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Abstract

Let f and g be analytic functions on the open unit disk D ⊂ C with f/g belonging to the class P of
functions with positive real part (consisting of all functions p analytic in D with p(0) = 1 and Re p(z) > 0)
or to its subclass consisting of functions p with |p(z) − 1| < 1. We obtain the sharp radius constants for
the function f to be starlike of order α, parabolic starlike, or to belong to few other related classes when
g/k ∈ P where k denotes the Koebe function defined by k(z) = z/(1 − z)2.

1 Introduction

Let A be the class of all analytic functions f on the open unit disk D = D1 normalized by f(0) = 0 and
f ′(0) = 1, and let S be the subclass of all univalent function in A where Dr = {z ∈ C : |z| < r}. It
is well-known that every convex (or starlike) function f maps Dr onto a convex (or respectively starlike)
domain. Though every convex univalent function is starlike (of order 1/2), the converse is not true in general.
However, every starlike function f ∈ A maps each Dr onto a convex domain for r ≤ 2 −

√
3. This number

2 −
√

3 is called the radius of convex of starlike functions. This idea can be extended to any two arbitrary
subclasses F and G of A. The G radius of F , denoted by RG(F), is defined as the largest number RG such
that r−1f(rz) ∈ G for all r with 0 < r < RG , and for all f ∈ F . Whenever the class G is characterized by
a geometric property P the number RG is called as the radius of the property P of the class F . Although
there are variety of radius problems considered in literature (see [5, 9, 10, 11, 14, 13, 26, 27]), we investigate
the functions f characterized by the ratio of f with another function g ∈ A; these types of problems were
considered by MacGregor [16, 17, 18]. Ali et al. [1] determined various radii results for functions f satisfying
the following conditions:

(i) Re(f(z)/g(z)) > 0 where Re(g(z)/z) > 0 or Re(g(z)/z) > 1/2.

(ii) |(f(z)/g(z) − 1) − 1| < 1 where Re(f(z)/g(z)) > 0 or g is convex.

All these classes are associated to class of functions with positive real part; this class, denoted by P, consists
of all analytic functions p : D → C with p(0) = 1 and Re(p(z)) > 0 for all z ∈ D. Asha and Ravichandran
[21] investigated several radii for the functions f/g ∈ P and (1 + z)g/z ∈ P, belonging to some subclasses of
starlike functions (see [7, 8] for further works). For 0 ≤ α < 1, we let P(α) := {p ∈ P :Rep(z) > α}. Let k
be the Koebe function defined by k(z) = z/(1 − z)2. In this paper, we consider the two subclasses Π1 and
Π2 of analytic functions given below:

Π1 =: {f ∈ A : f/g ∈ P for some g ∈ A with g/k ∈ P} ,
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and
Π2 =: {f ∈ A : |f/g − 1| < 1 for some g ∈ A with g/k ∈ P} .

We determine radii for functions in these two classes Π1 and Π2 to belong to several subclasses of starlike
functions which we discuss below. In 1985, Padmanabhan and Parvatham [20] used the Hadamard product
(convolution) and subordination to introduce the class of functions f ∈ A satisfying z(kα ∗ f)′/(kα ∗ f) ≺ h
where kα(z) = z/(1 − z)α, α ∈ R, and h is convex. This class reduces to the usual classes of starlike and
convex functions respectively for α = 1 and α = 2 when h is the normalized mapping of D onto the right
half-plane. In 1989, Shanmugam [22] studied the class

S∗
g (ϕ) =: {f ∈ A : z(f ∗ g)′/(f ∗ g) ≺ ϕ}

where g is fixed and ϕ a convex function, respectively; this class includes several classes defined by means
of linear operator such as Ruscheweyh differential operator and Sălăgean operator. When g(z) = z/(1 − z)
and g(z) = z/(1 − z)2, the subclass S∗

g (ϕ) is denoted respectively by S∗(ϕ) and K(ϕ). In 1992, Ma and
Minda [15] studied growth, distortion, covering theorems and coefficient problems for the classes S∗(ϕ) and
K(ϕ) when ϕ ∈ P is just a univalent function mapping unit disk D onto domain symmetric with respect
to the real line and starlike with respect to ϕ(0) = 1 and ϕ′(0) > 0. For ϕ(z) = (1 + (1 − 2α)z)/(1 − z)
with 0 ≤ α < 1, the classes S∗(ϕ) and K(ϕ) reduce to the class S∗(α) of starlike functions of order α
and the class K(α) of convex functions of order α respectively. For more work in this direction, see [3, 6].
When ϕ equals 1 + (2/π)2(log((1 +

√
z)/(1 − √

z)))2,
√

1 + z, ez, 1 + (4/3)z + (2/3)z2, sin z, z +
√

1 + z2

and 1 + (zk + z2/(k2 − kz)) where k =
√

2 + 1, we denote the class S∗(ϕ) respectively by SP , S∗
L, S∗

e , S∗
c ,

S∗
sin, S∗

$
, and S∗

R. The class S∗
L was introduced by Sokól and Stankiewicz [25]. We refer to [21, 7, 8] for

information about the other classes.

2 Radius Results for the Class Π1

Recall that Π1 is defined by

Π1 =: {f ∈ A : f/g ∈ P for some g ∈ A with g/k ∈ P} .

The functions f0, f1 : D → C defined by

f0(z) =
z(1 + z)2

(1 − z)4
and f1(z) =

z

(1 + z)2
(1)

belong to the class Π1 and therefore the class Π1 is non-empty. They satisfy the required conditions with
the functions g0, g1 : D → C defined by

g0(z) =
z(1 + z)

(1 − z)3
and g1(z) =

z

1 − z2
;

indeed, we have

Re
fi(z)

gi(z)
> 0 and Re

(1 − z)2gi(z)

z
> 0

for i = 0, 1. The function f0 is an extremal function for the radius problem that we consider. The function
f1 is univalent, but the function f0 is not univalent as the coefficients of the Taylor’s series f0(z) = z +6z2 +
19z3 + 44z4 + · · · do not satisfy the de Branges theorem. The derivative of f0 is given by

f ′
0(z) =

(1 + 6z + z2)(1 + z)

(1 − z)5
.

Since f ′
0(−3 + 2

√
2) = 0, the function f0 is a non-univalent functions and therefore the radius of univalence

cannot exceed 3− 2
√

2. By Theorem 1(1), the radius of starlikeness of the class Π1 is 3− 2
√

2 and it follows
that the radius of univalence of this class is also 3 − 2

√
2 ≈ 0.171573.

The other radius results for the class Π1 are given in the following theorem.
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Theorem 1 The following radius results hold for the class Π1:

(1) The S∗(α) radius is RS∗(α) = (1 − α)/(3 +
√

8 + α2), 0 ≤ α < 1.

(2) The S∗
L radius is RS∗

L
= (

√
2 − 1)(

√
10 − 3) ≈ 0.067217.

(3) The SP radius is RSP
= (6 −

√
33)/3 ≈ 0.0851.

(4) The S∗
e radius is RS∗

e
= (e − 1)/(3e +

√
8e2 + 1) ≈ 0.1080.

(5) The S∗
c radius is RS∗

c
= (9 −

√
73)/4 ≈ 0.1140.

(6) The S∗
sin radius is RS∗

sin
= sin(1)/(

√

9 + sin2(1) + 2 sin(1) + 3) ≈ 0.1320.

(7) The S∗

$
radius is RS∗

$
= 3/

√
2 −

√

1/2
(

11 − 2
√

2
)

≈ 0.09999.

(8) The S∗
R radius RS∗

R
= (3 − 2

√

5 − 2
√

2)/(2
√

2 − 1) ≈ 0.0289.

We need the following lemmas to prove our results.

Lemma 1 ([1, Lemma 2.2, p.4]) For 0 < α <
√

2, let ra be given by

ra =

{

(
√

1 − a2 − (1 − a2))
1

2 , 0 < a ≤ 2
√

2/3,√
2 − a, 2

√
2/3 ≤ a <

√
2.

Then {ω : |ω − a| < ra} ⊆
{

ω : |ω2 − 1| < 1
}

.

Lemma 2 ([23, Lemma 1, p. 321]) For a > 1
2 , let ra be given by

ra =

{

a − 1
2
, 1

2
< a ≤ 3

2
,√

2a − 2, a ≥ 3
2
.

Then {w : |w − a| < ra} ⊆ {w : Rew > |w − 1|}.

Lemma 3 ([19, Lemma 2.2, p.368]) For e−1 < a < e, let ra be given by

ra =

{

a − e−1, e−1 < a ≤ e+e−1

2 ,

e − a, e+e−1

2
≤ a ≤ e.

Then {w : |w − a| < ra} ⊆ {w : | logw| < 1} = Ωe.

Lemma 4 ([24, Lemma 2.2, p. 926]) For 1
3

< a < 3, let ra be given by

ra =

{

a − 1
3 , 1

3 < a ≤ 5
3 ,

3 − a, 5
3 ≤ a ≤ 3.

Then {w : |w − a| < ra} ⊆ Ωc, where Ωc is the region bonded by the cardioid given

{

x + iy : (9x2 + 9y2 − 18x + 5)2 − 16(9x2 + 9y2 − 6x + 1) = 0
}

.

Lemma 5 ([2, Lemma 3.3, p.7]) For 1−sin 1 < a < 1+sin 1, let ra = sin 1−|a−1|. Then {w : |ω − a| < ra} ⊆
Ωs; Ωs is the image of the unit disk D under 1 + sin z.

Lemma 6 ([4, Lemma 2.1, p. 3]) For
√

2 − 1 < a <
√

2 + 1, let ra = 1 − |
√

2 − a|. Then

{w : |w − a| < ra} ⊆
{

w : |w2 − 1| < 2|w|
}

.



Ahmad Al-Faqeer et al. 519

Lemma 7 ([12, Lemma 2.2, p. 202]) For 2(
√

2 − 1) < a < 2, let ra be given by

ra =

{

a − 2
(√

2 − 1
)

, 2
(√

2 − 1
)

< a ≤
√

2,

2 − a,
√

2 ≤ a ≤ 2.

Then {w : |w − a| < ra}, where Ωr is the image of the disk D under the function 1 + (zk + z2)/
(

k2 − kz
)

,

k =
√

2 + 1.

Proof of Theorem 1. Let the function f ∈ Π1. Then there is a function g : D → C satisfying

Re

(

f(z)

g(z)

)

> 0 and Re

(

(1 − z)2g(z)

z

)

∀z ∈ D. (2)

Define functions p1, p2 : D → C as the following.

p1(z) =
(1 − z)2g(z)

z
and p2(z) =

f(z)

g(z)
. (3)

By using (2) and (3), we have p1, p2 ∈ P, and f(z) = zp1(z)p2(z)/(1 − z)2. Then it follows that

zf ′(z)

f(z)
=

zp′1(z)

p2(z)
+

zp′2(z)

p2(z)
+

1 + z

1 − z
. (4)

The bilinear transformation (1 + z)/(1 − z) maps the disk |z| ≤ r onto the disk
∣

∣

∣

∣

1 + z

1 − z
− 1 − r2

1 + r2

∣

∣

∣

∣

≤ 2r

1 − r2
. (5)

For p ∈ P(α), we have
∣

∣

∣

∣

zp′(z)

p(z)

∣

∣

∣

∣

≤ 2(1 − α)r

(1 − r)(1 + (1 − 2α)r)
, |z| ≤ r. (6)

Using (4), (5) and (6), we see that the function f maps disk |z| ≤ r into disk
∣

∣

∣

∣

zf ′(z)

f(z)
− 1 + r2

1 − r2

∣

∣

∣

∣

≤ 6r

1 − r2
. (7)

From (7), it follows that

Re
zf ′(z)

f(z)
≥ 1 − 6r + r2

1 − r2
≥ 0, (8)

for all 0 ≤ r ≤ 3 − 2
√

2. Therefore, the function f ∈ Π1 is starlike in |z| ≤ 3 − 2
√

2 ≈ 0.171573. Hence, all
our radii found here must be less or equal to 3 − 2

√
2.

1. The number ρ = RS∗(α), is the smallest positive root of the equation (1 + α)r2 − 6r + 1 − α = 0 in
[0, 1]. For 0 < r ≤ RS∗(α), from (8), it follows that

Re
zf ′(z)

f(z)
≥ 1 − 6r + r2

1 − r2
≥ 1 − 6ρ + ρ2

1 − ρ2
= α.

This shows that the radius of starlikeness of order α is at least RS∗(α). To show that it is sharp,
consider the function f0 ∈ Π1 given in (1). For this function f0, we have

zf ′
0(z)

f0(z)
=

1 + 6z + z2

1 − z2
.

At z = −ρ, we have

Re
zf ′

0(z)

f0(z)
=

1 − 6ρ + ρ2

1 − ρ2
= α,

proving the sharpness of the radius.
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2. We can give a proof using Lemma 1 but we give a different proof here. The number ρ := RSL
is the

smallest positive root of the equation (1 +
√

2)r2 + 6r + 1 −
√

2 = 0 in interval (0, 1), and, from (7), it
is clear that, for 0 ≤ r ≤ ρ,

∣

∣

∣

∣

zf ′(z)

f(z)
− 1

∣

∣

∣

∣

≤
∣

∣

∣

∣

zf ′(z)

f(z)
− 1 + r2

1 − r2

∣

∣

∣

∣

+
2r2

1 − r2
≤ 6r + 2r2

1 − r2
≤ 6ρ + ρ2

1 − ρ2
=

√
2 − 1 (9)

and
∣

∣

∣

∣

zf ′(z)

f(z)
+ 1

∣

∣

∣

∣

≤ 2 +

∣

∣

∣

∣

zf ′(z)

f(z)
− 1

∣

∣

∣

∣

≤
√

2 + 1. (10)

Thus, from (9) and (10), it follows that, for 0 ≤ r ≤ ρ,
∣

∣

∣

∣

∣

(

zf ′(z)

f(z)

)2

− 1

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

zf ′(z)

f(z)
− 1

∣

∣

∣

∣

∣

∣

∣

∣

zf ′(z)

f(z)
+ 1

∣

∣

∣

∣

≤ (
√

2 + 1)(
√

2 − 1) = 1.

For the function f0 ∈ Π1 given in (1), we have, at z = ρ,

zf ′
0(z)

f0(z)
= 1 +

6ρ + 2ρ2

1 − ρ2
=

√
2

and so, at z = ρ,
∣

∣

∣

∣

∣

(

zf ′
0(z)

f0(z)

)2

− 1

∣

∣

∣

∣

∣

= 1.

This proves the sharpness.

3. For ρ := RSP
= (6 −

√
33)/3, we have

1

2
< 1 ≤ a =

1 + r2

1 − r2
≤ 1 + ρ2

1 − ρ2
=

3
√

33 − 1

16
≈ 1.0146 < 3/2.

Also, for ρ = RSP
, we have

6ρ

(1 − ρ2)
≤ 1 + ρ2

1 − ρ2
− 1

2

and the disk in (7) for r = ρ becomes

∣

∣

∣

∣

zf ′(z)

f(z)
− a

∣

∣

∣

∣

=

∣

∣

∣

∣

zf ′(z)

f(z)
− 1 + ρ2

1 − ρ2

∣

∣

∣

∣

≤ 1 + ρ2

1 − ρ2
− 1

2
= a − 1

2
.

By Lemma 2, it follows that the disk in (7) lies inside region ΩPAR. This proves that the radius of
parabolic starlikeness is at least RSP

.

The radius is sharp for the function f0 ∈ Π1. At the point z = −ρ = −RSP
, we have

Re

(

zf ′
0(z)

f0(z)

)

=
1 − 6ρ + ρ2

1 − ρ2
=

1

2
=

6ρ− 2ρ2

1 − ρ2
=

∣

∣

∣

∣

zf ′
0(z)

f0(z)
− 1

∣

∣

∣

∣

.

4. For e−1 < a ≤ e+e−1

2 , Lemma 3 gives

{

w ∈ C : |w − a| < a − e−1
}

⊆ {w ∈ C : | logw| < 1} =: Ωe, (11)

For ρ = RS∗

e
, we have

e−1 < a :=
1 + ρ2

1 − ρ2
=

1 + 9e2

e(1 + 3
√

1 + 8e2)
≈ 1.0236 ≤ e + e−1

2
≈ 1.5430
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and, ρ being smallest positive root of the equation (1 + e)r2 − 6er + e − 1 = 0,

6ρ

1 − ρ2
≤ 1 + ρ2

1 − ρ2
− 1

e
= a − e−1.

Consequently, the disk in (7) for r = ρ becomes
∣

∣

∣

∣

zf ′(z)

f(z)
− a

∣

∣

∣

∣

=

∣

∣

∣

∣

zf ′(z)

f(z)
− 1 + ρ2

1 − ρ2

∣

∣

∣

∣

≤ 1 + ρ2

1 − ρ2
− 1

e
= a − e−1.

By (11) the above disk is inside Ωe proving that the S∗
e radius for the class Π1 is at least RS∗

e
. The

result is sharp for the function f0 given in (1). Indeed, at z = −ρ where ρ = RS∗

e
, we have

∣

∣

∣

∣

log

(

zf ′
0(z)

f0(z)

)
∣

∣

∣

∣

=

∣

∣

∣

∣

log

(

1 − 6ρ + ρ2

1 − ρ2

)
∣

∣

∣

∣

= 1.

5. For 1
3

< a ≤ 5
3
, by an application of Lemma 4, it follows that

{

w ∈ C : |w − a| < a − 1

3

}

⊆ Ωc,

where Ωc is the domain bounded by the cardioid {x+iy : (9x2+9y2−18x+5)2 −16(9x2+9y2−6x+1) =
0}. For ρ = RS∗

c
, we have

1

3
< a :=

1 + ρ2

1 − ρ2
=

3
√

73 − 1

24
≈ 1.0263 ≤ 5

3

and, ρ being the smallest positive root of the equation 2r2 − 9r + 1 = 0,

6ρ

1 − ρ2
=

1 + ρ2

1 − ρ2
− 1

3
.

Therefore, the disk in (7) becomes
∣

∣

∣

∣

zf ′(z)

f(z)
− a

∣

∣

∣

∣

=

∣

∣

∣

∣

zf ′(z)

f(z)
− 1 + ρ2

1 − ρ2

∣

∣

∣

∣

≤=
1 + ρ2

1 − ρ2
− 1

3
= a − 1

3

and this disk is inside Ωc. This shows that S∗
c radius is at least RS∗

c
.

For the function f0 given in (1), at z = ρ = RS∗

c
, we have

zf ′
0(z)

f0(z)
=

1 − 6ρ + ρ2

1 − ρ2
=

1

3
= ϕc(−1) ∈ ∂ϕc(D)

where ϕc(z) = 1 + 4z/3 + 2z2/3.

6. For ρ = RS∗

sin
, and a := (1 + r2)/(1 − r2), we have

|a − 1| =
2ρ2

1 − ρ2
≈ 0.13199 < sin 1 ≈ 0.8414.

and
6ρ

1 − ρ2
≤ sin 1 − 2ρ2

1 − ρ2
.

The disk in (7) for r = ρ becomes
∣

∣

∣

∣

zf ′(z)

f(z)
− a

∣

∣

∣

∣

=

∣

∣

∣

∣

zf ′(z)

f(z)
− 1 + ρ2

1 − ρ2

∣

∣

∣

∣

≤ sin 1 − 2ρ2

1 − ρ2
= sin 1 − |1 − a|.
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Lemma 5 shows that the disk in (7) is inside Ωs where Ωs =: ϕs(D) is the image of the unit disk D

under the mapping ϕs(z) = 1+sin z. This proves that the S∗
sin radius is at least RS∗

sin
. For the function

f0 given in (1), with ρ = RS∗

sin
, we have

(

zf ′(z)

f(z)

)

=
1 + 6ρ + ρ2

1 − ρ2
= 1 + sin 1 ∈ ϕs(1) ∈ ∂ϕs(D).

7. For ρ = RS∗

$
, we have

a :=
1 + ρ2

1 − ρ2
≈ 1.0202 ∈ (

√
2 − 1,

√
2 + 1)

and
1 − 6ρ + ρ2

1 − ρ2
=

√
2 − 1.

The disk in (7) becomes
∣

∣

∣

∣

zf ′(z)

f(z)
− a

∣

∣

∣

∣

≤ 1 − |
√

2 − a|

and by Lemma 6 it lies inside
{

w : |w2 − 1| < 2|w|
}

. This shows that S∗

$
radius is at least RS∗

$
. The

sharpness follows as the function f0 defined in (1) satisfies, at z = ρ = RS∗

$
,

∣

∣

∣

∣

∣

(

zf ′
0(z)

f0(z)

)2

− 1

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

(

1 − 6ρ + ρ2

1 − ρ2

)2

− 1

∣

∣

∣

∣

∣

= 2(
√

2 − 1)

= 2
1 − 6ρ + ρ2

1 − ρ2
= 2

∣

∣

∣

∣

zf ′
0(z)

f0(z)

∣

∣

∣

∣

.

8. For ρ = RS∗

R
, we have

2(
√

2 − 1) < a :=
1 + ρ2

1 − ρ2
≈ 1.00167 ≤

√
2 < 2,

and
1 − 6ρ + ρ2

1 − ρ2
= 2 − 2

√
2.

The disk (7) becomes
∣

∣

∣

∣

zf ′(z)

f(z)
− a

∣

∣

∣

∣

< a − 2(
√

2 − 1)

and this disk, by Lemma 7, lies inside the domain Ωr . This proves that S∗
R radius is at least RS∗

R
.

To prove sharpness, consider the function f0 ∈ Π1 given in (1). At z = −ρ = −RS∗

R
, we have

zf ′(z)

f(z)
=

1 − 6ρ + ρ2

1 − ρ2
= 2(

√
2 − 1) = ϕr(−1) ∈ ∂ϕr(D)

where ϕr(z) = 1 + (kz + z2)/(k2 − kz), k =
√

2 + 1.
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3 Radius Results for the Class Π2

The functions f2, f3 : D → C defined by

f2(z) =
z

1 − z
and f3(z) =

z(1 + z)2

(1 − z)3
, (12)

satisfy the conditions |fi(z)/gi(z) − 1| < 1 and Re((1 − z)2gi(z)) > 0 for i = 2, 3 with g2, g3 : D → C defined
by

g2(z) =
z

1 − z2
and g3(z) =

z(1 + z)

(1 − z)3
,

and hence f2, f3 ∈ Π2. This proves that the class Π2 is non-empty. The Taylor series f3(z) = z+5z2+13z3 +
25z4 + · · · shows that it is not univalent. It is an extremal function for the radius problems we consider.
The derivative of f3 is given by

f ′
3(z) =

(1 + 5z)(1 + z)

(1 − z)4
.

Since f ′
3(−1/5) = 0 and, by Theorem 2(1), the radius of starlikeness of the class Π1 is 1/5, it follows that the

radius of univalence of this class is also 1/5. The other radius results for class Π2 are given in the following
theorem.

Theorem 2 The following radius results hold for the class Π2:

(1) The S∗(α) radius is RS∗(α) = 2(1 − α)/(5 +
√

4α2 − 4α + 25), 0 ≤ α < 1.

(2) The S∗
L radius is at least RS∗

L
= (

√

4
√

2 + 25 − 5)/(2(
√

2 + 2)) ≈ 0.0786.

(3) The Sp radius is RSp
= 5 − 2

√
6 ≈ 0.1010.

(4) The S∗
e radius is S∗

e = (2(e − 1))/(5e +
√

25e2 − 4e + 4) ≈ 0.1276.

(5) The S∗
c radius is RS∗

c
=

(

15 −
√

217
)

/2 ≈ 0.1345.

(6) The S∗
sin radius is at least S∗

sin = (
√

25 + 4(3 + sin(1)) sin(1) − 5)/(2(3 + sin(1))) ≈ 0.1508.

(7) The S∗

$
radius is RS∗

$
= (5 −

√

41 − 12
√

2)/(2
(√

2 − 1
)

) ≈ 0.1183.

(8) The S∗
R radius is RS∗

R
= (5 −

√

81 − 40
√

2)/(4
(√

2 − 1
)

) ≈ 0.0345.

It is worth to point out that RS∗

P
= RS∗(1/2) and RS∗

e
= RS∗(1/e) in both theorems.

Proof. Since |w − 1| < 1 is equivalent to Re(1/w) > 1/2, the condition |f(z)/g(z) − 1| < 1 is the same as
the condition Re(g(z)/f(z)) > 1/2. Let the function f ∈ Π2. Let g : D → C be chosen such that

Re

(

g(z)

f(z)

)

>
1

2
and Re

(

(1 − z)2

z
g(z)

)

. (13)

Define p1, p2 : D → C by

p1(z) =
(1 − z)2

z
g(z), and p2(z) =

g(z)

f(z)
. (14)

From (13) and (14), it follows that the function p1 ∈ P, the function p2 ∈ P(1/2), and f(z) = (z/(1 −
z)2)p1(z)/p2(z). A calculation shows that

zf ′(z)

f(z)
=

zp′1(z)

p1(z)
− zp′2(z)

p2(z)
+

1 + z

1 − z
. (15)
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The bilinear transformation ω = (1 + z)/(1 − z) maps the disk |z| ≤ r onto disk

∣

∣

∣

∣

1 + z

1 − z
− 1 + r2

1 − r2

∣

∣

∣

∣

≤ 2r

1 − r2
. (16)

Using (16) and (6) in (15), we get
∣

∣

∣

∣

zf ′(z)

f(z)
− 1 + r2

1 − r2

∣

∣

∣

∣

≤ 5r + r2

1 − r2
. (17)

From (17), it follows that

Re

(

zf ′(z)

f(z)

)

≥ 1 − 5r

1 − r2
≥ 0 (18)

for 0 ≤ r ≤ 1/5. For the function f3 given in (12), we have

zf ′
3(z)

f3(z)
=

1 + 5z

1 − z2
= 0

for z = −1/5. Thus, the radius of starlikeness of the class Π2 is 1/5. All radius values to be computed here
will be less or equal to 1/5.

1. The number ρ := RS∗(α) is the smallest positive root of the equation αr2 − 5r + 1 − α = 0. For
0 < r ≤ RS∗(α), from (18), we have

Re

(

zf ′(z)

f(z)

)

≥ 1 − 5r

1 − r2
≥ 1 − 5ρ

1 − ρ2
= α.

For the function f3 ∈ Π2 given in (12), we have, at z = −ρ = −RS∗(α),

zf ′
3(z)

f3(z)
=

1 − 5ρ

1 − ρ2
= α.

This proves that the radius of starlikeness of order α is RS∗(α).

2. From (17), it follows that

∣

∣

∣

∣

zf ′(z)

f(z)
− 1

∣

∣

∣

∣

≤
∣

∣

∣

∣

zf ′(z)

f(z)
− 1 + r2

1 − r2

∣

∣

∣

∣

+
2r2

1 − r2
≤ 5r + 3r2

1 − r2
. (19)

The number ρ = RS∗

L
is the positive root of the equation

5r + 3r2 − (1 − r2)(
√

2 − 1) = 0.

For 0 < r ≤ ρ = RS∗

L
, we have

5r + 3r2

1 − r2
≤ 5ρ + 3ρ2

1 − ρ2
=

√
2 − 1. (20)

Therefore, by (19) and (20), it follows for 0 < r ≤ ρ = RS∗

L
that

∣

∣

∣

∣

zf ′(z)

f(z)
− 1

∣

∣

∣

∣

≤
√

2 − 1, (21)

and
∣

∣

∣

∣

zf ′(z)

f(z)
+ 1

∣

∣

∣

∣

≤
√

2 + 1. (22)
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The last two inequalities (21) and (22) immediately yield
∣

∣

∣

∣

∣

(

zf ′(z)

f(z)

)2

− 1

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

zf ′(z)

f(z)
+ 1

∣

∣

∣

∣

∣

∣

∣

∣

zf ′(z)

f(z)
− 1

∣

∣

∣

∣

≤ (
√

2 + 1)(
√

2 − 1) = 1.

This proves that S∗
L is at least RS∗

L
.

3. For 0 ≤ r ≤ ρ := RSP
= 5 − 2

√
6, we have for

1

2
< 1 ≤ a =

1 + ρ2

1 − ρ2
=

5
√

6

12
< 3/2

and, ρ being the smallest positive root of the equation r2 − 10r + 1 = 0,

5ρ + ρ2

(1 − ρ2)
≤ 1 + ρ2

1 − ρ2
− 1

2
.

The disk in (17) becomes

∣

∣

∣

∣

zf ′(z)

f(z)
− 1 + ρ2

1 − ρ2

∣

∣

∣

∣

≤ 1 + ρ2

1 − ρ2
− 1

2
.

By Lemma 2, the disk in (17) is inside the region ΩPAR. Thus, the radius of parabolic starlikeness of
the class Π2 is at least RSp

.

For the function f3 given in (12) at z = −ρ where ρ = RSp
, we have

Re

(

zf ′
3(z)

f3(z)

)

=
1 − 5ρ

1 − ρ2
=

5ρ− ρ2

1 − ρ2
=

∣

∣

∣

∣

zf ′
3(z)

f3(z)
− 1

∣

∣

∣

∣

.

4. For ρ = RS∗

e
, we have 1/e < a := (1 + ρ2)/(1 − ρ2) ≈ 1.0331 ≤ (e + e−1)/2 and

5ρ + ρ2

1 − ρ2
=

1 + ρ2

1 − ρ2
− 1

e
.

The disk in (17) becomes

∣

∣

∣

∣

zf ′(z)

f(z)
− 1 + ρ2

1 − ρ2

∣

∣

∣

∣

≤ 1 + ρ2

1 − ρ2
− 1

e
.

By Lemma 3, this disk is inside the region Ωe, proving that S∗
e radius is at least RS∗

e
.

The result is sharp for the function f3 given in (12). For this function, we have, at z = −ρ where
ρ = RS∗

e
,

∣

∣

∣

∣

log

(

zf ′
3(z)

f3(z)

)
∣

∣

∣

∣

=

∣

∣

∣

∣

log

(

1 − 5ρ

1 − ρ2

)
∣

∣

∣

∣

=
∣

∣log(e−1)
∣

∣ = 1.

5. For ρ = RS∗

c
, we have 1/3 < a := (1 + ρ2)/(1− ρ2) = 1

72
(1 + 5

√
217) ≈ 1.03686 ≤ 5/2 and, ρ being the

smallest positive root of r2 − 15r + 2 = 0,

5ρ + ρ2

1 − ρ2
=

1 + ρ2

1 − ρ2
− 1

3
.

The disk in (17) becomes

∣

∣

∣

∣

zf ′(z)

f(z)
− 1 + ρ2

1 − ρ2

∣

∣

∣

∣

≤ 1 + ρ2

1 − ρ2
− 1

3
.
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By Lemma 3, this disk is inside the region Ωc, proving that S∗
c radius is at least RS∗

c
.

The radius is sharp for the function f3 given in (12). At z = −ρ where ρ = RS∗

c
, we have

zf ′
3(z)

f3(z)
=

1 − 5ρ

1 − ρ2
=

1

3
= ϕc(−1) ∈ ∂ϕc(D)

where ϕc(z) = 1 + 4z/3 + 2z2/3.

6. For ρ = RS∗

sin
, and a := (1 + ρ2)/(1 − ρ2), we have

|a− 1| =
2ρ2

1 − ρ2
≈ 0.0465396 < sin 1 ≈ 0.8414.

and
5ρ + ρ2

1 − ρ2
≤ sin 1 − 2ρ2

1 − ρ2
.

The disk in (7) for r = ρ becomes

∣

∣

∣

∣

zf ′(z)

f(z)
− a

∣

∣

∣

∣

=

∣

∣

∣

∣

zf ′(z)

f(z)
− 1 + ρ2

1 − ρ2

∣

∣

∣

∣

≤ sin 1 − 2ρ2

1 − ρ2
= sin 1 − |1 − a|.

Lemma 5 shows that the disk in (17) is inside Ωs where Ωs =: ϕs(D) is the image of the unit disk D

under the mapping ϕs(z) = 1 + sin z. This proves that the S∗
sin radius is at least RS∗

sin
.

7. For ρ = RS∗

$
, we have

a :=
1 + ρ2

1 − ρ2
≈ 1.02839 ∈ (

√
2 − 1,

√
2 + 1)

and
5ρ + ρ2

1 − ρ2
=

1 + ρ2

1 − ρ2
+ 1 −

√
2.

The disk in (17) becomes
∣

∣

∣

∣

zf ′(z)

f(z)
− a

∣

∣

∣

∣

≤ 1 − |
√

2 − a|

and by Lemma 6 it lies inside
{

w : |w2 − 1| < 2|w|
}

. This shows that S∗

$
radius is at least RS∗

$
. The

sharpness follows as the function f3 defined in (12) satisfies, at z = ρ = RS∗

$
,

∣

∣

∣

∣

∣

(

zf ′
3(z)

f3(z)

)2

− 1

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

(

1 − 5ρ

1 − ρ2

)2

− 1

∣

∣

∣

∣

∣

= 2(
√

2 − 1)

= 2
1 − 5ρ

1 − ρ2
= 2

∣

∣

∣

∣

zf ′
3(z)

f3(z)

∣

∣

∣

∣

.

8. For ρ = RS∗

R
, we have

2(
√

2 − 1) < a :=
1 + ρ2

1 − ρ2
≈ 1.00238 ≤

√
2 < 2,

and
5ρ + ρ2

1 − ρ2
=

1 + ρ2

1 − ρ2
− 2(

√
2 − 1).

The disk (17) becomes
∣

∣

∣

∣

zf ′(z)

f(z)
− a

∣

∣

∣

∣

< a − 2(
√

2 − 1).
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By Lemma 7, this disk lies inside the domain Ωr. This proves that S∗
R radius is at least RS∗

R
.

To prove sharpness, consider the function f3 ∈ Π2 given in (12). At z = −ρ = −RS∗

R
, we have

zf ′
3(z)

f3(z)
=

1 − 5ρ

1 − ρ2
= 2(

√
2 − 1) = ϕr(−1) ∈ ∂ϕr(D)

where ϕr(z) = 1 + (kz + z2)/(k2 − kz), k =
√

2 + 1.
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