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Abstract

In this paper, singularly perturbed differential-difference equations with mixed small shift is consid-

ered. The considered problem contains delay and advance parameters on the convection and reaction

terms respectively. The solution of the problem exhibits a boundary layer behavior on left or right side

of the domain depending on the sign of the convection term. The terms with delay and advance are ap-

proximated using Taylor series expansion. The resulting singularly perturbed boundary value problem is

solved using fitted non-polynomial spline method. The stability and uniform convergence of the schemes

are proved. Numerical examples are used to validate the theoretical finding of the schemes.

1 Introduction

A differential equation is said to be singularly perturbed delay differential equation, if it includes at least one
delay term, involving unknown functions occurring with different arguments, and also, the highest derivative
term is multiplied by a small parameter. Such type of delay, differential equations play a very important
role in the mathematical models of science and engineering, such as, the human pupil light reflex with mixed
delay type [7], variational problems in control theory with small state problem [5], models of HIV infection
[2], and signal transition [3].

Any system involving a feedback control almost involves time delay. The delay occurs because a finite
time is required to sense the information and then react to it. Finding the solution of singularly perturbed
delay differential equations, whose application mentioned above, is a challenging problem. In response to
these, in recent years, there has been a growing interest in numerical methods on singularly perturbed
delay differential equations. Recently, the authors of [9], [11], [4] and [6] have developed various numerical
schemes on uniform meshes for singularly perturbed second order differential equations having small delay
on convection term.

In most of the paper of delay and advance problems, both the delay and advance parameters are present
in the reaction term but in this paper, we consider a new governing problem having small delay in convection
term and an advance in reaction term. As far as the researchers’ knowledge is considered numerical solution
of singularly perturbed boundary value problem having this behavior via fitted non polynomial spline method
is first being considered. Thus, motivated by the works of [1], the purpose of this study is to develop stable,
convergent and accurate numerical method for solving singularly perturbed differential-difference equations
of the problem under consideration.

2 Description of the Method

To describe the method, we consider the boundary value problems for a class of singularly perturbed dif-
ferential difference equations with delay and advance parameters in the convection and the reaction terms,
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with two-point boundary value problem of the form

εy′′(x) + a(x)y′(x − δ) + b(x)y(x + γ) + c(x)y(x) = f(x), x ∈ (0, 1), (1)

with the given interval boundary condition

y(x) = φ(x), x ∈ [−δ, 0], y(x) = Φ(x), x ∈ [1, 1 + γ], (2)

where ε is small parameter, 0 < ε << 1 and δ, γ are also small shifting parameters, 0 < δ << 1, 0 < γ << 1,

a(x), b(x), c(x), φ(x), Φ(x) and f(x) are sufficiently smooth functions in (0, 1).
By using Taylor series expansion in the neighborhood of x we have

{

y′(x − δ) = y′(x) − δy′′(x) + O(δ2),

y(x + γ) = y(x) + γy′(x) + γ2

2 y′′(x) + O(γ3).
(3)

Substituting (3) into (1), we obtain an asymptotically equivalent singularly perturbed two point boundary
value problem

cε(x)y′′(x) + p(x)y′(x) + q(x)y(x) = f(x), (4)

where cε(x) = ε − δa(x) + 1
2γ2b(x), p(x) = a(x) + γb(x), q(x) = b(x) + c(x), with boundary conditions

y(0) = φ(0), y(1) = Φ(0). (5)

Consider a uniform mesh with interval [0, 1] in which 0 = x0 < x1 < ... < xN = 1 where h = 1
N

and
xi = ih, i = 0, 1, 2, ...,N .

For each segment [xi, xi+1], i = 1, 2, ..., N − 1 the non-polynomial cubic spline SM(x) has the following
form

SM(x) = ai + bi(x − xi) + ci(e
w(x−xi) + e−w(x−xi)) + di(e

w(x−xi) − e−w(x−xi)), (6)

where ai, bi, ci and di are unknown coefficients, and w 6= 0 arbitrary parameter which will be used to increase
the accuracy of the method.

To determine the unknown coefficients in (6) in terms of yi, yi+1, Mi and Mi+1 first we define






SM(xi) = yi, SM(xi+1) = yi+1,

S′′
M
(xi) = Mi, S′′

M
(xi+1) = Mi+1.

(7)

The coefficients in (6) are determined as


































ai = yi −
Mi

w2 ,

bi = yi+1−yi

h
+ Mi−Mi+1

wθ
,

ci = Mi+1

w2(eθ−e−θ)
− Mi(e

θ+e−θ)
2w2(eθ−e−θ)

,

di = Mi

2w2 ,

(8)

where θ = wh. Using the continuity condition of the first derivative at xi, S′
M−1(xi) = S′

M
(xi) we have

bi−1 + wci−1(e
θ + e−θ) + wdi−1(e

θ − e−θ) = bi + 2wci. (9)

Reducing indices of (8) by one and substituting into (9), we obtain

yi − yi−1

h
+

Mi − Mi+1

wθ
+ w

(

2Mi − (eθ + e−θ)Mi−1

2w2(eθ + e−θ)

)

=
yi+1 − yi

h
+

Mi − Mi+1

wθ
+ 2w

(

Mi+1

w2(eθ − e−θ)
−

Mi(e
θ + e−θ)

2w2(eθ − e−θ)

)

.
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Then
yi−1 − 2yi + yi+1

h2
= αMi−1 + 2βMi + αMi+1, (10)

where

α =
1

θ2

(

1 −
2θ

eθ − e−θ

)

, β =
1

θ2

(

θ(eθ + e−θ)

eθ − e−θ
− 1

)

.

If h → 0, then θ = hk → 0. Thus, using L’Hopitals rule we have lim
h→0

α = 1
6 and lim

h→0
β = 1

3 . Using

S′′
M
(xi) = y′′i = Mi in to (4), we get



















cε(xi)Mi = fi − piy
′
i − qiyi,

cε(xi)Mi−1 = ci−1 − pi−1y
′
i−1 − qi−1yi−1,

cε(xi)Mi+1 = fi+1 − pi+1y
′
i+1 − qi+1yi+1.

(11)

Using Taylor series expansions of yi−1, yi+1, y
′
i−1 and y′i+1 simplifying, we have:



















y′i =
yi+1−yi−1

2h
+ T1,

y′i−1 = −yi+1+4yi−3yi−1

2h
+ T2,

y′i+1 = 3yi+1−4yi+yi−1

2h
+ T2,

(12)

where T1 = −h2

6 y′′′(ξ) and T2 = h2

12 y′′′(ξ), for ξ ∈ (xi−1, xi). Substituting (12) in to (11), we get






































Mi = 1
cε(xi)

{

fi − pi

(

yi+1−yi−1

2h
+ T1

)

− qiyi

}

,

Mi−1 = 1
cε(xi)

{

fi−1 − pi−1

(

−yi+1+4yi−3yi−1

2h
+ T2

)

− qi−1yi−1

}

,

Mi+1 = 1
cε(xi)

{

fi+1 − pi+1

(

3yi+1−4yi+yi−1

2h
+ T2

)

− qi+1yi+1

}

.

(13)

Substituting (13) into (10) and rearranging, we get

cε(xi)

h2
(yi−1 − 2yi + yi+1) +

αpi−1

2h
(−yi+1 − 4yi − 3yi−1) +

2βpi

2h
(yi+1 − yi−1)

+
αpi+1

2h
(3yi+1 − 3yi + yi−1)

= α(fi−1 − qi−1yi−1 + fi+1 − qi+1yi+1) + 2β(fi − qiyi) + T, (14)

where, T = (4βpi − αpi−1 − αpi+1)
h2

12 y′′′(ξ) is the local truncation error.
From the theory of singular perturbations described in [8] and the Taylor series expansion of y(x) about

the point ′0′ in the asymptotic solution of the problem in Eq.(4), we have

y(xi) ≈ y0(xi) + (φ0 − y0(0))e
−p(0) ih

cε(xi) ,

and letting ρ = h
cε(xi)

we get

lim
h→0

y(ih) ≈ y0(ih) + (φ0 − y0(0))e−p(0)iρ,

since xi = x0 + ih. Introducing a fitting factor σ(ρ) in to (14), we get

σ(ρ)cε(xi)

h2
(yi−1 − 2yi + yi+1) +

αpi−1

2h
(−yi+1 − 4yi − 3yi−1) +

2βpi

2h
(yi+1 − yi−1)

+
αpi+1

2h
(3yi+1 − 3yi + yi−1)

= α(fi−1 − qi−1yi−1 + fi+1 − qi+1yi+1) + 2β(fi − biyi) + T. (15)
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Multiplying (15) by h and taking a limit as h → 0 we get

σ(ρ)

ρ
lim
h→0

(yi−1 − 2yi + yi+1) +
αp(0)

h
lim
h→0

(−yi+1 − 4yi − 3yi−1)

+βp(0) lim
h→0

(yi+1 − yi−1) +
αp(0)

2
lim
h→0

(3yi+1 − 3yi + yi−1) = 0. (16)

Thus, we consider two cases of the boundary layers.
Case 1: For p(x) > 0 (Left-end boundary layer), we have







































lim
h→0

(yi−1 − 2yi + yi+1) = (φ0 − y0(0))e−p(0)iρ(ep(0)ρ + e−p(0)ρ − 2),

lim
h→0

(−yi+1 − 4yi − 3yi−1) = (φ0 − y0(0))e−p(0)iρ(−3ep(0)ρ − e−p(0)ρ + 4),

lim
h→0

(yi+1 − yi−1) = (φ0 − y0(0))e−p(0)iρ(ep(0)ρ + 3e−p(0)ρ − 4),

lim
h→0

(3yi+1 − 3yi + yi−1) = (φ0 − y0(0))e−p(0)iρ(e−p(0)ρ − ep(0)ρ).

(17)

Substituting (17) into (16) and simplifying, we get

σ0 = ρp(0)(α + β) coth

(

p(0)ρ

2

)

.

Case 2: For p(x) < 0 (Right-end boundary layer), we have:







































lim
h→0

(yi−1 − 2yi + yi+1) = (ϕ − y0(1))e−p(1)iρ(ep(1)ρ + e−p(1)ρ − 2),

lim
h→0

(−yi+1 − 4yi − 3yi−1) = (ϕ − y0(1))e−p(1)iρ(−3ep(1)ρ − e−p(1)ρ + 4),

lim
h→0

(yi+1 − yi−1) = (ϕ − y0(1))e−p(1)iρ(ep(1)ρ + 3e−p(1)ρ − 4),

lim
h→0

(3yi+1 − 3yi + yi−1) = (ϕ − y0(1))e−p(1)iρ(e−p(1)ρ − ep(1)ρ).

(18)

Substituting (18) into (16) and simplifying, we get

σN = ρp(1)(α + β) coth

(

p(1)ρ

2

)

.

In general, we take a variable fitting parameter as

σi = ρip(xi)(α + β) coth

(

p(xi)ρi

2

)

, (19)

where, ρi = h
cε(xi)

. Thus, (15) can be written as

{

cε(xi)σi

h2
−

3αpi−1

2h
+ αqi−1 −

βpi

h
+

αpi+1

2h

}

yi−1

−

{

2cε(xi)σi

h2
−

2αpi−1

h
− 2βqi +

2αpi+1

h

}

yi

+

{

cε(xi)σi

h2
−

αpi−1

2h
+ αqi+1 +

βpi

h
+

3αpi+1

2h

}

yi+1

= α(fi−1 + fi+1) + 2βfi. (20)
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Further, (20) can be written as three term recurrence relation of the form

LN ≡ Eiyi−1 − Fiyi + Giyi+1 = Hi, i = 1, 2, ...,N − 1, (21)

where






























Ei = cε(xi)σi

h2 −
3αpi−1

2h
+ αqi−1 −

βpi

h
+

αpi+1

2h
,

Fi = 2cε(xi)σi

h2 − 2αpi−1

h
− 2βqi + 2αpi+1

h
,

Gi = cε(xi)σi

h2 − αpi−1

2h
+ αqi+1 + βpi

h
+ 3αpi+1

2h
,

Hi = α(fi−1 + fi+1) + 2βfi.

The tri-diagonal system in (21) can be easily solved by the method of Discrete Invariant Imbedding Algo-
rithm.

3 Stability and Convergence Analysis

3.1 Truncation error

Let us expand the terms yi±1 and Mi±1 from (10), using Taylor series as


































yi+1 = yi + hy′i + h2

2! y
′′
i + h3

3! y
′′′
i + h4

4! y
(4)
i + h5

5! y
(5)
i + h6

6! y
(6)
i + O(h7),

yi−1 = yi − hy′i + h2

2! y
′′
i − h3

3! y
′′′
i + h4

4! y
(4)
i − h5

5! y
(5)
i + h6

6! y
(6)
i + O(h7),

Mi+1 = y′′i+1 = y′′i + hy′′′i + h2

2! y
(4)
i + h3

3! y
(5)
i + h4

4! y
(6)
i + O(h7),

Mi−1 = y′′i−1 = y′′i − hy′′′i + h2

2!
y
(4)
i − h3

3!
y
(5)
i + h4

4!
y
(6)
i + O(h7).

(22)

The local truncation error Ti(h) obtained from (10) is

Ti(h) =
yi−1 − 2yi + yi+1

h2
− α(Mi−1 + Mi+1) − 2βMi. (23)

Substituting the series of yi±1 and Mi±1 from (22) into (23) and collecting like terms gives

Ti(h) = (1 − 2(α + β))y′′i + h2(
1

12
− α)y

(4)
i + O(h4). (24)

But from the values of α = 1
6 and β = 1

3 , (24) becomes

Ti(h) = h2(−
1

12
)y

(4)
i + O(h4),

which implies
||Ti(h)|| ≤ Ch2, (25)

where C = 1
12
|y

(4)
i |. This establishes that the developed method is second order accurate or its order of

convergence is O(h2).

3.2 Convergence Analysis

Local truncation errors refer to the differences between the original differential equation and its finite differ-
ence approximation at a mesh points. Finite difference scheme is called consistent if the limit of truncation
error (Ti(h)) is equal to zero as the mesh size h goes to zero. Hence, the proposed method in (21) with local
truncation error in (25) satisfies the definition of consistency as

lim
h→0

Ti(h) = lim
h→0

Ch2 = 0. (26)

Thus, the proposed scheme is consistent.
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3.3 Stability Analysis

Consider the developed scheme in (21),

Eiyi−1 − Fiyi + Giyi+1 = Hi, (27)

where the coefficients Ei, Fi and Gi are as in (21). If we multiply both sides of (21) by h2 and consider the
values of Ei, Fi and Gi for sufficiently small h, we get

Ei = Gi = cε(xi)σi, Fi = 2cε(xi)σi, (28)

Considering (28) into (21) the one which is multiplied by h2 the developed scheme can be written in a matrix
form

AY = B, (29)

where the matrices

A =















−2cε(xi)σi cε(xi)σi 0 . . . 0
cε(xi)σi −2cε(xi)σi cε(xi)σi . . . 0

0 − − 0
... cε(xi)σi

0 − − cε(xi)σi −2cε(xi)σi















,

Y =















y1

y2

...
yN−2

yN−1















and

B =















h2H1 − E1y0

h2H2

...
h2HN−2

h2HN−1 − GN−1yN















.

Here, the coefficient matrix A is a tri-diagonal matrix with size (N − 1) × (N − 1). Matrix A is irreducible
if its co-diagonals contain non-zero elements only. The co-diagonals contains Ei and Gi. It is clearly seen
that, for sufficiently small h both Ei 6= 0 and Gi 6= 0, for i = 1, 2, ..., N − 1. Hence, A is irreducible.

Again we can see that all |Ei|, |Fi|, |Gi| > 0, for i = 1, 2, ..., N − 1 and in each row of A, the modulus
of diagonal element is greater than or equal to the sum of the modulus of the two co-diagonal elements
(i.e.,|Fi| ≥ |Ei| + |Gi|). This implies that A is diagonally dominant. Under this condition, the Thomas
Algorithm is stable for sufficiently small h.

As discussed in [12] the eigenvalues of a tri-diagonal matrix A are given by

λs = −2cε(xi)σi + 2{
√

(cε(xi)σi)(cε(xi)σi)} cos
sπ

N
, s = 1(1)N − 1. (30)

Hence, the eigenvalues of matrix A in (29) are

λs = −2cε(xi)σi + 2{
√

(cε(xi)σi)2} cos
sπ

N
= −2cε(xi)σi(1 − cos

sπ

N
), s = 1(1)N − 1. (31)

But from trigonometric identity, we have 1 − cos sπ
N

= 2 sin2 sπ
2N

. Thus, the eigenvalues of A

λs = −2cε(xi)σi(2 sin2 sπ

2N
) = −4cε(xi)σi sin2 sπ

2N
≤ −4cε(xi)σi. (32)
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A finite difference method for the boundary value problems is stable if A is non-singular and ||A−1|| ≤ C,
for 0 < h < h0, where, C and h0 are two constants that are independent of h.

Since A is real and symmetric it follows that A−1 is also real and symmetric so that, its eigenvalues are
real and given by 1

λs
. Hence, as [10] the stability condition of the method will be satisfied when

||A−1|| = |
1

λs

| = |
−1

4cε(xi)σi

| =
1

4cε(xi)σi

≤ C,

where, C is independent of h . Thus, the developed scheme in (21) is stable. A consistent and stable finite
difference method is convergent by [12]. Hence, as we have shown above, the proposed method is satisfying
both the criteria of consistency and stability which are equivalent to convergence of the method.

4 Numerical Examples and Results

To demonstrate the applicability of the method, two model examples have been considered. The numerical
results are presented for α = 1

6
and β = 1

3
. The exact solutions of the test problem is not known. Therefore,

we use the double mesh principle to estimate the error and compute the experiment rate of convergence to
the computed solution. For this we put

EN
ε = max

0≤i≤2N
|Y N

i − Y 2N
2i |, (33)

where Y N
i and Y 2N

2i are the ith components of the numerical solutions on meshes of N and 2N respectively.
We compute the uniform error and the rate of convergence as

EN = max
ε

EN
ε , RN = log2

(

EN

E2N

)

. (34)

The numerical results are presented for the values of the perturbation parameter ε ∈ { 10−4, 10−8, ..., 10−20}.
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Figure 1: The behavior of the Numerical Solution for Example 1 and Example 2 at ε = 10−12, δ = γ = 0.5ε

and N = 32 respectively.
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Figure 2: Point wise absolute error of Example 1 and Example 2 at ε = 10−12 and δ = γ = 0.5ε with
different mesh point N respectively.

Example 1 Consider the model singularly perturbed boundary value problem

{

εy′′(x) + (1 + x)y′(x − δ) + exp(−2x)y(x + γ) − 2 exp(−x)y(x) = 0,

y(x) = 1, − δ ≤ x ≤ 0, y(1) = 0.

Table 1: Maximum absolute errors and rate of convergence for Example 1 at different number of mesh points
for δ = γ = 0.5ε.

ε N=16 N=32 N=64 N=128 N=256
10−4 5.8394e-06 1.5727e-06 4.0819e-07 1.0399e-07 2.6243e-08
10−8 5.8393e-06 1.5727e-06 4.0818e-07 1.0398e-07 2.6242e-08
10−12 5.8393e-06 1.5727e-06 4.0818e-07 1.0398e-07 2.6242e-08
10−16 5.8393e-06 1.5727e-06 4.0818e-07 1.0398e-07 2.6242e-08
10−20 5.8393e-06 1.5727e-06 4.0818e-07 1.0398e-07 2.6242e-08

EN 5.8394e-06 1.5727e-06 4.0819e-07 1.0399e-07 2.6243e-08
RN 1.8926 1.9460 1.9729 1.9864

Example 2 Consider the model singularly perturbed boundary value problem

{

εy′′(x) + (1 + x)y′(x − δ) + sin(2x)y(x + γ) − exp(−x)y(x) = sin(2x) + 3 exp(−x),

y(x) = −1, − δ ≤ x ≤ 0, y(1) = 1.

5 Discussion and Conclusion

This study introduces a fitted non-polynomial spline method for singularly perturbed differential-difference
equations having two parameters. The numerical scheme is developed on uniform mesh using fitted operator
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Figure 3: ε-uniform convergence with fitted operator in log-log scale for Example 1 and Example 2 respec-
tively.

Table 2: Maximum absolute errors and rate of convergence for Example 2 at different number of mesh points
for δ = γ = 0.5ε.

ε N=16 N=32 N=64 N=128 N=256
10−4 1.2347e-02 5.7119e-03 2.0848e-03 6.1122e-04 1.6119e-04
10−8 1.2349e-02 5.7422e-03 2.1152e-03 6.2507e-04 1.6565e-04
10−12 1.2349e-02 5.7422e-03 2.1152e-03 6.2507e-04 1.6565e-04
10−16 1.2349e-02 5.7422e-03 2.1152e-03 6.2507e-04 1.6565e-04
10−20 1.2349e-02 5.7422e-03 2.1152e-03 6.2507e-04 1.6565e-04

EN 1.2349e-02 5.7422e-03 2.1152e-03 6.2507e-04 1.6565e-04
RN 1.1047 1.4408 1.7587 1.9159

in the given differential equation. The stability of the developed numerical method is established and
its uniform convergence is proved. To validate the applicability of the method, two model problems are
considered for numerical experimentation for different values of the perturbation parameter and mesh points.
The numerical results are tabulated in terms of maximum absolute errors, numerical rate of convergence
and uniform errors (see Tables 1 and 2). Further, behavior of the numerical solution (Figure 1), point-wise
absolute error (Figure 2) and the ε -uniform convergence of the method is shown by the log-log plot (Figure
3). The method is shown to be ε-uniformly convergent with order of convergence O(h2). The proposed
method gives more accurate, stable and ε-uniform numerical result.
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