈ X with ρ ⊥ ν, gρ = ρ and gν = ν implies
1 ≤ α(ρ, ν), then g possesses a unique fixed point.

Proof. Proceeding on the lines of Theorem 9, one can obtain {ρn}n∈N an ⊥-sequence where ρn → ρ as
n→∞ and α(ρn, ρn+1) ≥ 1. Then by given condition we have, α(ρn, ρ) ≥ 1 and

[ρn ⊥ ρ ∀ n ∈ N] or [ρ ⊥ ρn ∀ n ∈ N].

Using ⊥-preserving property of g, we get

[gρn ⊥ gρ ∀ n ∈ N] or [gρ ⊥ gρn ∀ n ∈ N].

Since g is an ⊥-α type F -contraction, we have

F
(
d(ρn+1, gρ)

)
≤ τ + F

(
d(ρn+1, gρ)

)
= τ + F

(
d(gρn, gρ)

)
≤ τ + α(ρn, ρ)F

(
d(gρn, gρ)

)
≤ F

(
d(ρn, ρ)

)
. (30)

Using F1 property of F in (30), we obtain

d(ρn+1, gp) ≤ d(ρn, ρ).

Taking limit as n→∞, we obtain
d(ρ, gρ) = 0.

Thus g possesses a fixed point. Further, the uniqueness of the fixed point of g follows on the line of Theorem
9.

Theorem 12 For an orthogonally complete metric space (X,⊥, d) with ρ0 as an orthogonal element, F ∈ =.
Suppose α : X2 → R+ is a map on X2 and g : X → X is a self map such that:

(I) g is ⊥-preserving;

(II) g is weak α-admissible map;

(III) ∃ ρ0 ∈ X with 1 ≤ α(ρ0, gρ0);

(IV) if there exists an ⊥-sequence {ρn}n∈N with α(ρn, ρn+1) ≥ 1 and ρn → ρ as n→∞, then α(ρn, ρ) ≥ 1
and either [ρn ⊥ ρ ∀ n ∈ N] or [ρ ⊥ ρn ∀ n ∈ N];

(V) g is ⊥-α type F -weak contraction.

Then g possesses a fixed point. Moreover, if for all ρ, ν ∈ X with ρ ⊥ ν, gρ = ρ and gν = ν implies
1 ≤ α(ρ, ν), then g possesses a unique fixed point.

Proof. The proof follows from the working of Theorem 11 followed by working done in Theorem 8.

Remark 9 It should be noted that Theorem 9, Theorem 10, Theorem 11 and Theorem 12 proved above are
valid even if g is considered as an α-admissible map.
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3.3 Orthogonal TAC -Contraction

TAC -type contractive map was introduced by S. Chandok et al. in [7]. Inspired by work done, here in this
subsection we put forward the notion of orthogonal TAC -type S-contraction map, orthogonal weak TAC -
type S-rational contraction, orthogonal TAC -contraction map and orthogonal weak TAC -rational contraction
that further extends our approach towards contraction principles and fixed point results in orthogonal metric
space.
Let Ψ denotes the set of maps ψ : R+ → [0,∞) which are continuous and monotonically increasing with

ψ−1({0}) = 0 and let Φ denotes the set of maps φ : R+ → R+ which are continuous where limn→∞ φ(ρn) =
0⇒ limn→∞ ρn = 0.

Definition 22 For an orthogonal metric space (X,⊥, d), a self map g : X → X is said to be an orthogonal
TAC-type S-contraction (denoted by ⊥-TAC-type S-contraction) if for ρ, ν ∈ X with ρ ⊥ ν, s ≥ 1 and
α̂(ρ).β(ν) ≥ s implies

ψ
(
d(gρ, gν)

)
≤ f

(
ψ(d(ρ, ν)), φ(d(ρ, ν))

)
,

where α̂, β : X → [0,∞), f ∈ C, ψ ∈ Ψ and φ ∈ Φ.

Example 9 Let X = R, d(ρ, ν) = |ρ− ν| and ρ ⊥ ν ⇔ ρ.ν = 0. Then one can easily verify that (X,⊥, d) is
an orthogonal metric space. Define g : X → X as

g(ρ) =

{
−ρ7 ρ ∈ [0,∞);
0 otherwise.

Let α̂, β : X → [0,∞) be defined as

α̂(ρ) =

{
2 ρ ∈ [0,∞);
0 otherwise;

and

β(ρ) =

{
2 ρ ∈ (−∞, 0];
0 otherwise.

Also, f : [0,∞)2 → R be defined as f(ρ, ν) = ρ− ν and ψ, φ : [0,∞)→ [0,∞) as ψ(ρ) = 3ρ
2 and φ(ρ) = 3ρ

4 .
Now, for ρ ⊥ ν and α̂(ρ)β(ν) ≥ s = 2 to hold simultaneously, we must have either ρ = 0, ν ∈ (−∞, 0] or
ρ ∈ [0,∞), ν = 0.

Case (i) for ρ = 0 and ν ∈ (−∞, 0], we have

ψ
(
d(g0, gν)

)
= 0 (31)

and

f
(
ψ(d(0, ν)), φ(d(0, ν))

)
= f

(
ψ(|ν|), φ(|ν|)

)
= f

(3|ν|
2
,

3|ν|
4

)
=

3|ν|
4
. (32)

Case (ii) for ρ ∈ [0,∞) and ν = 0, we have

ψ
(
d(gρ, g0)

)
= ψ

(
d(gρ, 0)

)
= ψ(|ρ|/7) =

3|ρ|
14

, (33)

and

f
(
ψ(d(ρ, 0)), φ(d(ρ, 0))

)
= f

(
ψ(|ρ|), φ(|ρ|)

)
= f

(3|ρ|
2
,

3|ρ|
4

)
=

3|ρ|
4
. (34)

From (31)—(34), we have g as ⊥-TAC-type S-contraction.
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Definition 23 For an orthogonal metric space (X,⊥, d), a self map g : X → X is said to be an orthogonal
weak TAC-type S-rational contraction (denoted by ⊥-weak TAC-type S-rational contraction) if for ρ, ν ∈ X
with ρ ⊥ ν, s ≥ 1 and α̂(ρ).β(ν) ≥ s, implies

d(gρ, gν) ≤ f
(
M(ρ, ν), φ(M(ρ, ν))

)
,

where α̂, β : X → [0,∞), f ∈ C, φ ∈ Φ and

M(ρ, ν) = max

{
d(ρ, ν),

(
1 + d(ρ, gρ)

)
d(ν, gν)

1 + d(ρ, ν)

}
.

Definition 24 For an orthogonal metric space (X,⊥, d), a self map g : X → X is said to be an orthogonal
TAC-contraction (denoted by ⊥-TAC-contraction) if for ρ, ν ∈ X with ρ ⊥ ν and α̂(ρ).β(ν) ≥ 1 implies

ψ
(
d(gρ, gν)

)
≤ f

(
ψ(d(ρ, ν)), φ(d(ρ, ν))

)
,

where α̂, β : X → [0,∞), f ∈ C, ψ ∈ Ψ and φ ∈ Φ.

Example 10 Let X = R+, d(ρ, ν) = |ρ − ν| and ρ ⊥ ν ⇔ ρ.ν ∈ {ρ2 ,
ν
2}. Then one can easily verify that

(X,⊥, d) is an orthogonal metric space.
Define g : X → X as

g(ρ) =

{
ρ
3 ρ ∈ [0, 2];
5
7 otherwise.

Let α̂, β : X → [0,∞) be defined as

α̂(ρ) =

{
1 ρ ∈ [0, 2];
0 otherwise;

and

β(ρ) =

{
2 ρ ∈ [0, 2];
0 otherwise.

Also, let f : [0,∞)2 → R be defined as f(ρ, ν) = ρ−ν and ψ, φ : [0,∞)→ [0,∞) as ψ(ρ) = ρ and φ(ρ) = ρ/3.
Now, for ρ ⊥ ν and α̂(ρ)β(ν) ≥ 1 to hold simultaneously, we must have either ρ = 0 and ν ∈ [0, 2] or ρ ∈ [0, 2]
and ν = 0. Considering ρ ∈ [0, 2] and ν = 0, we have

ψ
(
d(gρ, g0)

)
= d(gρ, 0) = ρ/3, (35)

and
f
(
ψ(d(ρ, 0)), φ(d(ρ, 0))

)
= f

(
ψ(ρ), φ(ρ)

)
= ψ(ρ)− φ(ρ) = ρ− ρ/3 =

2

3
ρ. (36)

From (35) and (36), we have g as ⊥-TAC-contraction which is clearly not continuous.

Definition 25 For an orthogonal metric space (X,⊥, d), a self map g : X → X is claimed to be an orthogonal
weak TAC-rational contraction (denoted by ⊥-weak TAC-rational contraction) if for ρ, ν ∈ X with ρ ⊥ ν
and α̂(ρ).β(ν) ≥ 1, implies

d(gρ, gν) ≤ f
(
M(ρ, ν), φ(M(ρ, ν))

)
,

where α̂, β : X → [0,∞), f ∈ C, φ ∈ Φ and

M(ρ, ν) = max

{
d(ρ, ν),

(
1 + d(ρ, gρ)

)
d(ν, gν)

1 + d(ρ, ν)

}
.

Theorem 13 For an orthogonally complete metric space (X,⊥, d) with s ≥ 1 and ρ0 as an orthogonal
element, suppose α̂, β : X → [0,∞) are defined on X and g : X → X is a cyclic (α̂, β)-admissible map type
S such that following holds:
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(I) g is ⊥-preserving;

(II) ∃ some ρ0 in X with α̂(ρ0) ≥ s and β(ρ0) ≥ s;

(III) g is ⊥-continuous;

(IV) g is ⊥-TAC-type S-contraction.

Then g possesses a fixed point. In addition, if α̂(ρ) ≥ s and β(ν) ≥ s for all ρ, ν ∈ X where gρ = ρ and
gν = ν with ρ ⊥ ν, then g possesses a unique fixed point.

Proof. Since (X,⊥, d) is an ⊥-set,then for ρ0, gρ0 ∈ X, we have

[ρ0 ⊥ gρ0] or [gρ0 ⊥ ρ0]. (37)

Define a sequence {ρn}n∈N in X where ρn+1 = gρn = gn+1(ρ0) ∀ n ∈ N. Using ⊥-preserving property of g
in (37), we obtain that {ρn}n∈N is an ⊥-sequence in X.

Next, by given condition, α̂(ρ0) ≥ s and as g is cyclic (α̂, β)-admissible map type S, we have β(ρ1) =
β(gρ0) ≥ s. Continuing in similar way, we get α̂(ρn−1) ≥ s and β(ρn) ≥ s for each n ∈ N ∪ {0}. Then
α̂(ρn−1)β(ρn) ≥ s. Let us denote ζn = d(ρn, ρn+1). Using ⊥-TAC-type S-contraction of g, we have

ψ
(
ζn
)

= ψ
(
d(ρn, ρn+1)

)
= ψ

(
d(gρn−1, gρn)

)
≤ f

(
ψ(ζn−1), φ(ζn−1)

)
≤ ψ(ζn−1). (38)

Since ψ is monotonically increasing function, we see that

ζn ≤ ζn−1 ∀ n ∈ N,

thus, {ζn}n∈N is decreasing and as each ζn ∈ R+, so ∃ some ζ ∈ R+, such that

lim
n→∞

ζn = ζ.

On taking limit as n→∞ in (38), we obtain

ψ(ζ) ≤ f
(
ψ(ζ), φ(ζ)

)
≤ ψ(ζ),

that is, f(ψ(ζ), φ(ζ)) = ψ(ζ). By using definition of f , we obtain either ψ(ζ) = 0 or φ(ζ) = 0. From either
of the cases we have ζ = 0, that is,

lim
n→∞

ζn = lim
n→∞

d(ρn, ρn+1) = 0.

So, for some l = ε/m > 0 ∃ nl ∈ N such that

d(ρn, ρn+1) < l ∀ n > nl. (39)

Let n,m ∈ N where n > nl. Using triangle inequality and (39), we get

d(ρn, ρn+m) ≤ d(ρn, ρn+1) + d(ρn+1, ρn+2) + ...+ d(ρn+m−1, ρn+m)

< ml = ε.

Thus we have, {ρn}n∈N as a Cauchy ⊥-sequence in X. By orthogonal completeness of X, ∃ ρ ∈ X such that

lim
n→∞

ρn = ρ.

As g is an ⊥-continuous map, so

lim
n→∞

gρn = gρ⇒ lim
n→∞

ρn+1 = gρ⇒ ρ = gρ.
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Hence, g possesses a fixed point.
Next, for uniqueness, let ν be another fixed point of g such that ρ ⊥ ν then by given condition α̂(ρ)β(ν) ≥

s. Using ⊥-TAC-type S-contraction condition of g, we obtain

ψ
(
d(ρ, ν)

)
= ψ

(
d(gρ, gν)

)
≤ f

(
ψ(d(ρ, ν)), φ(d(ρ, ν))

)
≤ ψ

(
d(ρ, ν)

)
.

Then
f
(
ψ(d(ρ, ν)), φ(d(ρ, ν))

)
= ψ(d(ρ, ν)).

On using definition of C-class function f we obtain, either ψ(d(ρ, ν)) = 0 or φ(d(ρ, ν)) = 0. From both the
cases, we get d(ρ, ν) = 0. Hence, g possesses a unique fixed point.

Example 11 Example 9, satisfies all of the conditions of Theorem 13 and thus possesses a fixed point viz.
ρ = 0.

Corollary 3 For an orthogonally complete metric space (X,⊥, d) with s ≥ 1 and ρ0 as an orthogonal
element, suppose α̂, β : X → [0,∞) are defined on X and g : X → X is a cyclic (α̂, β)-admissible map type
S such that following holds

(I) g is ⊥-preserving;

(II) ∃ some ρ0 in X with α̂(ρ0) ≥ s and β(ρ0) ≥ s;

(III) {ρn}n∈N is an ⊥-sequence where ρn → ρ as n → ∞ along with β(ρn) ≥ s for each n ∈ N, implies
β(ρ) ≥ s and either [ρn ⊥ ρ ∀ n] or [ρ ⊥ ρn ∀ n] ;

(IV) g is ⊥-TAC-type S contraction.

Then g possesses a fixed point. In addition, if α̂(ρ) ≥ s and β(ν) ≥ s for all ρ, ν ∈ X where gρ = ρ and
gν = ν with ρ ⊥ ν, then g possesses a unique fixed point.

Proof. Working on the footprints of Theorem 13, we obtain {ρn}n∈N an ⊥-sequence in X such that ρn → ρ
as n → ∞ and also, β(ρn) ≥ s for each n ∈ N. Then, by given condition, we obtain β(ρ) ≥ s and either
[ρn ⊥ ρ ∀ n] or [ρ ⊥ ρn ∀ n] . Thus α̂(ρn)β(ρ) ≥ s, implies

ψ
(
d(ρn+1, gρ)

)
= ψ

(
d(gρn, gρ)

)
≤ f

(
ψ(d(ρn, ρ)), φ(d(ρn, ρ))

)
≤ ψ

(
d(ρn, ρ)

)
.

Taking limit as n→∞ and using continuity of f , ψ and φ, we have

d(ρ, gρ) = 0.

Thus g possesses a fixed point in X. Also, Theorem 13 can be used to prove the uniqueness of fixed point.

Theorem 14 For an orthogonally complete metric space (X,⊥, d) with s ≥ 1 and ρ0 as an orthogonal
element, suppose α̂, β : X → [0,∞) are defined on X and g : X → X is a cyclic (α̂, β)-admissible map of
type S such that following holds:

(I) g is ⊥-preserving;

(II) ∃ some ρ0 in X with α̂(ρ0) ≥ s and β(ρ0) ≥ s;

(III) g is ⊥-continuous;

(IV) g is ⊥-weak TAC-type S-rational contraction.

Then g possesses a fixed point. In addition, if α̂(ρ) ≥ s and β(ν) ≥ s for all ρ, ν ∈ X where gρ = ρ and
gν = ν with ρ ⊥ ν, then g possesses a unique fixed point.
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Proof. Working on the lines of Theorem 13, one can obtain an ⊥-sequence {ρn}n∈N with α̂(ρn−1)β(ρn) ≥ s
for every n ∈ N. By using ⊥-weak TAC -type S-rational contraction of g, we get

ζn = d(ρn, ρn+1) = d(gρn−1, gρn) ≤ f
(
M(ρn−1, ρn), φ(M(ρn−1, ρn))

)
≤M(ρn−1, ρn), (40)

where

M(ρn−1, ρn) = max

{
d(ρn−1, ρn),

(
1 + d(ρn−1, ρn)

)
d(ρn, ρn+1)

1 + d(ρn−1, ρn)

}
= max{ζn−1, ζn}.

Suppose for some n0 ∈ N, we have
M(ρn0−1, ρn0) = ζn0 ,

that is,
ζn0 > ζn0−1. (41)

Then by (40), we have
ζn0 ≤ f

(
ζn0 , φ(ζn0)

)
≤ ζn0 .

Then
f
(
ζn0 , φ(ζn0)

)
= ζn0 .

By using definition of function f , we have either ζn0 = 0 or φ(ζn0) = 0. From either of the cases, we get
ζn0 = 0 which is a contradiction to (41). Thus for all n ∈ N, we have

ζn ≤ ζn−1,

thus, {ζn}n∈N is decreasing and as each ζn ∈ R+, so ∃ some ζ ∈ R+, such that

lim
n→∞

ζn = ζ.

On taking limit as n→∞ in (40), we get

ζ ≤ f
(
ζ, φ(ζ)

)
≤ ζ.

Then
f
(
ζ, φ(ζ)

)
= ζ ⇒ either ζ = 0 or φ(ζ) = 0,

which gives, ζ = 0, that is,
lim
n→∞

ζn = lim
n→∞

d(ρn, ρn+1) = 0.

Now, for some l = ε/m > 0, ∃ nl ∈ N such that,

d(ρn, ρn+1) < l ∀ n > nl. (42)

Let n,m ∈ N where n > nl. Using triangle inequality and (42), we get

d(ρn, ρn+m) ≤ d(ρn, ρn+1) + d(ρn+1, ρn+2) + ...+ d(ρn+m−1, ρn+m)

< ml = ε.

Thus we have, {ρn}n∈N as Cauchy ⊥-sequence in X. By orthogonal completeness of X, ∃ ρ ∈ X, such that

lim
n→∞

ρn = ρ.

As g is an ⊥-continuous map, so

lim
n→∞

gρn = gρ⇒ lim
n→∞

ρn+1 = gρ⇒ ρ = gρ.
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Hence, g possesses a fixed point.
For uniqueness, let ν be another fixed point of g such that ρ ⊥ ν then by given condition α̂(ρ)β(ν) ≥ s.

Using ⊥-weak TAC -type S-rational contraction of g, we obtain

d(ρ, ν) = d(gρ, gν) ≤ f
(
M(ρ, ν), φ(M(ρ, ν))

)
, (43)

where,

M(ρ, ν) = max

{
d(ρ, ν),

(
1 + d(ρ, gρ)

)
d(ν, gν)

1 + d(ρ, ν)

}
= d(ρ, ν).

Thus from (43), we get
d(ρ, ν) ≤ f

(
d(ρ, ν), φ(d(ρ, ν))

)
≤ d(ρ, ν),

which implies d(ρ, ν) = 0. Hence g possesses a unique fixed point.

Corollary 4 For an orthogonally complete metric space (X,⊥, d) with s ≥ 1 and ρ0 as an orthogonal
element, suppose α̂, β : X → [0,∞) are defined on X and g : X → X is a cyclic (α̂, β)-admissible map of
type S such that following holds

(I) g is ⊥-preserving;

(II) ∃ some ρ0 in X with α̂(ρ0) ≥ s and β(ρ0) ≥ s;

(III) {ρn}n∈N is an ⊥-sequence where ρn → ρ as n → ∞ along with β(ρn) ≥ s for each n ∈ N, implies
β(ρ) ≥ s and either [ρn ⊥ ρ ∀ n] or [ρ ⊥ ρn ∀ n];

(IV) g is ⊥-weak TAC-type S-rational contraction.

Then g possesses a fixed point. In addition, if α̂(ρ) ≥ s and β(ν) ≥ s for all ρ, ν ∈ X where gρ = ρ and
gν = ν with ρ ⊥ ν, then g possesses a unique fixed point.

Proof. With reference to the working of Theorem 14, one can obtain an ⊥-sequence {ρn}n∈N in X where
ρn → ρ as n → ∞ and β(ρn) ≥ s for each n ∈ N. By given condition, β(ρ) ≥ s and either [ρn ⊥ ρ ∀ n] or
[ρ ⊥ ρn ∀ n] which implies α̂(ρn)β(ρ) ≥ s. On using ⊥-weak TAC -type S-rational contraction of g, we get

d(ρn+1, gρ) = d(gρn, gρ) ≤ f
(
M(ρn, ρ), φ(M(ρn, ρ))

)
, (44)

where

M(ρn, ρ) = max

{
d(ρn, ρ),

(
1 + d(ρn, g(ρn))

)
d(ρ, g(ρ))

1 + d(ρn, ρ)

}
.

Taking limit as n→∞ in (44), we obtain
d(ρ, gρ) = 0.

Thus ρ is a fixed point of g and the uniqueness of the fixed point follows on the lines of Theorem 14.

Remark 10 In the upcoming results, we consider g to be a cyclic (α̂, β)-admissible map.

Theorem 15 For an orthogonally complete metric space (X,⊥, d) with ρ0 as an orthogonal element, suppose
α̂, β : X → [0,∞) are defined on X and g : X → X is a cyclic (α̂, β)-admissible map on X such that following
holds

(I) g is ⊥-preserving;

(II) ∃ some ρ0 in X with α(ρ0) ≥ 1 and β(ρ0) ≥ 1;
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(III) g is ⊥-continuous;

(IV) g is ⊥-TAC-contraction.

Then g possesses a fixed point. In addition, if α̂(ρ) ≥ 1 and β(ν) ≥ 1 for all ρ, ν ∈ X where gρ = ρ and
gν = ν with ρ ⊥ ν, then g possesses a unique fixed point.

Proof. Since (X,⊥, d) is an ⊥-set,then for ρ0, gρ0 ∈ X, we have

[ρ0 ⊥ gρ0] or [gρ0 ⊥ ρ0]. (45)

Define a sequence {ρn}n∈N in X where ρn+1 = gρn = gn+1(ρ0) ∀ n ∈ N. Using ⊥-preserving property of g
in (45), we obtain that {ρn}n∈N is an ⊥-sequence in X.

Next, by given condition, α̂(ρ0) ≥ 1 then by cyclic (α̂, β)-admissibility of g, we have β(ρ1) = β(gρ0) ≥ 1.
Continue using cyclic (α̂, β)-admissibility of g, we get α̂(ρn−1) ≥ 1 and β(ρn) ≥ 1 for each n ∈ N ∪ {0}.
Then α̂(ρn−1)β(ρn) ≥ 1. Let us denote ζn = d(ρn, ρn+1). Using ⊥-TAC-contraction of g, we have

ψ
(
ζn
)

= ψ
(
d(ρn, ρn+1)

)
= ψ

(
d(gρn−1, gρn)

)
≤ f

(
ψ(ζn−1), φ(ζn−1)

)
≤ ψ(ζn−1). (46)

Since ψ is monotonically increasing function, we see that

ζn ≤ ζn−1 ∀ n ∈ N.

Thus, {ζn}n∈N is decreasing and as each ζn ∈ R+, so ∃ some ζ ∈ R+, such that

lim
n→∞

ζn = ζ.

On taking limit as n→∞ in (46), we obtain

ψ(ζ) ≤ f
(
ψ(ζ), φ(ζ)

)
≤ ψ(ζ),

that is, f(ψ(ζ), φ(ζ)) = ψ(ζ). By using definition of f , we obtain either ψ(ζ) = 0 or φ(ζ) = 0. From either
of the cases we have ζ = 0, that is,

lim
n→∞

ζn = lim
n→∞

d(ρn, ρn+1) = 0.

So, for some l = ε/m > 0 ∃ nl ∈ N such that

d(ρn, ρn+1) < l ∀ n > nl. (47)

Let n,m ∈ N where n > nl. Using triangle inequality and (47), we get

d(ρn, ρn+m) ≤ d(ρn, ρn+1) + d(ρn+1, ρn+2) + ...+ d(ρn+m−1, ρn+m)

< ml = ε.

Thus we have, {ρn}n∈N as a Cauchy ⊥-sequence in X. By orthogonal completeness of X, ∃ ρ ∈ X such that

lim
n→∞

ρn = ρ.

As g is an ⊥-continuous map, so

lim
n→∞

gρn = gρ⇒ lim
n→∞

ρn+1 = gρ⇒ ρ = gρ.

Hence, g possesses a fixed point.
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Next, for uniqueness, let ν be another fixed point of g such that ρ ⊥ ν then by given condition α̂(ρ)β(ν) ≥
1. Using ⊥-TAC-contraction of g, we obtain

ψ
(
d(ρ, ν)

)
= ψ

(
d(gρ, gν)

)
≤ f

(
ψ(d(ρ, ν)), φ(d(ρ, ν))

)
≤ ψ

(
d(ρ, ν)

)
.

Then
f
(
ψ(d(ρ, ν)), φ(d(ρ, ν))

)
= ψ(d(ρ, ν)).

On using definition of C-class function f we obtain, either ψ(d(ρ, ν)) = 0 or φ(d(ρ, ν)) = 0. From both the
cases, we get d(ρ, ν) = 0. Hence, g possesses a unique fixed point.

Example 12 Consider the space defined in Example 10. Then the orthogonal completeness of (X,⊥, d) is
well evident and also such g is ⊥-preserving. Next we have:

(i) Cyclic (α̂, β)-admissibility of g: Since for ρ ∈ [0, 2] we get α̂(ρ) ≥ 1 implies β(gρ) = β(ρ/3) ≥ 1,
similarly, for ρ ∈ [0, 2] we get β(ρ) ≥ 1 implies α̂(gρ) = α̂(ρ/3) ≥ 1.

(ii) ⊥-continuity of g: Since for {ρn}n∈N an ⊥-sequence in X, we see that ρn → 0. So we have, {gρn} →
0 = g0.

Since all condition of Theorem 15 holds, g possesses a fixed point which is ρ = 0.

Remark 11 The above theorem holds good even if instead of taking g as an ⊥-continuous map we consider
a weaker condition as discussed in the following result.

Corollary 5 For an orthogonally complete metric space (X,⊥, d) with ρ0 as an orthogonal element, suppose
α̂, β : X → [0,∞) are defined on X and g : X → X is a cyclic (α̂, β)-admissible map on X such that
following holds:

(I) g is ⊥-preserving;

(II) ∃ some ρ0 in X with α̂(ρ0) ≥ 1 and β(ρ0) ≥ 1;

(III) {ρn}n∈N is an ⊥-sequence where ρn → ρ as n → ∞ along with β(ρn) ≥ 1 for each n ∈ N, implies
β(ρ) ≥ 1 and either [ρn ⊥ ρ ∀ n] or [ρ ⊥ ρn ∀ n];

(IV) g is ⊥-TAC-contraction.

Then g possesses a fixed point. In addition, if α̂(ρ) ≥ 1 and β(ν) ≥ 1 for all ρ, ν ∈ X where gρ = ρ and
gν = ν with ρ ⊥ ν, then g possesses a unique fixed point.

Proof. Working on the footprints of Theorem 15, we obtain {ρn}n∈N an ⊥-sequence in X such that ρn → ρ
as n → ∞ and also, β(ρn) ≥ 1 for each n ∈ N. Then, by given condition, we obtain β(ρ) ≥ 1 and either
[ρn ⊥ ρ ∀ n] or [ρ ⊥ ρn ∀ n] . Thus α̂(ρn)β(ρ) ≥ 1, implies

ψ
(
d(gρn, gρ)

)
≤ f

(
ψ(d(ρn, ρ)), φ(d(ρn, ρ))

)
≤ ψ

(
d(ρn, ρ)

)
.

Taking limit as n→∞ and using continuity of f , ψ and φ, we have

d(ρ, gρ) = 0.

Thus g possesses a fixed point in X. Also, Theorem 15 can be used to prove the uniqueness of fixed point.

Theorem 16 For an orthogonally complete metric space (X,⊥, d) with ρ0 as an orthogonal element, suppose
α̂, β : X → [0,∞) are defined on X and g : X → X is a cyclic (α̂, β)-admissible map on X such that following
holds:
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(I) g is ⊥-preserving;

(II) ∃ some ρ0 in X with α̂(ρ0) ≥ 1 and β(ρ0) ≥ 1;

(III) g is ⊥-continuous;

(IV) g is ⊥-weak TAC-rational contraction.

Then g possesses a fixed point. In addition, if α̂(ρ) ≥ 1 and β(ν) ≥ 1 for all ρ, ν ∈ X where gρ = ρ and
gν = ν with ρ ⊥ ν, then g possesses a unique fixed point.

Proof. Working on the lines of Theorem 15, one can obtain an ⊥-sequence {ρn}n∈N with α̂(ρn−1)β(ρn) ≥ 1
for every n ∈ N. By using ⊥-weak TAC -rational contraction of g, we get

ζn = d(ρn, ρn+1) = d(gρn−1, gρn) ≤ f
(
M(ρn−1, ρn), φ(M(ρn−1, ρn))

)
≤M(ρn−1, ρn), (48)

where

M(ρn−1, ρn) = max

{
d(ρn−1, ρn),

(
1 + d(ρn−1, ρn)

)
d(ρn, ρn+1)

1 + d(ρn−1, ρn)

}
= max{ζn−1, ζn}.

Suppose for some n0 ∈ N, we have
M(ρn0−1, ρn0) = ζn0 ,

that is,
ζn0 > ζn0−1. (49)

Then by (48), we have
ζn0 ≤ f

(
ζn0 , φ(ζn0)

)
≤ ζn0 .

Then
f
(
ζn0 , φ(ζn0)

)
= ζn0 .

By using definition of function f , we have either ζn0 = 0 or φ(ζn0) = 0.
From either of the cases, we get ζn0 = 0 which is a contradiction to (49). Hence for all n ∈ N, we have

ζn ≤ ζn−1,

thus, {ζn}n∈N is decreasing and as each ζn ∈ R+, so ∃ some ζ ∈ R+, such that limn→∞ ζn = ζ.
On taking limit as n→∞ in (48), we get

ζ ≤ f
(
ζ, φ(ζ)

)
≤ ζ ⇒ f

(
ζ, φ(ζ)

)
= ζ ⇒ either ζ = 0 or φ(ζ) = 0

which gives, ζ = 0, that is,
lim
n→∞

ζn = lim
n→∞

d(ρn, ρn+1) = 0.

Now, for some l = ε/m > 0, ∃ nl ∈ N such that,

d(ρn, ρn+1) < l ∀ n > nl. (50)

Let n,m ∈ N where n > nl. Using triangle inequality and (50), we get

d(ρn, ρn+m) ≤ d(ρn, ρn+1) + d(ρn+1, ρn+2) + ...+ d(ρn+m−1, ρn+m)

< ml = ε.

Thus we have, {ρn}n∈N as Cauchy ⊥-sequence in X. By orthogonal completeness of X, ∃ ρ ∈ X, such that

lim
n→∞

ρn = ρ.
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As g is an ⊥-continuous map, so

lim
n→∞

gρn = gρ⇒ lim
n→∞

ρn+1 = gρ⇒ ρ = gρ.

Hence, g possesses a fixed point.
For uniqueness, let ν be another fixed point of g such that ρ ⊥ ν then by given condition α̂(ρ)β(ν) ≥ 1.

Using ⊥-weak TAC -rational contraction of g, we obtain

d(ρ, ν) = d(gρ, gν) ≤ f
(
M(ρ, ν), φ(M(ρ, ν))

)
, (51)

where,

M(ρ, ν) = max

{
d(ρ, ν),

(
1 + d(ρ, gρ)

)
d(ν, gν)

1 + d(ρ, ν)

}
= d(ρ, ν).

Thus from (51), we get
d(ρ, ν) ≤ f

(
d(ρ, ν), φ(d(ρ, ν))

)
≤ d(ρ, ν),

which implies d(ρ, ν) = 0. Hence g possesses a unique fixed point.

Remark 12 The above theorem also holds good if we drop ⊥-continuity of g and instead consider a weaker
condition as discussed in the following corollary.

Corollary 6 For an orthogonally complete metric space (X,⊥, d) with ρ0 as an orthogonal element, suppose
α̂, β : X → [0,∞) are defined on X and g : X → X is a cyclic (α̂, β)-admissible map on X such that
following holds

(I) g is ⊥-preserving;

(II) ∃ some ρ0 in X with α̂(ρ0) ≥ 1 and β(ρ0) ≥ 1;

(III) {ρn}n∈N is an ⊥-sequence where ρn → ρ as n → ∞ along with β(ρn) ≥ 1 for each n ∈ N, implies
β(ρ) ≥ 1 and either [ρn ⊥ ρ ∀ n] or [ρ ⊥ ρn ∀ n];

(IV) g is ⊥-weak TAC-rational contraction.

Then g possesses a fixed point. In addition, if α̂(ρ) ≥ 1 and β(ν) ≥ 1 for all ρ, ν ∈ X where gρ = ρ and
gν = ν with ρ ⊥ ν, then g possesses a unique fixed point.

Proof. With reference to working of Theorem 16, one can obtain an ⊥-sequence {ρn}n∈N in X where
ρn → ρ as n → ∞ and β(ρn) ≥ 1 for each n ∈ N. By given condition, β(ρ) ≥ 1 and either [ρn ⊥ ρ ∀ n] or
[ρ ⊥ ρn ∀ n] which implies α̂(ρn)β(ρ) ≥ 1. On using ⊥-weak TAC -rational contraction of g, we get

d(ρn+1, gρ) = d(gρn, gρ) ≤ f
(
M(ρn, ρ), φ(M(ρn, ρ))

)
, (52)

where

M(ρn, ρ) = max

{
d(ρn, ρ),

(
1 + d(ρn, g(ρn))

)
d(ρ, g(ρ))

1 + d(ρn, ρ)

}
.

Taking limit as n→∞ in (52), we obtain
d(ρ, gρ) = 0.

Thus ρ is a fixed point of g and the uniqueness of the fixed point follows on the lines of Theorem 16.
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Example 13 Consider X = [0,∞) with usual metric space and let ρ ⊥ ν ⇔ ρ ≤ ν ∀ ν ∈ X. Then (X,⊥, d)
is an orthogonally complete metric space. Define g : X → X as

g(ρ) =

{
17ρ
19 ρ ∈ [0, 1/2);

15ρ2 otherwise.

Clearly, here g is ⊥-preserving and ⊥-continuous function but not a continuous function. Define α̂, β : X →
R+ as

α̂(ρ) =

{
3
2 ρ ∈ [0, 1/2);
0 otherwise;

and,

β(ρ) =

{
5
4 ρ ∈ [0, 1/2);
0 otherwise.

Define f : [0,∞)2 → R as f(ρ, ν) = ρ − ν and φ : [0,∞) → R+ as φ(ρ) = ρ/2. For ρ ∈ [0, 1/2), α̂(ρ) ≥ 1
implies β(gρ) = β( 17ρ19 ) ≥ 1 and vice-versa, thus g is a cyclic (α̂, β)-admissible mapping.

Next, for α̂(ρ)β(ν) ≥ 1 and ρ ⊥ ν to hold simultaneously, we must have either

[ρ = 0 and ν ∈ [0, 1/2)] or [ν = 0 and ρ ∈ [0, 1/2)].

Considering ρ = 0 and ν ∈ [0, 1/2), we get

d(g0, gν) = d

(
0,

17ν

19

)
=

17ν

19
, (53)

and,
f
(
M(0, ν), φ(M(0, ν))

)
= f(ν, ν/2) = ν/2 (54)

From (53) and (54), we can conclude that ν is an ⊥-weak TAC-rational contraction. Thus by Theorem 16
we conclude that g possesses a fixed point viz. ρ = 0.

3.4 Orthogonal Suzuki-Berinde type F-Contraction

Recently, N. Hussain and J. Ahmad gave the notion of Suzuki-Berinde type F -contraction in [14] and proved
certain fixed point result, which is a generalisation of [19]. In this final subsection of manuscript, we put
forward the notion of orthogonal Suzuki-Berinde type F -contraction and explore the fixed point result.

Definition 26 For an orthogonal metric space (X,⊥, d) and for F ∈ ΩF , a self map g : X → X is claimed
to be an orthogonal Suzuki-Berinde type F -contraction map (denoted by ⊥-S-B type F -contraction) if there
exist τ > 0 and L ≥ 0 such that for all ρ, ν ∈ X with d(gρ, gν) > 0 and ρ ⊥ ν, we have

1

2
d(ρ, gρ) < d(ρ, ν)⇒ τ + F

(
d(gρ, gν)

)
≤ F

(
d(ρ, ν)

)
+ L.min

{
d(ρ, gρ), d(ρ, gν), d(ν, gρ)

}
.

Example 14 Let X = [0, 7/2] with d(ρ, ν) = |ρ − ν| and ρ ⊥ ν ⇔ ρ.ν = ν ∀ ν ∈ X. Then (X,⊥, d) is an
orthogonal metric space (with ρ = 1 as an orthogonal element). Define g : X → X as

g(ρ) =

{
1 ρ ∈ [0, 7/2);
2
7 otherwise.

For ρ ⊥ ν and d(gρ, gν) > 0 we must have either ρ = 1 and ν = 7/2 or ρ = 7/2 and ν = 1.
Consider ρ = 1 and ν = 7/2. Then for F(β) = ln(β) and 0 < τ < 1, we have

τ + F
(
d(gρ, gν)

)
= τ + ln(2/7), (55)

and,
F
(
d(ρ, ν)

)
+ L.min

{
d(ρ, gρ), d(ρ, gν), d(ν, gρ)

}
= ln(5/2). (56)

From (55) and (56), we can conclude that g is ⊥-S-B type F -contraction.
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Theorem 17 For an orthogonally complete metric space (X,⊥, d) with ρ0 as an orthogonal element, suppose
F ∈ ΩF and g : X → X is a self map on X satisfying following:

(I) g is ⊥-preserving;

(II) g is ⊥-S-B type F -contraction;

(III) g is ⊥-continuous.

Then g possesses a fixed point. Moreover, if ρ ⊥ ν for all ρ, ν ∈ X where gρ = ρ and gν = ν, then g possesses
a unique fixed point.

Proof. Define a sequence {ρ}n∈N in X, where

ρn+1 = gρn = gn+1ρ0 ∀ n ∈ N.

Since ρ0 is an orthogonal element, we have

[ρ0 ⊥ gρ0] or [gρ0 ⊥ ρ0].

On repeated use of ⊥- preserving property of g, we obtain {ρ}n∈N as an ⊥-sequence in X. If for some n0 ∈ N
we have ρn0 = ρn0+1 = gρn0 then we are done.
Suppose ρn 6= ρn+1 ∀ n ∈ N, that is, d(ρn, ρn+1) > 0.

Since
1

2
d(ρn, ρn+1) =

1

2
d(ρn, gρn) < d(ρn, gρn+1),

and since g is an ⊥-S-B type F -contraction map, we see that

τ + F
(
d(ρn, ρn+1)

)
= τ + F

(
d(gρn−1, gρn)

)
≤ F

(
d(ρn−1, ρn)

)
+ L.min

{
d(ρn−1, ρn), d(ρn−1, ρn+1), d(ρn, ρn)

}
Then

F
(
d(ρn, ρn+1)

)
≤ F

(
d(ρn−1, ρn)

)
− τ

≤ F
(
d(ρn−2, ρn−1)

)
− 2τ ≤ ... ≤ F

(
d(ρ0, ρ1)

)
− nτ. (57)

Taking limit as n→∞ in (57) and using (F2) and Lemma 1, gives

lim
n→∞

d(ρn, ρn+1) = 0.

Thus, for some ε/m = l > 0 there exists nl ∈ N, such that

d(ρn, ρn+1) < l ∀ n > nl. (58)

Let n,m ∈ N where n > nl. Using triangle inequality and (58), we have

d(ρn, ρn+m) ≤ d(ρn, ρn+1) + d(ρn+1, ρn+2) + ...+ d(ρn+m−1, ρn+m)

< ml = ε.

So we conclude that {ρn}n∈N is a Cauchy ⊥-sequence in X. Therefore, by orthogonal completeness of X,
∃ ρ ∈ X where

lim
n→∞

ρn = ρ.

Now, since g is an ⊥-continuous map, we see that

lim
n→∞

gρn = gρ⇒ lim
n→∞

ρn+1 = gρ⇒ ρ = gρ.
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Thus g possesses a fixed point.
Let ν be another fixed point of g in X then by given condition ρ ⊥ ν. Suppose ρ 6= ν, that is, d(ρ, ν) > 0.

Since
1

2
d(ρ, ρ) = 0 =

1

2
d(ρ, gρ) < d(ρ, ν),

and by given ⊥-S-B type F -contraction of g, we obtain

F
(
d(ρ, ν)

)
= F

(
d(gρ, gν)

)
< τ + F

(
d(gρ, gν)

)
≤ F

(
d(ρ, ν)

)
+ L.min

{
d(ρ, gρ), d(ρ, gν), d(ν, gρ)

}
.

Then
F
(
d(ρ, ν)

)
< F

(
d(ρ, ν)

)
,

which is a contradiction. Hence g possesses a unique fixed point.

Example 15 Consider the orthogonal metric space and map discussed in Example 14. Then we have:

(i) (X,⊥, d) is an orthogonally complete metric space: For any Cauchy ⊥-sequence {ρn}n∈N in X, there
exist a subsequence {ρnk} where ρnk = 1 ∀ k ≥ 1, that is, {ρnk} is convergent. Thus, we have (X,⊥, d)
as an orthogonally complete metric space.

(ii) g is ⊥-preserving: Since 1 ⊥ ν ∀ ν ∈ X, we see that g(1) = 1 ⊥ gν;∀ ν ∈ X.

(iii) g is ⊥-continuous: For any ⊥-sequence {ρn} → ρ, then ρ = 1. Thus {gρn} → g(1) = 1.

Since all the hypothesis of Theorem 17 holds, g has a fixed point in X viz. ρ = 1.

Corollary 7 For an orthogonally complete metric space (X,⊥, d) with ρ0 as an orthogonal element, suppose
g : X → X is a self map on X satisfying following:

(I) g is ⊥-preserving;

(II) g is ⊥-S-B type F -contraction;

(III) If {ρn}n∈N is an ⊥-sequence in X with ρn → ρ as n→∞ implies

[ρn ⊥ ρ ∀ n] or [ρ ⊥ ρn ∀ n].

Then g possesses a fixed point. Moreover, if ρ ⊥ ν for all ρ, ν ∈ X where gρ = ρ and gν = ν, then g possesses
a unique fixed point.

Proof. On the footprints of Theorem 17, we obtain an ⊥-sequence {ρn}n∈N in X with ρn → ρ as n → ∞.
Thus, by given hypothesis, either [ρn ⊥ ρ ∀ n] or [ρ ⊥ ρn ∀ n]. We claim that ρ is a fixed point of g in X.
Suppose for some n0 ∈ N,

1

2
d(ρn0 , gρn0) ≥ d(ρn0 , ρ) or

1

2
d(gρn0 , g

2ρn0) ≥ d(gρn0 , ρ), (59)

implies,
2d(ρn0 , ρ) ≤ d(ρn0 , gρn0) ≤ d(ρn0 , ρ) + d(ρ, gρn0),

that is,
d(ρn0 , ρ) ≤ d(ρ, gρn0). (60)

From (59) and (60), we get

d(ρn0 , ρ) ≤ d(ρ, gρn0) ≤
1

2
d(gρn0 , g

2ρn0). (61)
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Since
1

2
d(ρn0 , gρn0) < d(ρn0 , gρn0),

and by contraction condition of g, we have

F
(
d(gρn0 , g

2ρn0)
)

< τ + F
(
d(gρn0 , g

2ρn0)
)

≤ F
(
d(ρn0 , gρn0)

)
+ L.min

{
d(ρn0 , gρn0), d(ρn0 , g

2ρn0), d(gρn0 , gρn0)
}
.

Then
F
(
d(gρn0 , g

2ρn0)
)
< τ + F

(
d(gρn0 , g

2ρn0)
)
≤ F

(
d(ρn0 , gρn0)

)
.

By (F1), we obtain
d(gρn0 , g

2ρn0) < d(ρn0 , gρn0). (62)

Using triangle inequality and (61) in (62), we get

d(gρn0 , g
2ρn0) < d(ρn0 , ρ) + d(ρ, gρn0)

≤ 1

2
d(gρn0 , g

2ρn0) +
1

2
d(gρn0 , g

2ρn0)

= d(gρn0 , g
2ρn0),

which is a contradiction. Thus, we have

1

2
d(ρn0 , gρn0) < d(ρn0 , ρ) or

1

2
d(gρn0 , g

2ρn0) < d(gρn0 , ρ) ∀ n ∈ N.

Since g is an ⊥-S-B type F -contraction map, we obtain

τ + F
(
d(gρn, gρ)

)
≤ F

(
d(ρn, ρ)

)
+ L.min

{
d(ρn, gρn), d(ρn, gρ), d(ρ, gρn)

}
. (63)

On taking limit as n→∞ in (63) and using (F2) along with Lemma 1, we get

lim
n→∞

d(gρn, gρ) = 0⇒ d(ρ, gρ) = 0.

Thus g possesses a fixed point. The uniqueness of fixed point follows on the lines of Theorem 17.

Conclusion: Under some specific condition, the results proved in main section of this manuscript,
reduce to many well-known fixed point results of the literature. Consider the binary relation ρ ⊥ ν ⇔ ρ, ν ∈
X, ∀ ρ, ν ∈ X then (X,⊥, d) is an orthogonal metric space (for any metric d on X) with every element in
X as an orthogonal element. In fact, in such case the orthogonal metric space (X,⊥, d) reduces to metric
space (X, d).

(I) With the above condition, Theorem 1, Corollary 1, Theorem 3 and Corollary 2 of the main section
reduces to Theorem 2.1, Corollary 2.1, Theorem 2.2 and Corollary 2.2 respectively of [13].

(II) Theorem 3.8 of [10] can be deduced from Theorem 10 of the main result under specific condition as
mentioned above along with g as an α-admissible map.

(III) Theorem 8, Theorem 12 of [7] are particular case of Theorem 15 and Corollary 5, Theorem 16 and
Corollary 6 respectively of the main section with respect to above orthogonal metric space.

(IV) Theorem 2.1 of [14] can be deduced from Corollary 7 of the main result along with specific condition
as mentioned above.

Acknowledgment. Authors would like to express sincere gratitude to anonymous referee(s) for their
careful reading and valuable suggestions that helped in improvement of the manuscript.
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