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Abstract

The paper is devoted to the study of a Pál type (0; 1) interpolation problem on the unit circle
considering two disjoint sets of nodes. The nodal points are obtained by projecting vertically the zeros of
the Jacobi polynomial P (α,β)n (x) and its derivative P (α,β)

′
n (x), together with ±1 onto the unit circle. The

Lagrange data are prescribed on the first set of nodes, the Hermite data are prescribed on the second
one and generalized Hermite-Fejér boundary conditions are prescribed at ±1. An explicit representation
of the interpolatory polynomial is given and the convergence is studied for analytic functions on the unit
disk. The results are of interest to approximation theory.

1 Introduction

Interpolation problems on the unit circle have been an area of constant investigation during the past few
years. A considerable amount of literature got accumulated on Lacunary, Birkhoff or Pál-type interpolation
on the unit circle. Throughout this paper, we denote the Jacobi polynomial of degree n by P (α,β)n (x). Pál
[14] proved that there does not exist a unique polynomial of degree ≤ 2n − 2, when values of the function
are prescribed on the set of nodes with n points and those of their derivatives on another set of (n − 1)
points. To obtain a unique solution, he imposed an extra condition and provided the explicit representation
of the interpolatory polynomial. Since then, researchers look forward to more general Pál-type interpolation
problems. Lénárd [13] considered a (0, 2) type Pál interpolation problem and obtained regularity and explicit
representation for the same.
In 1960, Kîs [10] was the initiator of interpolation processes on the unit circle. He considered the (0, 2) and

(0, 1, ........., r− 2, r) interpolation for an integer r ≥ 2 on the nth roots of unity. Brück [5] studied Lagrange

interpolation of a function considering nodes zαkn = Tα(wkn), where wkn = exp

(
2πik

2n+ 1

)
, n ≥ 0, k = 1(1)2n

and Tα =
z − α
1− αz , 0 < α < 1 is a Mobius transformation of the unit disk into itself.

In 2003, Dikshit [8] considered the Pál-type interpolation on non-uniformly distributed nodes on the unit
circle. Bruin [6] considered Pál-type interpolation problem and studied the effect of interchanging the value
nodes and the derivative nodes on the problem’s regularity. Bahadur and Shukla [1] considered weighted

(0; 1) Pál-type interpolation problem on the vertically projected zeros of (1 − x2)P (α,β)n (x) and P (α,β)
′

n (x)
onto the unit circle. Explicit representation and convergence was studied for analytic functions on the unit
disk. Many researchers ([2, 3, 4, 11, 12]) worked in similar direction.
In the present paper, we extended Pál-type Hermite-Fejér interpolation onto the unit circle by prescribing

Lagrange data on nodes obtained by vertically projecting zeros of P (α,β)n (x) as well as Hermite data on nodes

obtained by vertically projecting zeros of P (α,β)
′

n (x) onto the unit circle. The novelty of this paper is that
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372 Extension of Pál Type Hermite-Fejér Interpolation onto the Unit Circle

we took generalized Hermite-Fejér boundary conditions at ±1. To obtain the explicit representations of
the interpolatory polynomial is our first aim, since the problem is regular. We also obtained the order of
convergence of such interpolatory polynomial.
The paper has been organized in the following manner. Section 2 is assigned to preliminaries. The

interpolation problem and explicit representation of the interpolatory polynomial are defined in Section
3. Sections 4 and 5 are devoted to finding estimates and establishing a convergence theorem respectively.
Conclusions have been covered in Section 6.

2 Preliminaries

This section includes the following results, which we shall use. The differential equation satisfied by P (α,β)n (x)
is

(1− x2)P (α,β)
′′

n (x) + [β − α− (α+ β + 2)x]P (α,β)
′

n (x) + n(n+ α+ β + 1)P (α,β)n (x) = 0.

Using the Szegő transformation x =
1 + z2

2z
, we have

(z2 − 1)4P (α,β)
′′

n (x) + 4z(z2 − 1)
[
{(α+ β + 2)z2 + 1}(z2 − 1)− 2z3(β − α)

]
P (α,β)

′

n (x)

−16z6n(n+ α+ β + 1)P (α,β)n (x) = 0.

Let Z2n and T2n−2 be two distinct sets of nodes such that

Z2n = {zk = xk + iyk = cos θk + i sin θk ; zn+k = zk ; k = 1, 2, ..., n ; xk, yk ∈ R}

and
T2n−2 = {tk = x∗k + iy∗k = cosφk + i sinφk ; tn+k = tk ; k = 1, 2, ..., (n− 1) ; x∗k, y

∗
k ∈ R},

which are obtained by projecting vertically the zeros of P (α,β)n (x) and P (α,β)
′

n (x) respectively on the unit
circle.
The nodal polynomials W (z) and W1(z) defined on Z2n and T2n−2 are given by (1) and (2) respectively.

W (z) =

2n∏
k=1

(z − zk) = KnP
(α,β)
n

(
1 + z2

2z

)
zn (1)

and

W1(z) =

2n−2∏
k=1

(z − tk) = K∗nP
(α,β)′

n

(
1 + z2

2z

)
zn−1, (2)

where

Kn = 22nn!
Γ(α+ β + n+ 1)

Γ(α+ β + 2n+ 1)

and

K∗n = 22n−1(n− 1)!
Γ(α+ β + n+ 1)

Γ(α+ β + 2n+ 1)
.

The fundamental polynomials of Lagrange interpolation on the zeros of W (z) and W1(z) are respectively
given by (3) and (4).

lk(z) =
W (z)

(z − zk)W ′(zk)
, k = 1, 2, ..., 2n (3)

and

l∗k(z) =
W1(z)

(z − tk)W
′
1(tk)

, k = 1, 2, ..., (2n− 2) . (4)
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We can write z = x+ iy, where x, y ∈ R. If | z |= 1, then∣∣z2 − 1
∣∣ = 2

√
1− x2 (5)

and

|z − zk| =
√

2

√
1− xxk −

√
1− x2

√
1− x2k. (6)

To evaluate the estimates of the fundamental polynomials formed in the next Section 3, we will use the
following (refer to pg.164—166 of [16]).
For −1 ≤ x ≤ 1, we have

(1− x2)1/2 | P (α,β)n (x) |= O(nα−1), (7)∣∣∣P (α,β)n (x)
∣∣∣ = O(nα), (8)∣∣∣P (α,β)′n (x)
∣∣∣ = O(nα+2), (9)∣∣∣P (α,β)′′n (x)
∣∣∣ = O(nα+4). (10)

Considering set of nodes Z2n and T2n−2 such that for each k, xk, x∗k ∈ (−1, 1), we have

(1− x2k)−1 ∼
(
k

n

)−2
, (11)

∣∣∣P (α,β)n (x∗k)
∣∣∣ ∼ k−α− 1

2nα, (12)∣∣∣P (α,β)′n (xk)
∣∣∣ ∼ k−α− 3

2nα+2, (13)∣∣∣P (α,β)′′n (xk)
∣∣∣ ∼ k−α− 5

2nα+4. (14)

Let f(z) be continuous for |z| ≤ 1, analytic for |z| < 1 and f (r) ∈ Lip ν, ν = 1 + δ, δ > 0 . Then, there exists
a polynomial Fn(z) of degree ≤ 4n+ 2r − 1 satisfying Jackson’s inequality (see [9]):

|f(z)− Fn(z)| ≤ C ωr+1(f, n−1), r ≥ 0 (15)

and also an inequality by O. Kîs [10]∣∣∣F (m)n (z)
∣∣∣ ≤ C nm ωr+1(f, n−1), m ∈ Z+, (16)

where ωr(f, n−1) = O(n−r+1−ν) denotes the rth modulus of continuity of f(z) as well as C is a constant
independent of n and z.

3 The Problem & Explicit Representation of Interpolatory Poly-
nomial

Here, we are interested in determining the convergence of interpolatory polynomial Rn(z) of degree ≤
4n+ 2r− 1 on the set of nodes Z2n and T2n−2 with Hermite-Fejér boundary conditions at ±1 satisfying the
conditions. 

Rn(zk) = αk for k = 1, 2, ..., 2n,

R′n(tk) = βk for k = 1, 2, ..., (2n− 2),

R
(m)
n (±1) = 0 for m = 0, 1, ..., r,

(17)
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where αk and βk are complex constants and r <∞.

Rn(z) can be written in the form given below

Rn(z) =

2n∑
k=1

αkAk(z) +

2n−2∑
k=1

βkBk(z). (18)

Here, Ak(z) and Bk(z) are the first and second fundamental polynomials each of degree ≤ 4n + 2r − 1
satisfying (19) and (20) respectively. For k = 1, 2, ..., 2n,

Ak(zj) = δkj for j = 1, 2, ..., 2n,

A
′

k(tj) = 0 for j = 1, 2, ..., 2n− 2,

A
(m)
k (±1) = 0 for m = 0, 1, ..., r,

(19)

and for k = 1, 2, ...2n− 2, 
Bk(zj) = 0 for j = 1, 2, ..., 2n,

B
′

k(tj) = δkj for j = 1, 2, ..., 2n− 2,

B
(m)
k (±1) = 0 for m = 0, 1, ..., r.

(20)

Explicit expressions of the polynomials Bk(z) and Ak(z) are given in Theorems 1 and 2 respectively.

Remark 1 The equations (21) and (22) have been developed while deriving out explicit representation of the
interpolatory polynomial. Readers can get the motivation to form such expression from the idea to maintain
the degree of the polynomial as well as simultaneously satisfy the conditions required to form the fundamental
polynomial.

Jk(z) =

∫ z

0

zn+1(z2 − 1)r l∗k(z)dz (21)

and

J1j(z) =

∫ z

0

zn−j(z2 − 1)rW1(z)dz ; j = 0, 1 , (22)

where J1j(−1) = (−1)j+1J1j(1).

Theorem 1 For k = 1, 2, ..., (2n− 2), second fundamental polynomial is given by (23)

Bk(z) = z−nW (z)

[
bkJk(z) + b0kJ10(z) + b1kJ11(z)

]
, (23)

where

bk =
1

W (tk)tk(t2k − 1)r
, (24)

b1k =
−bk(Jk(1) + Jk(−1))

2J11(1)
(25)

and

b0k =
bk(Jk(−1)− Jk(1))

2J10(1)
. (26)



Bahadur et al. 375

Proof. Consider (23), where Bk(z) is atmost of the degree (4n+ 2r − 1) satisfying the conditions given in
(20). At z = zj , j = 1, 2, ..., n,

Bk(zj) = z−nj W (zj)

[
bkJk(zj) + b0kJ10(zj) + b1kJ11(zj)

]
.

Since zj’s are the zeros of the polynomial W (z), so Bk(zj) = 0. Differentiating Bk(z) with respect to z gives
us

B′k(z) =
[
− nz−n−1W (z) + z−nW ′(z)

](
bkJk(z) + b0kJ10(z) + b1kJ11(z)

)
+z−nW (z)

(
bkJ
′
k(z) + b0kJ

′
10(z) + b1kJ

′
11(z)

)
=

[
− nz−n−1

{
KnP

(α,β)
n

(1 + z2

2z

)
zn
}

+Knz
−n
{
P (α,β)

′

n

(1 + z2

2z

)
zn + P (α,β)n

(1 + z2

2z

)
nzn−1

}]
×
(
bkJk(z) + b0kJ10(z) + b1kJ11(z)

)
+ z−nW (z)

(
bkJ
′
k(z) + b0kJ

′
10(z) + b1kJ

′
11(z)

)
and

B′k(z) =
[
KnP

(α,β)′

n

(1 + z2

2z

)](
bkJk(z) + b0kJ10(z) + b1kJ11(z)

)
+z−nW (z)

(
bkJ
′
k(z) + b0kJ

′
10(z) + b1kJ

′
11(z)

)
.

Since tj’s are the zeros of the polynomial W1(z), we see that B′k(tj) = t−nj W (tj)bkJ
′
k(tj).

Using (4) and (21), we have

Bk′(tj) = t−nj W (tj)bkt
n+1
j (t2j − 1)rl∗k(tj) = tjW (tj)bk(t2j − 1)rδkj .

Using condition B
′

k(tj) = δkj given in (20), at j = k, we get (24). One can verify the results for j 6= k. Also,
from B

(m)
k (±1) = 0 for m = 0, 1, ..., r, we get (25) and (26). Hence, Theorem 1 follows.

Theorem 2 For k = 1, 2, ..., 2n, first fundamental polynomial is given by (27)

Ak(z) =
(z2 − 1)r+1 lk(z)W1(z)

(z2k − 1)r+1W1(zk)
+ z−nW (z)

[
Sk(z) + a0kJ10(z) + a1kJ11(z)

]
, (27)

where

Sk(z) = −
∫ z

0

zn(z2 − 1)r

W ′(zk)(z2k − 1)r+1W1(zk)

[
(z2 − 1)W

′

1(z) + ckW1(z)

(z − zk)

]
dz, (28)

a0k =
Sk(1)− Sk(−1)

2J10(1)
, (29)

a1k =
−(Sk(1) + Sk(−1))

2J11(1)
(30)

and

ck =
(1− zk2)W ′1(zk)

W1(zk)
. (31)

Proof. Consider (27), where Ak(z) is atmost of the degree (4n+ 2r − 1) satisfying the conditions given in
(19). At z = zj , j = 1, 2, ..., 2n, we have

Ak(zj) =
(z2j − 1)r+1 lk(zj)W1(zj)

(z2k − 1)r+1W1(zk)
+ z−nj W (zj)

[
Sk(zj) + a0kJ10(zj) + a1kJ11(zj)

]
.
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Since zj’s are the zeros of the polynomial W (z), we see that

Ak(zj) =
(z2j − 1)r+1 lk(zj)W1(zj)

(z2k − 1)r+1W1(zk)
=

(z2j − 1)r+1 δkjW1(zj)

(z2k − 1)r+1W1(zk)
= δkj .

Differentiating Ak(z) with respect to z,

A′k(z) =
1

(z2k − 1)r+1W1(zk)

[
W1(z)

{
2z(r + 1)(z2 − 1)rlk(z) + (z2 − 1)r+1l′k(z)

}
+(z2 − 1)r+1lk(z)W ′1(z)

]
+
{
− nz−n−1W (z) + z−nW ′(z)

}(
Sk(z) + a0kJ10(z) + a1kJ11(z)

)
+z−nW (z)

[
S′k(z) + a0kJ

′
10(z) + a1kJ

′
11(z)

]
.

At z = tj , we have

A′k(tj) =
1

(z2k − 1)r+1W1(zk)

[
W1(tj)

{
2tj(r + 1)(t2j − 1)rlk(tj) + (t2j − 1)r+1l′k(tj)

}
+(t2j − 1)r+1lk(tj)W

′
1(tj)

]
+
{
− nt−n−1j W (tj) + t−nj W ′(tj)

}(
Sk(tj) + a0kJ10(tj) + a1kJ11(tj)

)
+t−nj W (tj)

[
S′k(tj) + a0kJ

′
10(tj) + a1kJ

′
11(tj)

]
.

Since tj’s are the zeroes of W1(z), we see that

A′k(tj) =
(t2j − 1)r+1lk(tj)W

′
1(tj)

(z2k − 1)r+1W1(zk)
+
{
− nt−n−1j W (tj) + t−nj W ′(tj)

}(
Sk(tj) + a0kJ10(tj) + a1kJ11(tj)

)
+t−nj W (tj)S

′
k(tj).

From the second condition given in (19), we have

0 =
(t2j − 1)r+1lk(tj)W

′
1(tj)

(z2k − 1)r+1W1(zk)
+
{
− nt−n−1j W (tj) + t−nj W ′(tj)

}(
Sk(tj) + a0kJ10(tj) + a1kJ11(tj)

)
+t−nj W (tj)S

′
k(tj)

and

t−nj W (tj)S
′
k(tj) = −

(t2j − 1)r+1lk(tj)W
′
1(tj)

(z2k − 1)r+1W1(zk)

+
{
nt−n−1j W (tj)− t−nj W ′(tj)

}(
Sk(tj) + a0kJ10(tj) + a1kJ11(tj)

)
= −

(t2j − 1)r+1lk(tj)W
′
1(tj)

(z2k − 1)r+1W1(zk)

+

{
nt−n−1j KnP

(α,β)
n

(
1 + t2j

2tj

)
tnj − t−nj

{
KnP

(α,β)′

n

(
1 + t2j

2tj

)
tnj

+nKnP
(α,β)
n

(
1 + t2j

2tj

)
tn−1j

}}(
Sk(tj) + a0kJ10(tj) + a1kJ11(tj)

)
.

After a little computation, we get

S′k(tj) = −
(t2j − 1)r+1lk(tj)W

′
1(tj)

t−nj W (tj)(z2k − 1)r+1W1(zk)
.
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We can write above equation as

S′k(z) = − zn(z2 − 1)r

W ′(zk)(z2k − 1)r+1W1(zk)

[
(z2 − 1)W

′

1(z) + ckW1(z)

(z − zk)

]
. (32)

Integrating (32) provides us with a polynomial Sk(z) of degree (3n+ 2r − 1) given by (28).
To establish the validity of Sk(z), we must have [(z2 − 1)W

′

1(z) + ckW1(z)]|z=zk = 0, which in turn gives
(31). Similarly, the constants a0k and a1k can be found out by satisfying the condition

A
(m)
k (±1) = 0 for m = 0, 1, ..., r.

Hence, Theorem 2 follows.

4 Estimates of Fundamental Polynomials

We need to calculate estimates in order to obtain the rate of convergence of interpolatory polynomials.

Lemma 1 Let Ak(z) be given by (27). Then for |z| ≤ 1,

2n∑
k=1

|Ak(z)| = O

(
(1− x2)r/2nr+1 log n

)
, (33)

where −1 < α ≤ r
2 .

Lemma 2 Let Bk(z) be given by (23). Then for |z| ≤ 1,

2n−2∑
k=1

|Bk(z)| = O

(
(1− x2)r/2nr log n

)
, (34)

where−1 < α ≤
r − 1

2
.

Proof of Lemma 1. From (27) we have

2n∑
k=1

|Ak(z)| ≤
2n∑
k=1

∣∣∣ (z2 − 1)r+1lk(z)W1(z)

(z2k − 1)r+1W1(zk)

∣∣∣︸ ︷︷ ︸
I1

+

2n∑
k=1

∣∣∣z−nW (z)Sk(z)
∣∣∣︸ ︷︷ ︸

I2

+

2n∑
k=1

∣∣∣z−nW (z)(a0kJ10(z) + a1kJ11(z))
∣∣∣︸ ︷︷ ︸

I3

.

We can write as
2n∑
k=1

|Ak(z)| ≤ I1 + I2 + I3. (35)

Using (3) we have

I1 =

2n∑
k=1

∣∣∣ (z2 − 1)r+1W (z)W1(z)

(z2k − 1)r+1(z − zk)W ′(zk)W1(zk)

∣∣∣
=

2n∑
k=1

∣∣∣∣∣ (z2 − 1)r+1
{
KnP

(α,β)
n

(
1+z2

2z

)
zn
}{

K∗nP
(α,β)′

n

(
1+z2

2z

)
zn−1

}
(z2k − 1)r+1(z − zk)

{
KnP

(α,β)
n

(
1+z2

2z

)
zn
}′
|z=zk

{
K∗nP

(α,β)′
n

(
1+z2k
2zk

)
zn−1k

}∣∣∣∣∣.
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Since P (α,β)n (xk) = 0 and |zk| = 1, we get

I1 = 2

2n∑
k=1

∣∣(z2 − 1)r+1
∣∣ ∣∣∣P (α,β)n (x)

∣∣∣ ∣∣∣P (α,β)′n (x)
∣∣∣

|(z2k − 1)r+2| |z − zk|
∣∣∣P (α,β)′n (xk)

∣∣∣2 .
Using (5) and (6), we get

I1 = 2

2n∑
k=1

2r+1(1− x2) r+12
∣∣∣P (α,β)n (x)

∣∣∣ ∣∣∣P (α,β)′n (x)
∣∣∣

2r+2(1− x2k)
r+2
2

√
2
√

1− xxk −
√

1− x2
√

1− x2k
∣∣∣P (α,β)′n (xk)

∣∣∣2
=

1√
2

2n∑
k=1

(1− x2) r+12
∣∣∣P (α,β)n (x)

∣∣∣ ∣∣∣P (α,β)′n (x)
∣∣∣√1− xxk +

√
1− x2

√
1− x2k

(1− x2k)
r+2
2

√
(1− xxk)2 − (1− x2)(1− x2k)

∣∣∣P (α,β)′n (xk)
∣∣∣2

=
1√
2

2n∑
k=1

(1− x2) r+12
∣∣∣P (α,β)n (x)

∣∣∣ ∣∣∣P (α,β)′n (x)
∣∣∣√1− xxk +

√
(1− xxk)2 − (x− xk)2

(1− x2k)
r+2
2 |x− xk|

∣∣∣P (α,β)′n (xk)
∣∣∣2

≤
2n∑
k=1

(1− x2) r+12
∣∣∣P (α,β)n (x)

∣∣∣ ∣∣∣P (α,β)′n (x)
∣∣∣√1− xxk

(1− x2k)
r+2
2 |x− xk|

∣∣∣P (α,β)′n (xk)
∣∣∣2 .

For |x− xk| ≥ 1
2

∣∣1− x2k∣∣, we have
I1 ≤

2n∑
k=1

2(1− x2) r+12
∣∣∣P (α,β)n (x)

∣∣∣ ∣∣∣P (α,β)′n (x)
∣∣∣√1− xxk

(1− x2k)
r+2
2 (1− x2k)

∣∣∣P (α,β)′n (xk)
∣∣∣2

≤
2n∑
k=1

2
√

2(1− x2) r2
{(√

(1− x2)
∣∣∣P (α,β)n (x)

∣∣∣)} ∣∣∣P (α,β)′n (x)
∣∣∣

(1− x2k)
r+4
2

∣∣∣P (α,β)′n (xk)
∣∣∣2 .

Using (7), (9), (11) and (13), we get

I1 = O

(
(1− x2)r/2nr+1

2n∑
k=1

1

kr−2α+1

)
.

From r − 2α+ 1 ≥ 1, we get

I1 = O

(
(1− x2)r/2nr+1 log n

) {
−1 < α ≤ r

2

}
. (36)

The reader can verify that estimate remains the same in the case where |x− xk| < 1
2

∣∣1− x2k∣∣. Following
similar scheme as above gives

I2 = O

(
(1− x2)r/2nr log n

) {
−1 < α ≤ r

2

}
, (37)

and

I3 = O

(
(1− x2)r/2nr log n

) {
−1 < α ≤ r

2

}
. (38)
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Combining (36), (37) and (38) gives Lemma 1.
Proof of Lemma 2. Consider (23), we have

|Bk(z)| =
∣∣∣z−nW (z)

[
bkJk(z) + b0kJ10(z) + b1kJ11(z)

]∣∣∣, (39)

2n−2∑
k=1

|Bk(z)| ≤
2n−2∑
k=1

∣∣∣z−nW (z)bkJk(z)
∣∣∣︸ ︷︷ ︸

M1

+

2n−2∑
k=1

∣∣∣z−nW (z)((b0kJ10(z) + b1kJ11(z))
∣∣∣︸ ︷︷ ︸

M2

(40)

and
2n−2∑
k=1

|Bk(z)| ≤ M1 +M2. (41)

Using (24) and (21), we have

M1 =

2n−2∑
k=1

∣∣∣z−nW (z)

{
1

W (tk)tk(t2k − 1)r

}∫ z

0

zn+1(z2 − 1)r l∗k(z)dz
∣∣∣.

Using (4), we get

M1 =

2n−2∑
k=1

∣∣∣z−nW (z)

{
1

W (tk)tk(t2k − 1)r

}∫ z

0

zn+1(z2 − 1)r

{
W1(z)

(z − tk)W
′
1(tk)

}
dz
∣∣∣

≤
2n−2∑
k=1

∣∣∣∣∣ z−nW (z)

W (tk)tk(t2k − 1)r

∣∣∣∣∣ max
|z|=1

∣∣∣∣∣
∫ z

0

zn+1(z2 − 1)r

{
W1(z)

(z − tk)W
′
1(tk)

}
dz

∣∣∣∣∣
≤

2n−2∑
k=1

∣∣∣∣∣ z−nW (z)(z2 − 1)rW1(z)

W (tk)tk(t2k − 1)r(z − tk)W
′
1(tk)

∣∣∣∣∣
∣∣∣∣∣
∫ z

0

zn+1 dz

∣∣∣∣∣.
Using (1) and (2), we get

M1 ≤
2n−2∑
k=1

∣∣∣∣∣ z−n
{
KnP

(α,β)
n

(
1+z2

2z

)
zn
}

(z2 − 1)r
{
K∗nP

(α,β)′

n

(
1+z2

2z

)
zn−1

}
{
KnP

(α,β)
n

(
1+t2k
2tk

)
tnk

}
tk(t2k − 1)r(z − tk)

{
K∗nP

(α,β)′
n

(
1+z2

2z

)
zn−1

}′
|z=tk

∣∣∣∣∣ | zn+2 |n+ 2

Since P (α,β)
′

n (x∗k) = 0 and |tk| = 1, we get

M1 ≤
2

n+ 2

2n−2∑
k=1

∣∣∣P (α,β)n (x)
∣∣∣ ∣∣(z2 − 1)r

∣∣ ∣∣∣P (α,β)′n (x)
∣∣∣∣∣∣P (α,β)n (x∗k)

∣∣∣ |(t2k − 1)r+1| |z − tk|
∣∣∣P (α,β)′′n (x∗k)

∣∣∣ .
Owing to (5) and (6), we have

M1 ≤
1

(n+ 2)

2n−2∑
k=1

(1− x2)r/2
∣∣∣P (α,β)n (x)

∣∣∣ ∣∣∣P (α,β)′n (x)
∣∣∣√1− xx∗k

(1− x∗2k )
r+1
2

∣∣∣P (α,β)n (x∗k)
∣∣∣ |x− x∗k| ∣∣∣P (α,β)′′n (x∗k)

∣∣∣ .
For |x− x∗k| ≥ 1

2

∣∣1− x∗2k ∣∣, we have
M1 ≤ 2

(n+ 2)

2n−2∑
k=1

(1− x2)r/2
∣∣∣P (α,β)n (x)

∣∣∣ ∣∣∣P (α,β)′n (x)
∣∣∣√1− xx∗k

(1− x∗2k )
r+1
2

∣∣∣P (α,β)n (x∗k)
∣∣∣ |1− x∗2k | ∣∣∣P (α,β)′′n (x∗k)

∣∣∣ (42)

≤ 2
√

2

(n+ 2)

2n−2∑
k=1

(1− x2)r/2
∣∣∣P (α,β)n (x)

∣∣∣ ∣∣∣P (α,β)′n (x)
∣∣∣

(1− x∗2k )
r+3
2

∣∣∣P (α,β)n (x∗k)
∣∣∣ ∣∣∣P (α,β)′′n (x∗k)

∣∣∣ .
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Using (8), (9), (11), (12) and (14), we get

M1 = O

(
(1− x2)r/2nr

2n∑
k=1

1

kr−2α

)
.

From r − 2α ≥ 1, we get

M1 = O

(
(1− x2)r/2nr log n

) {
−1 < α ≤ r − 1

2

}
. (43)

The estimate remains the same in the case, where |x− x∗k| < 1
2

∣∣1− x∗2k ∣∣. Similarly, we have
M2 = O

(
(1− x2)r/2nr log n

) {
−1 < α ≤ r − 1

2

}
. (44)

Combining (43) and (44) give us desired Lemma 2 .

5 Convergence

Theorem 3 Let f(z) be continous for |z| ≤ 1 and analytic for |z| < 1 and f (r)ε Lip ν, ν = 1 + δ, δ > 0. Let
the arbitrary numbers βk’s be such that

|βk| = O
(
nωr+1(f, n

−1)
)
, k = 1, 2, ..., (2n− 2). (45)

Then sequence {Rn(z)} is defined by

Rn(z) =

2n∑
k=1

f(zk)Ak(z) +

2n−2∑
k=1

βkBk(z), (46)

satisfies the following relation for |z| ≤ 1

|Rn(z)− f(z)| = O

(
(1− x2)r/2nr+1ωr+1(f, n−1) log n

)
, (47)

where ωr+1(f, n−1) be the (r + 1)
th modulus of continuity of f(z).

Proof. Since Rn(z) be the uniquely determined polynomial of degree ≤ 4n + 2r − 1 and the polynomial
Fn(z) satisfying equation (15) can be expressed as

Fn(z) =
2n∑
k=1

Fn(zk)Ak(z) +

2n−2∑
k=1

F
′

n(zk)Bk(z), (48)

we can write
|Rn(z)− f(z)| ≤ |Rn(z)− Fn(z)|+ |Fn(z)− f(z)| . (49)

Using (46) and (48), we have

|Rn(z)− f(z)| ≤
2n∑
k=1

|f(zk)− Fn(zk)| |Ak(z)|+
2n−2∑
k=1

|βk − F ′n(zk)| |Bk(z)|+ |Fn(z)− f(z)|

≤
2n∑
k=1

|f(zk)− Fn(zk)| |Ak(z)|︸ ︷︷ ︸
N1

+

2n−2∑
k=1

|βk| |Bk(z)|︸ ︷︷ ︸
N2

+

2n−2∑
k=1

|F ′n(zk)| |Bk(z)|︸ ︷︷ ︸
N3

+ |Fn(z)− f(z)|︸ ︷︷ ︸
N4
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and
|Rn(z)− f(z)| ≤ N1 +N2 +N3 +N4, (50)

where

N1 =

2n∑
k=1

|f(zk)− Fn(zk)| |Ak(z)| .

From (15) and (33), we have

N1 = O

(
ωr+1(f, n

−1)(1− x2)r/2nr+1 log n

)
(51)

and

N2 =

2n−2∑
k=1

|βk| |Bk(z)| .

From (45) and (34), we have

N2 = O

(
nωr+1(f, n

−1))(1− x2)r/2nr log n

)
(52)

and

N3 =

2n−2∑
k=1

|F ′n(zk)| |Bk(z)| .

From (16) and (34), we have

N3 = O

(
nωr+1(f, n

−1)(1− x2)r/2nr log n

)
(53)

and
N4 = |Fn(z)− f(z)| .

From (15), we have

N4 = O

(
ωr+1(f, n

−1)

)
. (54)

Using (51)—(54) in (50), we get

|Rn(z)− f(z)| = O

(
(1− x2)r/2nr+1ωr+1(f, n−1) log n

)
.

Hence, Theorem 3 follows.

6 Conclusion

This research article poses a completely new problem by introducing the generalized Hermite-Fejér boundary
conditions at the points ±1. Since these additional nodes gradually increase the degree of the interpolatory
polynomial. So, the order of convergence must also depend on that increment which can be seen in (47) as
we require the (r + 1)th modulus of continuity for the convergence purpose. Since the present problem is
posed considering generalized Hermite-Fejér boundary conditions only at ±1, a subtle open problem is to
consider the generalized Hermite-Fejér boundary conditions at ±1 as well as on all the nodal points, where
Lagrange and Hermite data are prescribed (i.e ±1 ∪ Z2n ∪ T2n−2). This will provide a much broader aspect
of convergence and comparisons to the present problem.
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