Radius Of Starlikeness Of Functions Defined By Ratios Of Analytic Functions*

Ahmad Sulaiman Ahmad El-Faqeer[†], Maisarah Haji Mohd[†], Shamani Supramaniam[†], Vaithiyanathan Ravichandran[‡]

Received 15 January 2021

Abstract

Let f and g be analytic functions on the open unit disk $\mathbb{D} \subset \mathbb{C}$ with f/g belonging to the class \mathcal{P} of functions with positive real part (consisting of all functions p analytic in \mathbb{D} with p(0) = 1 and $\operatorname{Re} p(z) > 0$) or to its subclass consisting of functions p with |p(z) - 1| < 1. We obtain the sharp radius constants for the function f to be starlike of order α , parabolic starlike, or to belong to few other related classes when $g/k \in \mathcal{P}$ where k denotes the Koebe function defined by $k(z) = z/(1-z)^2$.

1 Introduction

Let \mathcal{A} be the class of all analytic functions f on the open unit disk $\mathbb{D} = \mathcal{D}_1$ normalized by f(0) = 0 and f'(0) = 1, and let \mathcal{S} be the subclass of all univalent function in \mathcal{A} where $\mathcal{D}_r = \{z \in \mathcal{C} : |z| < r\}$. It is well-known that every convex (or starlike) function f maps \mathbb{D}_r onto a convex (or respectively starlike) domain. Though every convex univalent function is starlike (of order 1/2), the converse is not true in general. However, every starlike function $f \in \mathcal{A}$ maps each \mathbb{D}_r onto a convex domain for $r \leq 2 - \sqrt{3}$. This number $2 - \sqrt{3}$ is called the radius of convex of starlike functions. This idea can be extended to any two arbitrary subclasses \mathcal{F} and \mathcal{G} of \mathcal{A} . The \mathcal{G} radius of \mathcal{F} , denoted by $\mathcal{R}_{\mathcal{G}}(\mathcal{F})$, is defined as the largest number $\mathcal{R}_{\mathcal{G}}$ such that $r^{-1}f(rz) \in \mathcal{G}$ for all r with $0 < r < \mathcal{R}_{\mathcal{G}}$, and for all $f \in \mathcal{F}$. Whenever the class \mathcal{G} is characterized by a geometric property \mathbf{P} the number $\mathcal{R}_{\mathcal{G}}$ is called as the radius of the property \mathbf{P} of the class \mathcal{F} . Although there are variety of radius problems considered in literature (see [5, 9, 10, 11, 14, 13, 26, 27]), we investigate the functions f characterized by the ratio of f with another function $g \in \mathcal{A}$; these types of problems were considered by MacGregor [16, 17, 18]. Ali et al. [1] determined various radii results for functions f satisfying the following conditions:

- (i) Re(f(z)/g(z)) > 0 where Re(g(z)/z) > 0 or Re(g(z)/z) > 1/2.
- (ii) |(f(z)/g(z) 1) 1| < 1 where Re(f(z)/g(z)) > 0 or g is convex.

All these classes are associated to class of functions with positive real part; this class, denoted by \mathcal{P} , consists of all analytic functions $p: \mathbb{D} \to \mathbb{C}$ with p(0) = 1 and Re(p(z)) > 0 for all $z \in \mathbb{D}$. Asha and Ravichandran [21] investigated several radii for the functions $f/g \in \mathcal{P}$ and $(1+z)g/z \in \mathcal{P}$, belonging to some subclasses of starlike functions (see [7, 8] for further works). For $0 \le \alpha < 1$, we let $\mathcal{P}(\alpha) := \{p \in \mathcal{P} : \text{Re}p(z) > \alpha\}$. Let k be the Koebe function defined by $k(z) = z/(1-z)^2$. In this paper, we consider the two subclasses Π_1 and Π_2 of analytic functions given below:

$$\Pi_1 =: \{ f \in \mathcal{A} : f/g \in \mathcal{P} \text{ for some } g \in \mathcal{A} \text{ with } g/k \in \mathcal{P} \},$$

^{*}Mathematics Subject Classifications: 30C45; 30C80.

[†]School of Mathematical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia

[‡]Department of Mathematics, National Institute of Technology, Tiruchirappalli–620 015, India

and

$$\Pi_2 =: \{ f \in \mathcal{A} : |f/g - 1| < 1 \text{ for some } g \in \mathcal{A} \text{ with } g/k \in \mathcal{P} \}.$$

We determine radii for functions in these two classes Π_1 and Π_2 to belong to several subclasses of starlike functions which we discuss below. In 1985, Padmanabhan and Parvatham [20] used the Hadamard product (convolution) and subordination to introduce the class of functions $f \in \mathcal{A}$ satisfying $z(k_\alpha * f)'/(k_\alpha * f) \prec h$ where $k_\alpha(z) = z/(1-z)^\alpha$, $\alpha \in \mathbb{R}$, and h is convex. This class reduces to the usual classes of starlike and convex functions respectively for $\alpha = 1$ and $\alpha = 2$ when h is the normalized mapping of \mathbb{D} onto the right half-plane. In 1989, Shanmugam [22] studied the class

$$\mathcal{S}_g^*(\varphi) =: \{ f \in \mathcal{A} : z(f * g)' / (f * g) \prec \varphi \}$$

where g is fixed and φ a convex function, respectively; this class includes several classes defined by means of linear operator such as Ruscheweyh differential operator and Sălăgean operator. When g(z)=z/(1-z) and $g(z)=z/(1-z)^2$, the subclass $\mathcal{S}_g^*(\varphi)$ is denoted respectively by $\mathcal{S}^*(\varphi)$ and $\mathcal{K}(\varphi)$. In 1992, Ma and Minda [15] studied growth, distortion, covering theorems and coefficient problems for the classes $\mathcal{S}^*(\varphi)$ and $\mathcal{K}(\varphi)$ when $\varphi \in \mathcal{P}$ is just a univalent function mapping unit disk \mathbb{D} onto domain symmetric with respect to the real line and starlike with respect to $\varphi(0)=1$ and $\varphi'(0)>0$. For $\varphi(z)=(1+(1-2\alpha)z)/(1-z)$ with $0 \le \alpha < 1$, the classes $\mathcal{S}^*(\varphi)$ and $\mathcal{K}(\varphi)$ reduce to the class $\mathcal{S}^*(\alpha)$ of starlike functions of order α and the class $\mathcal{K}(\alpha)$ of convex functions of order α respectively. For more work in this direction, see [3, 6]. When φ equals $1+(2/\pi)^2(\log((1+\sqrt{z})/(1-\sqrt{z})))^2$, $\sqrt{1+z}$, e^z , $1+(4/3)z+(2/3)z^2$, $\sin z$, $z+\sqrt{1+z^2}$ and $1+(zk+z^2/(k^2-kz))$ where $k=\sqrt{2}+1$, we denote the class $\mathcal{S}^*(\varphi)$ respectively by \mathcal{S}_P , \mathcal{S}_L^* , $\mathcal{S}_{\rm e}^*$, $\mathcal{S}_{\rm sin}^*$, $\mathcal{S}_{\rm g}^*$, and \mathcal{S}_R^* . The class \mathcal{S}_L^* was introduced by Sokól and Stankiewicz [25]. We refer to [21, 7, 8] for information about the other classes.

2 Radius Results for the Class Π_1

Recall that Π_1 is defined by

$$\Pi_1 =: \{ f \in \mathcal{A} : f/g \in \mathcal{P} \text{ for some } g \in \mathcal{A} \text{ with } g/k \in \mathcal{P} \}.$$

The functions $f_0, f_1 : \mathbb{D} \to \mathbb{C}$ defined by

$$f_0(z) = \frac{z(1+z)^2}{(1-z)^4}$$
 and $f_1(z) = \frac{z}{(1+z)^2}$ (1)

belong to the class Π_1 and therefore the class Π_1 is non-empty. They satisfy the required conditions with the functions $g_0, g_1 : \mathbb{D} \to \mathbb{C}$ defined by

$$g_0(z) = \frac{z(1+z)}{(1-z)^3}$$
 and $g_1(z) = \frac{z}{1-z^2}$;

indeed, we have

$$\operatorname{Re} \frac{f_i(z)}{g_i(z)} > 0$$
 and $\operatorname{Re} \frac{(1-z)^2 g_i(z)}{z} > 0$

for i = 0, 1. The function f_0 is an extremal function for the radius problem that we consider. The function f_1 is univalent, but the function f_0 is not univalent as the coefficients of the Taylor's series $f_0(z) = z + 6z^2 + 19z^3 + 44z^4 + \cdots$ do not satisfy the de Branges theorem. The derivative of f_0 is given by

$$f_0'(z) = \frac{(1+6z+z^2)(1+z)}{(1-z)^5}.$$

Since $f_0'(-3+2\sqrt{2})=0$, the function f_0 is a non-univalent functions and therefore the radius of univalence cannot exceed $3-2\sqrt{2}$. By Theorem 1(1), the radius of starlikeness of the class Π_1 is $3-2\sqrt{2}$ and it follows that the radius of univalence of this class is also $3-2\sqrt{2}\approx 0.171573$.

The other radius results for the class Π_1 are given in the following theorem.

Theorem 1 The following radius results hold for the class Π_1 :

(1) The
$$S^*(\alpha)$$
 radius is $R_{S^*(\alpha)} = (1-\alpha)/(3+\sqrt{8+\alpha^2}), \quad 0 \le \alpha < 1.$

(2) The
$$S_L^*$$
 radius is $R_{S_r^*} = (\sqrt{2} - 1)(\sqrt{10} - 3) \approx 0.067217$.

(3) The
$$S_P$$
 radius is $R_{S_P} = (6 - \sqrt{33})/3 \approx 0.0851$.

(4) The
$$S_e^*$$
 radius is $R_{S_e^*} = (e-1)/(3e+\sqrt{8e^2+1}) \approx 0.1080$.

(5) The
$$S_c^*$$
 radius is $R_{S_c^*} = (9 - \sqrt{73})/4 \approx 0.1140$.

(6) The
$$S_{\sin}^*$$
 radius is $R_{S_{\sin}^*} = \sin(1)/(\sqrt{9 + \sin^2(1) + 2\sin(1)} + 3) \approx 0.1320$.

(7) The
$$S_{\mathbb{Q}}^*$$
 radius is $R_{S_{\mathbb{Q}}^*} = 3/\sqrt{2} - \sqrt{1/2(11 - 2\sqrt{2})} \approx 0.09999$.

(8) The
$$S_R^*$$
 radius $R_{S_R^*} = (3 - 2\sqrt{5 - 2\sqrt{2}})/(2\sqrt{2} - 1) \approx 0.0289$.

We need the following lemmas to prove our results.

Lemma 1 ([1, Lemma 2.2, p.4]) For $0 < \alpha < \sqrt{2}$, let \mathbf{r}_a be given by

$$\mathbf{r}_a = \left\{ \begin{array}{ll} (\sqrt{1-a^2} - (1-a^2))^{\frac{1}{2}}, & 0 < a \leq 2\sqrt{2}/3, \\ \sqrt{2} - a, & 2\sqrt{2}/3 \leq a < \sqrt{2}. \end{array} \right.$$

Then $\{\omega : |\omega - a| < r_a\} \subseteq \{\omega : |\omega^2 - 1| < 1\}.$

Lemma 2 ([23, Lemma 1, p. 321]) For $a > \frac{1}{2}$, let \mathbf{r}_a be given by

$$\mathbf{r}_a = \begin{cases} a - \frac{1}{2}, & \frac{1}{2} < a \le \frac{3}{2}, \\ \sqrt{2a - 2}, & a \ge \frac{3}{2}. \end{cases}$$

Then $\{w : |w - a| < r_a\} \subseteq \{w : Rew > |w - 1|\}.$

Lemma 3 ([19, Lemma 2.2, p.368]) For $e^{-1} < a < e$, let \mathbf{r}_a be given by

$$\mathbf{r}_a = \begin{cases} a - e^{-1}, & e^{-1} < a \le \frac{e + e^{-1}}{2}, \\ e - a, & \frac{e + e^{-1}}{2} \le a \le e. \end{cases}$$

Then $\{w : |w - a| < \mathbf{r}_a\} \subseteq \{w : |\log w| < 1\} = \Omega_e$.

Lemma 4 ([24, Lemma 2.2, p. 926]) For $\frac{1}{3} < a < 3$, let \mathbf{r}_a be given by

$$\mathbf{r}_a = \begin{cases} a - \frac{1}{3}, & \frac{1}{3} < a \le \frac{5}{3}, \\ 3 - a, & \frac{5}{3} \le a \le 3. \end{cases}$$

Then $\{w: |w-a| < \mathbf{r}_a\} \subseteq \Omega_c$, where Ω_c is the region bonded by the cardioid given

$${x + iy : (9x^2 + 9y^2 - 18x + 5)^2 - 16(9x^2 + 9y^2 - 6x + 1) = 0}.$$

Lemma 5 ([2, Lemma 3.3, p.7]) For $1-\sin 1 < a < 1+\sin 1$, let $r_a = \sin 1-|a-1|$. Then $\{w : |\omega - a| < \mathbf{r}_a\} \subseteq \Omega_s$; Ω_s is the image of the unit disk $\mathbb D$ under $1+\sin z$.

Lemma 6 ([4, Lemma 2.1, p. 3]) For $\sqrt{2} - 1 < a < \sqrt{2} + 1$, let $\mathbf{r}_a = 1 - |\sqrt{2} - a|$. Then

$$\{w: |w-a| < \mathbf{r}_a\} \subseteq \{w: |w^2-1| < 2|w|\}.$$

Lemma 7 ([12, Lemma 2.2, p. 202]) For $2(\sqrt{2}-1) < a < 2$, let \mathbf{r}_a be given by

$$\mathbf{r}_{a} = \begin{cases} a - 2(\sqrt{2} - 1), & 2(\sqrt{2} - 1) < a \le \sqrt{2}, \\ 2 - a, & \sqrt{2} \le a \le 2. \end{cases}$$

Then $\{w: |w-a| < \mathbf{r}_a\}$, where Ω_r is the image of the disk \mathbb{D} under the function $1 + (zk + z^2)/(k^2 - kz)$, $k = \sqrt{2} + 1$.

Proof of Theorem 1. Let the function $f \in \Pi_1$. Then there is a function $g : \mathbb{D} \to \mathbb{C}$ satisfying

$$\operatorname{Re}\left(\frac{f(z)}{g(z)}\right) > 0 \quad \text{and} \quad \operatorname{Re}\left(\frac{(1-z)^2 g(z)}{z}\right) \quad \forall z \in \mathbb{D}.$$
 (2)

Define functions $p_1, p_2 : \mathbb{D} \to \mathbb{C}$ as the following.

$$p_1(z) = \frac{(1-z)^2 g(z)}{z}$$
 and $p_2(z) = \frac{f(z)}{g(z)}$. (3)

By using (2) and (3), we have $p_1, p_2 \in \mathcal{P}$, and $f(z) = zp_1(z)p_2(z)/(1-z)^2$. Then it follows that

$$\frac{zf'(z)}{f(z)} = \frac{zp'_1(z)}{p_2(z)} + \frac{zp'_2(z)}{p_2(z)} + \frac{1+z}{1-z}.$$
 (4)

The bilinear transformation (1+z)/(1-z) maps the disk $|z| \le r$ onto the disk

$$\left| \frac{1+z}{1-z} - \frac{1-r^2}{1+r^2} \right| \le \frac{2r}{1-r^2}.$$
 (5)

For $p \in \mathcal{P}(\alpha)$, we have

$$\left| \frac{zp'(z)}{p(z)} \right| \le \frac{2(1-\alpha)r}{(1-r)(1+(1-2\alpha)r)}, \quad |z| \le r.$$
 (6)

Using (4), (5) and (6), we see that the function f maps disk $|z| \le r$ into disk

$$\left| \frac{zf'(z)}{f(z)} - \frac{1+r^2}{1-r^2} \right| \le \frac{6r}{1-r^2}.$$
 (7)

From (7), it follows that

$$\operatorname{Re} \frac{zf'(z)}{f(z)} \ge \frac{1 - 6r + r^2}{1 - r^2} \ge 0,$$
 (8)

for all $0 \le r \le 3 - 2\sqrt{2}$. Therefore, the function $f \in \Pi_1$ is starlike in $|z| \le 3 - 2\sqrt{2} \approx 0.171573$. Hence, all our radii found here must be less or equal to $3 - 2\sqrt{2}$.

1. The number $\rho = R_{S^*(\alpha)}$, is the smallest positive root of the equation $(1+\alpha)r^2 - 6r + 1 - \alpha = 0$ in [0,1]. For $0 < r \le R_{S^*(\alpha)}$, from (8), it follows that

$$\operatorname{Re} \frac{zf'(z)}{f(z)} \ge \frac{1 - 6r + r^2}{1 - r^2} \ge \frac{1 - 6\rho + \rho^2}{1 - \rho^2} = \alpha.$$

This shows that the radius of starlikeness of order α is at least $R_{\mathcal{S}^*(\alpha)}$. To show that it is sharp, consider the function $f_0 \in \Pi_1$ given in (1). For this function f_0 , we have

$$\frac{zf_0'(z)}{f_0(z)} = \frac{1 + 6z + z^2}{1 - z^2}.$$

At $z = -\rho$, we have

$$Re \frac{zf_0'(z)}{f_0(z)} = \frac{1 - 6\rho + \rho^2}{1 - \rho^2} = \alpha,$$

proving the sharpness of the radius.

2. We can give a proof using Lemma 1 but we give a different proof here. The number $\rho := R_{\mathcal{S}_L}$ is the smallest positive root of the equation $(1+\sqrt{2})r^2+6r+1-\sqrt{2}=0$ in interval (0,1), and, from (7), it is clear that, for $0 \le r \le \rho$,

$$\left| \frac{zf'(z)}{f(z)} - 1 \right| \le \left| \frac{zf'(z)}{f(z)} - \frac{1+r^2}{1-r^2} \right| + \frac{2r^2}{1-r^2} \le \frac{6r+2r^2}{1-r^2} \le \frac{6\rho+\rho^2}{1-\rho^2} = \sqrt{2} - 1 \tag{9}$$

and

$$\left| \frac{zf'(z)}{f(z)} + 1 \right| \le 2 + \left| \frac{zf'(z)}{f(z)} - 1 \right| \le \sqrt{2} + 1.$$
 (10)

Thus, from (9) and (10), it follows that, for $0 \le r \le \rho$,

$$\left| \left(\frac{zf'(z)}{f(z)} \right)^2 - 1 \right| = \left| \frac{zf'(z)}{f(z)} - 1 \right| \left| \frac{zf'(z)}{f(z)} + 1 \right| \le (\sqrt{2} + 1)(\sqrt{2} - 1) = 1.$$

For the function $f_0 \in \Pi_1$ given in (1), we have, at $z = \rho$,

$$\frac{zf_0'(z)}{f_0(z)} = 1 + \frac{6\rho + 2\rho^2}{1 - \rho^2} = \sqrt{2}$$

and so, at $z = \rho$,

$$\left| \left(\frac{zf_0'(z)}{f_0(z)} \right)^2 - 1 \right| = 1.$$

This proves the sharpness.

3. For $\rho := R_{\mathcal{S}_P} = (6 - \sqrt{33})/3$, we have

$$\frac{1}{2} < 1 \le a = \frac{1+r^2}{1-r^2} \le \frac{1+\rho^2}{1-\rho^2} = \frac{3\sqrt{33}-1}{16} \approx 1.0146 < 3/2.$$

Also, for $\rho = R_{S_P}$, we have

$$\frac{6\rho}{(1-\rho^2)} \le \frac{1+\rho^2}{1-\rho^2} - \frac{1}{2}$$

and the disk in (7) for $r = \rho$ becomes

$$\left| \frac{zf'(z)}{f(z)} - a \right| = \left| \frac{zf'(z)}{f(z)} - \frac{1 + \rho^2}{1 - \rho^2} \right| \le \frac{1 + \rho^2}{1 - \rho^2} - \frac{1}{2} = a - \frac{1}{2}.$$

By Lemma 2, it follows that the disk in (7) lies inside region Ω_{PAR} . This proves that the radius of parabolic starlikeness is at least R_{S_P} .

The radius is sharp for the function $f_0 \in \Pi_1$. At the point $z = -\rho = -R_{\mathcal{S}_P}$, we have

$$Re\left(\frac{zf_0'(z)}{f_0(z)}\right) = \frac{1 - 6\rho + \rho^2}{1 - \rho^2} = \frac{1}{2} = \frac{6\rho - 2\rho^2}{1 - \rho^2} = \left|\frac{zf_0'(z)}{f_0(z)} - 1\right|.$$

4. For $e^{-1} < a \le \frac{e+e^{-1}}{2}$, Lemma 3 gives

$$\{w \in \mathbb{C} : |w - a| < a - e^{-1}\} \subseteq \{w \in \mathbb{C} : |\log w| < 1\} =: \Omega_e,$$
 (11)

For $\rho = R_{\mathcal{S}_{\varepsilon}^*}$, we have

$$e^{-1} < a := \frac{1 + \rho^2}{1 - \rho^2} = \frac{1 + 9e^2}{e(1 + 3\sqrt{1 + 8e^2})} \approx 1.0236 \le \frac{e + e^{-1}}{2} \approx 1.5430$$

and, ρ being smallest positive root of the equation $(1+e)r^2 - 6er + e - 1 = 0$,

$$\frac{6\rho}{1-\rho^2} \le \frac{1+\rho^2}{1-\rho^2} - \frac{1}{e} = a - e^{-1}.$$

Consequently, the disk in (7) for $r = \rho$ becomes

$$\left| \frac{zf'(z)}{f(z)} - a \right| = \left| \frac{zf'(z)}{f(z)} - \frac{1+\rho^2}{1-\rho^2} \right| \le \frac{1+\rho^2}{1-\rho^2} - \frac{1}{e} = a - e^{-1}.$$

By (11) the above disk is inside Ω_e proving that the \mathcal{S}_e^* radius for the class Π_1 is at least $R_{\mathcal{S}_e^*}$. The result is sharp for the function f_0 given in (1). Indeed, at $z = -\rho$ where $\rho = R_{\mathcal{S}_e^*}$, we have

$$\left|\log\left(\frac{zf_0'(z)}{f_0(z)}\right)\right| = \left|\log\left(\frac{1 - 6\rho + \rho^2}{1 - \rho^2}\right)\right| = 1.$$

5. For $\frac{1}{3} < a \le \frac{5}{3}$, by an application of Lemma 4, it follows that

$$\left\{ w \in \mathbb{C} : |w - a| < a - \frac{1}{3} \right\} \subseteq \Omega_c,$$

where Ω_c is the domain bounded by the cardioid $\{x+iy: (9x^2+9y^2-18x+5)^2-16(9x^2+9y^2-6x+1)=0\}$. For $\rho = R_{\mathcal{S}_c^*}$, we have

$$\frac{1}{3} < a := \frac{1 + \rho^2}{1 - \rho^2} = \frac{3\sqrt{73} - 1}{24} \approx 1.0263 \le \frac{5}{3}$$

and, ρ being the smallest positive root of the equation $2r^2 - 9r + 1 = 0$,

$$\frac{6\rho}{1-\rho^2} = \frac{1+\rho^2}{1-\rho^2} - \frac{1}{3}.$$

Therefore, the disk in (7) becomes

$$\left| \frac{zf'(z)}{f(z)} - a \right| = \left| \frac{zf'(z)}{f(z)} - \frac{1 + \rho^2}{1 - \rho^2} \right| \le \frac{1 + \rho^2}{1 - \rho^2} - \frac{1}{3} = a - \frac{1}{3}$$

and this disk is inside Ω_c . This shows that \mathcal{S}_c^* radius is at least $R_{\mathcal{S}_c^*}$.

For the function f_0 given in (1), at $z = \rho = R_{\mathcal{S}_c^*}$, we have

$$\frac{zf_0'(z)}{f_0(z)} = \frac{1 - 6\rho + \rho^2}{1 - \rho^2} = \frac{1}{3} = \varphi_c(-1) \in \partial \varphi_c(\mathbb{D})$$

where $\varphi_c(z) = 1 + 4z/3 + 2z^2/3$.

6. For $\rho = R_{S_{\sin}^*}$, and $a := (1 + r^2)/(1 - r^2)$, we have

$$|a-1| = \frac{2\rho^2}{1-\rho^2} \approx 0.13199 < \sin 1 \approx 0.8414.$$

and

$$\frac{6\rho}{1-\rho^2} \le \sin 1 - \frac{2\rho^2}{1-\rho^2}.$$

The disk in (7) for $r = \rho$ becomes

$$\left| \frac{zf'(z)}{f(z)} - a \right| = \left| \frac{zf'(z)}{f(z)} - \frac{1 + \rho^2}{1 - \rho^2} \right| \le \sin 1 - \frac{2\rho^2}{1 - \rho^2} = \sin 1 - |1 - a|.$$

Lemma 5 shows that the disk in (7) is inside Ω_s where $\Omega_s =: \varphi_s(\mathbb{D})$ is the image of the unit disk \mathbb{D} under the mapping $\varphi_s(z) = 1 + \sin z$. This proves that the \mathcal{S}_{\sin}^* radius is at least $R_{\mathcal{S}_{\sin}^*}$. For the function f_0 given in (1), with $\rho = R_{\mathcal{S}_{\sin}^*}$, we have

$$\left(\frac{zf'(z)}{f(z)}\right) = \frac{1 + 6\rho + \rho^2}{1 - \rho^2} = 1 + \sin 1 \in \varphi_s(1) \in \partial \varphi_s(\mathbb{D}).$$

7. For $\rho=R_{\mathcal{S}_{\mathcal{O}}^*}$, we have

$$a := \frac{1+\rho^2}{1-\rho^2} \approx 1.0202 \in (\sqrt{2}-1, \sqrt{2}+1)$$

and

$$\frac{1 - 6\rho + \rho^2}{1 - \rho^2} = \sqrt{2} - 1.$$

The disk in (7) becomes

$$\left| \frac{zf'(z)}{f(z)} - a \right| \le 1 - |\sqrt{2} - a|$$

and by Lemma 6 it lies inside $\{w: |w^2-1|<2|w|\}$. This shows that $\mathcal{S}^*_{\mathbb{Q}}$ radius is at least $R_{\mathcal{S}^*_{\mathbb{Q}}}$. The sharpness follows as the function f_0 defined in (1) satisfies, at $z=\rho=R_{\mathcal{S}^*_{\mathbb{Q}}}$,

$$\left| \left(\frac{zf_0'(z)}{f_0(z)} \right)^2 - 1 \right| = \left| \left(\frac{1 - 6\rho + \rho^2}{1 - \rho^2} \right)^2 - 1 \right| = 2(\sqrt{2} - 1)$$
$$= 2\frac{1 - 6\rho + \rho^2}{1 - \rho^2} = 2 \left| \frac{zf_0'(z)}{f_0(z)} \right|.$$

8. For $\rho = R_{\mathcal{S}_R^*}$, we have

$$2(\sqrt{2}-1) < a := \frac{1+\rho^2}{1-\rho^2} \approx 1.00167 \le \sqrt{2} < 2,$$

and

$$\frac{1 - 6\rho + \rho^2}{1 - \rho^2} = 2 - 2\sqrt{2}.$$

The disk (7) becomes

$$\left| \frac{zf'(z)}{f(z)} - a \right| < a - 2(\sqrt{2} - 1)$$

and this disk, by Lemma 7, lies inside the domain Ω_r . This proves that \mathcal{S}_R^* radius is at least $R_{\mathcal{S}_R^*}$. To prove sharpness, consider the function $f_0 \in \Pi_1$ given in (1). At $z = -\rho = -R_{\mathcal{S}_R^*}$, we have

$$\frac{zf'(z)}{f(z)} = \frac{1 - 6\rho + \rho^2}{1 - \rho^2} = 2(\sqrt{2} - 1) = \varphi_r(-1) \in \partial \varphi_r(\mathbb{D})$$

where $\varphi_r(z) = 1 + (kz + z^2)/(k^2 - kz), k = \sqrt{2} + 1.$

3 Radius Results for the Class Π_2

The functions $f_2, f_3 : \mathbb{D} \to \mathbb{C}$ defined by

$$f_2(z) = \frac{z}{1-z}$$
 and $f_3(z) = \frac{z(1+z)^2}{(1-z)^3}$, (12)

satisfy the conditions $|f_i(z)/g_i(z)-1|<1$ and $\operatorname{Re}((1-z)^2g_i(z))>0$ for i=2,3 with $g_2,g_3:\mathbb{D}\to\mathbb{C}$ defined by

$$g_2(z) = \frac{z}{1-z^2}$$
 and $g_3(z) = \frac{z(1+z)}{(1-z)^3}$,

and hence $f_2, f_3 \in \Pi_2$. This proves that the class Π_2 is non-empty. The Taylor series $f_3(z) = z + 5z^2 + 13z^3 + 25z^4 + \cdots$ shows that it is not univalent. It is an extremal function for the radius problems we consider. The derivative of f_3 is given by

$$f_3'(z) = \frac{(1+5z)(1+z)}{(1-z)^4}.$$

Since $f_3'(-1/5) = 0$ and, by Theorem 2(1), the radius of starlikeness of the class Π_1 is 1/5, it follows that the radius of univalence of this class is also 1/5. The other radius results for class Π_2 are given in the following theorem.

Theorem 2 The following radius results hold for the class Π_2 :

- (1) The $S^*(\alpha)$ radius is $R_{S^*(\alpha)} = 2(1-\alpha)/(5+\sqrt{4\alpha^2-4\alpha+25}), \quad 0 \le \alpha < 1.$
- (2) The S_L^* radius is at least $R_{S_L^*} = (\sqrt{4\sqrt{2} + 25} 5)/(2(\sqrt{2} + 2)) \approx 0.0786$.
- (3) The S_p radius is $R_{S_p} = 5 2\sqrt{6} \approx 0.1010$.
- (4) The S_e^* radius is $S_e^* = (2(e-1))/(5e + \sqrt{25e^2 4e + 4}) \approx 0.1276$.
- (5) The S_c^* radius is $R_{S_c^*} = \left(15 \sqrt{217}\right)/2 \approx 0.1345$.
- (6) The S_{\sin}^* radius is at least $S_{\sin}^* = (\sqrt{25 + 4(3 + \sin(1))\sin(1)} 5)/(2(3 + \sin(1))) \approx 0.1508$.
- (7) The $S_{\mathbb{C}}^*$ radius is $R_{S_{\mathbb{C}}^*} = (5 \sqrt{41 12\sqrt{2}})/(2(\sqrt{2} 1)) \approx 0.1183$.
- (8) The S_R^* radius is $R_{S_R^*} = (5 \sqrt{81 40\sqrt{2}})/(4(\sqrt{2} 1)) \approx 0.0345$.

It is worth to point out that $R_{\mathcal{S}_{P}^{*}} = R_{\mathcal{S}^{*}(1/2)}$ and $R_{\mathcal{S}_{e}^{*}} = R_{\mathcal{S}^{*}(1/e)}$ in both theorems.

Proof. Since |w-1| < 1 is equivalent to Re(1/w) > 1/2, the condition |f(z)/g(z) - 1| < 1 is the same as the condition Re(g(z)/f(z)) > 1/2. Let the function $f \in \Pi_2$. Let $g : \mathbb{D} \to \mathbb{C}$ be chosen such that

$$\operatorname{Re}\left(\frac{g(z)}{f(z)}\right) > \frac{1}{2} \quad \text{and} \quad \operatorname{Re}\left(\frac{(1-z)^2}{z}g(z)\right).$$
 (13)

Define $p_1, p_2 : \mathbb{D} \to \mathbb{C}$ by

$$p_1(z) = \frac{(1-z)^2}{z}g(z)$$
, and $p_2(z) = \frac{g(z)}{f(z)}$. (14)

From (13) and (14), it follows that the function $p_1 \in \mathcal{P}$, the function $p_2 \in \mathcal{P}(1/2)$, and $f(z) = (z/(1-z)^2)p_1(z)/p_2(z)$. A calculation shows that

$$\frac{zf'(z)}{f(z)} = \frac{zp'_1(z)}{p_1(z)} - \frac{zp'_2(z)}{p_2(z)} + \frac{1+z}{1-z}.$$
(15)

The bilinear transformation $\omega = (1+z)/(1-z)$ maps the disk $|z| \leq r$ onto disk

$$\left| \frac{1+z}{1-z} - \frac{1+r^2}{1-r^2} \right| \le \frac{2r}{1-r^2}.$$
 (16)

Using (16) and (6) in (15), we get

$$\left| \frac{zf'(z)}{f(z)} - \frac{1+r^2}{1-r^2} \right| \le \frac{5r+r^2}{1-r^2}. \tag{17}$$

From (17), it follows that

$$\operatorname{Re}\left(\frac{zf'(z)}{f(z)}\right) \ge \frac{1-5r}{1-r^2} \ge 0 \tag{18}$$

for $0 \le r \le 1/5$. For the function f_3 given in (12), we have

$$\frac{zf_3'(z)}{f_3(z)} = \frac{1+5z}{1-z^2} = 0$$

for z = -1/5. Thus, the radius of starlikeness of the class Π_2 is 1/5. All radius values to be computed here will be less or equal to 1/5.

1. The number $\rho := R_{\mathcal{S}^*(\alpha)}$ is the smallest positive root of the equation $\alpha r^2 - 5r + 1 - \alpha = 0$. For $0 < r \le R_{\mathcal{S}^*(\alpha)}$, from (18), we have

$$Re\left(\frac{zf'(z)}{f(z)}\right) \ge \frac{1-5r}{1-r^2} \ge \frac{1-5\rho}{1-\rho^2} = \alpha.$$

For the function $f_3 \in \Pi_2$ given in (12), we have, at $z = -\rho = -R_{\mathcal{S}^*(\alpha)}$,

$$\frac{zf_3'(z)}{f_3(z)} = \frac{1 - 5\rho}{1 - \rho^2} = \alpha.$$

This proves that the radius of starlikeness of order α is $R_{\mathcal{S}^*(\alpha)}$.

2. From (17), it follows that

$$\left| \frac{zf'(z)}{f(z)} - 1 \right| \le \left| \frac{zf'(z)}{f(z)} - \frac{1+r^2}{1-r^2} \right| + \frac{2r^2}{1-r^2} \le \frac{5r+3r^2}{1-r^2}. \tag{19}$$

The number $\rho = R_{\mathcal{S}_L^*}$ is the positive root of the equation

$$5r + 3r^2 - (1 - r^2)(\sqrt{2} - 1) = 0.$$

For $0 < r \le \rho = R_{\mathcal{S}_L^*}$, we have

$$\frac{5r+3r^2}{1-r^2} \le \frac{5\rho+3\rho^2}{1-\rho^2} = \sqrt{2}-1. \tag{20}$$

Therefore, by (19) and (20), it follows for $0 < r \le \rho = R_{\mathcal{S}_L^*}$ that

$$\left|\frac{zf'(z)}{f(z)} - 1\right| \le \sqrt{2} - 1,\tag{21}$$

and

$$\left|\frac{zf'(z)}{f(z)} + 1\right| \le \sqrt{2} + 1. \tag{22}$$

The last two inequalities (21) and (22) immediately yield

$$\left| \left(\frac{zf'(z)}{f(z)} \right)^2 - 1 \right| \le \left| \frac{zf'(z)}{f(z)} + 1 \right| \left| \frac{zf'(z)}{f(z)} - 1 \right| \le (\sqrt{2} + 1)(\sqrt{2} - 1) = 1.$$

This proves that \mathcal{S}_L^* is at least $R_{\mathcal{S}_L^*}$.

3. For $0 \le r \le \rho := R_{\mathcal{S}_P} = 5 - 2\sqrt{6}$, we have for

$$\frac{1}{2} < 1 \le a = \frac{1 + \rho^2}{1 - \rho^2} = \frac{5\sqrt{6}}{12} < 3/2$$

and, ρ being the smallest positive root of the equation $r^2 - 10r + 1 = 0$,

$$\frac{5\rho + \rho^2}{(1 - \rho^2)} \le \frac{1 + \rho^2}{1 - \rho^2} - \frac{1}{2}.$$

The disk in (17) becomes

$$\left| \frac{zf'(z)}{f(z)} - \frac{1+\rho^2}{1-\rho^2} \right| \le \frac{1+\rho^2}{1-\rho^2} - \frac{1}{2}.$$

By Lemma 2, the disk in (17) is inside the region Ω_{PAR} . Thus, the radius of parabolic starlikeness of the class Π_2 is at least R_{S_p} .

For the function f_3 given in (12) at $z = -\rho$ where $\rho = R_{\mathcal{S}_p}$, we have

$$Re\left(\frac{zf_3'(z)}{f_3(z)}\right) = \frac{1-5\rho}{1-\rho^2} = \frac{5\rho-\rho^2}{1-\rho^2} = \left|\frac{zf_3'(z)}{f_3(z)} - 1\right|.$$

4. For $\rho = R_{\mathcal{S}_e^*}$, we have $1/e < a := (1+\rho^2)/(1-\rho^2) \approx 1.0331 \le (e+e^{-1})/2$ and

$$\frac{5\rho + \rho^2}{1 - \rho^2} = \frac{1 + \rho^2}{1 - \rho^2} - \frac{1}{e}.$$

The disk in (17) becomes

$$\left| \frac{zf'(z)}{f(z)} - \frac{1+\rho^2}{1-\rho^2} \right| \le \frac{1+\rho^2}{1-\rho^2} - \frac{1}{e}.$$

By Lemma 3, this disk is inside the region Ω_e , proving that \mathcal{S}_e^* radius is at least $R_{\mathcal{S}_e^*}$.

The result is sharp for the function f_3 given in (12). For this function, we have, at $z = -\rho$ where $\rho = R_{\mathcal{S}_x^*}$,

$$\left|\log\left(\frac{zf_3'(z)}{f_3(z)}\right)\right| = \left|\log\left(\frac{1-5\rho}{1-\rho^2}\right)\right| = \left|\log(e^{-1})\right| = 1.$$

5. For $\rho = R_{\mathcal{S}_c^*}$, we have $1/3 < a := (1+\rho^2)/(1-\rho^2) = \frac{1}{72}(1+5\sqrt{217}) \approx 1.03686 \le 5/2$ and, ρ being the smallest positive root of $r^2 - 15r + 2 = 0$,

$$\frac{5\rho + \rho^2}{1 - \rho^2} = \frac{1 + \rho^2}{1 - \rho^2} - \frac{1}{3}.$$

The disk in (17) becomes

$$\left| \frac{zf'(z)}{f(z)} - \frac{1+\rho^2}{1-\rho^2} \right| \le \frac{1+\rho^2}{1-\rho^2} - \frac{1}{3}.$$

By Lemma 3, this disk is inside the region Ω_c , proving that \mathcal{S}_c^* radius is at least $R_{\mathcal{S}_c^*}$.

The radius is sharp for the function f_3 given in (12). At $z = -\rho$ where $\rho = R_{\mathcal{S}_c^*}$, we have

$$\frac{zf_3'(z)}{f_3(z)} = \frac{1-5\rho}{1-\rho^2} = \frac{1}{3} = \varphi_c(-1) \in \partial \varphi_c(\mathbb{D})$$

where $\varphi_c(z) = 1 + 4z/3 + 2z^2/3$.

6. For $\rho = R_{\mathcal{S}_{\sin}^*}$, and $a := (1 + \rho^2)/(1 - \rho^2)$, we have

$$|a-1| = \frac{2\rho^2}{1-\rho^2} \approx 0.0465396 < \sin 1 \approx 0.8414.$$

and

$$\frac{5\rho + \rho^2}{1 - \rho^2} \le \sin 1 - \frac{2\rho^2}{1 - \rho^2}.$$

The disk in (7) for $r = \rho$ becomes

$$\left| \frac{zf'(z)}{f(z)} - a \right| = \left| \frac{zf'(z)}{f(z)} - \frac{1 + \rho^2}{1 - \rho^2} \right| \le \sin 1 - \frac{2\rho^2}{1 - \rho^2} = \sin 1 - |1 - a|.$$

Lemma 5 shows that the disk in (17) is inside Ω_s where $\Omega_s =: \varphi_s(\mathbb{D})$ is the image of the unit disk \mathbb{D} under the mapping $\varphi_s(z) = 1 + \sin z$. This proves that the \mathcal{S}_{\sin}^* radius is at least $R_{\mathcal{S}_{\sin}^*}$.

7. For $\rho = R_{\mathcal{S}_{\mathcal{O}}^*}$, we have

$$a := \frac{1+\rho^2}{1-\rho^2} \approx 1.02839 \in (\sqrt{2}-1, \sqrt{2}+1)$$

and

$$\frac{5\rho + \rho^2}{1 - \rho^2} = \frac{1 + \rho^2}{1 - \rho^2} + 1 - \sqrt{2}.$$

The disk in (17) becomes

$$\left| \frac{zf'(z)}{f(z)} - a \right| \le 1 - |\sqrt{2} - a|$$

and by Lemma 6 it lies inside $\{w: |w^2-1|<2|w|\}$. This shows that $\mathcal{S}^*_{\mathbb{Q}}$ radius is at least $R_{\mathcal{S}^*_{\mathbb{Q}}}$. The sharpness follows as the function f_3 defined in (12) satisfies, at $z=\rho=R_{\mathcal{S}^*_{\mathbb{Q}}}$,

$$\left| \left(\frac{zf_3'(z)}{f_3(z)} \right)^2 - 1 \right| = \left| \left(\frac{1 - 5\rho}{1 - \rho^2} \right)^2 - 1 \right| = 2(\sqrt{2} - 1)$$
$$= 2\frac{1 - 5\rho}{1 - \rho^2} = 2 \left| \frac{zf_3'(z)}{f_3(z)} \right|.$$

8. For $\rho = R_{\mathcal{S}_{R}^{*}}$, we have

$$2(\sqrt{2}-1) < a := \frac{1+\rho^2}{1-\rho^2} \approx 1.00238 \le \sqrt{2} < 2,$$

and

$$\frac{5\rho+\rho^2}{1-\rho^2} = \frac{1+\rho^2}{1-\rho^2} - 2(\sqrt{2}-1).$$

The disk (17) becomes

$$\left|\frac{zf'(z)}{f(z)} - a\right| < a - 2(\sqrt{2} - 1).$$

Ahmad Al-Faqeer et al.

By Lemma 7, this disk lies inside the domain Ω_r . This proves that \mathcal{S}_R^* radius is at least $R_{\mathcal{S}_R^*}$. To prove sharpness, consider the function $f_3 \in \Pi_2$ given in (12). At $z = -\rho = -R_{\mathcal{S}_R^*}$, we have

$$\frac{zf_3'(z)}{f_3(z)} = \frac{1 - 5\rho}{1 - \rho^2} = 2(\sqrt{2} - 1) = \varphi_r(-1) \in \partial \varphi_r(\mathbb{D})$$

where $\varphi_r(z) = 1 + (kz + z^2)/(k^2 - kz), k = \sqrt{2} + 1.$

Acknowledgment. Dedicated to the memory of Prof. Ataharul Islam. This work was supported in parts by the Universiti Sains Malaysia's Research University grant 1001/PMATHS/8011015 and Short Term Research grant 304/PMATHS/6315107.

References

- [1] R. M. Ali, N. K. Jain and V. Ravichandran, Radii of starlikeness associated with the lemniscate of Bernoulli and the left-half plane, Appl. Math. Comput., 218(2012), 6557–6565.
- [2] N. E. Cho, V. Kumar, S. S. Kumar and V. Ravichandran, Radius problems for starlike functions associated with the sine function, Bull. Iranian Math. Soc., 45(2019), 213–232.
- [3] P. L. Duren, Univalent Functions, GTM, 259, Springer-Verlag, New York, 1983.
- [4] S. Gandhi and V. Ravichandran, Starlike functions associated with a lune, Asian-Eur. J. Math., 10(2017), 12 pp.
- [5] P. Goel and S. Sivaprasad Kumar, Certain class of starlike functions associated with modified sigmoid function, Bull. Malays. Math. Sci. Soc., 43(2020), 957–991.
- [6] A. W. Goodman, Univalent Functions. Vol. II, Mariner, Tampa, FL, 1983.
- [7] R. Kanaga and V. Ravichandran, Starlikeness for certain close-to-star functions, Hacettepe J. Math. Stat., 50(2021), 414–432.
- [8] S. K. Lee, K. Khatter, and V. Ravichandran, Radius of starlikeness for classes of analytic functions, Bull. Malays. Math. Sci. Soc., 43(2020), 4469–4493.
- [9] B. Kowalczyk and A. Lecko, Radius problem in classes of polynomial close-to-convex functions I, Bull. Soc. Sci. Lett. L ódź Sér. Rech. Déform., 63(2013), 65-77.
- [10] B. Kowalczyk and A. Lecko, Radius problem in classes of polynomial close-to-convex functions II. Partial solutions, Bull. Soc. Sci. Lett. Łódź Sér. Rech. Déform., 63(2013), 23–34.
- [11] B. Kowalczyk, A. Lecko and B. Śmiarowska, On some coefficient inequality in the subclass of close-to-convex functions, Bull. Soc. Sci. Lett. Łódź Sér. Rech. Déform., 67(2017), 79–90.
- [12] S. Kumar and V. Ravichandran, A subclass of starlike functions associated with a rational function, Southeast Asian Bull. Math., 40(2016), 199–212.
- [13] V. Kumar, N. E. Cho, O. S. Kwon and Y. J. Sim, Radius estimates and convolution properties for analytic functions, Bull. Iranian Math. Soc., 44(2018), 1627–1640.
- [14] A. Lecko, Y. J. Sim, and B. Śmiarowska, The fourth-order Hermitian Toeplitz determinant for convex functions, Anal. Math. Phys., 10(2020), 11pp.

- [15] W. C. Ma and D. Minda, A unified treatment of some special classes of univalent functions, in Proceedings of the Conference on Complex Analysis (Tianjin, 1992), 157–169, Conf. Proc. Lecture Notes Anal., I, Int. Press, Cambridge, MA.
- [16] T. H. MacGregor, The radius of convexity for starlike functions of order 12, Proc. Amer. Math. Soc., 14(1963), 71–76.
- [17] T. H. MacGregor, The radius of univalence of certain analytic functions, Proc. Amer. Math. Soc., 14(1963), 514–520.
- [18] T. H. MacGregor, A class of univalent functions, Proc. Amer. Math. Soc., 15(1964), 311–317.
- [19] R. Mendiratta, S. Nagpal and V. Ravichandran, A subclass of starlike functions associated with left-half of the lemniscate of Bernoulli, Internat. J. Math., 25(2014), 17 pp.
- [20] K. S. Padmanabhan and R. Parvatham, Some applications of differential subordination, Bull. Austral. Math. Soc., 32(1985), 321–330.
- [21] A. Sebastian and V. Ravichandran, Radius of starlikness of certain analytic functions, Math. Slovaca, 83(2021), 83–104.
- [22] T. N. Shanmugam, Convolution and differential subordination, Internat. J. Math. Math. Sci., 12(1989), 333–340.
- [23] T. N. Shanmugam and V. Ravichandran, Certain properties of uniformly convex functions, Computational methods and function theory 1994 (Penang), 319–324, Ser. Approx. Decompos., 5, World Sci. Publ., River Edge, NJ, 1995.
- [24] K. Sharma, N. K. Jain and V. Ravichandran, Starlike functions associated with a cardioid, Afr. Mat., 27(2016), 923–939.
- [25] J. Sokól and J. Stankiewicz, Radius of convexity of some subclasses of strongly starlike functions, Zeszyty Nauk. Politech. Rzeszowskiej Mat., 19(1996), 101–105.
- [26] L. A. Wani and A. Swaminathan, Radius problems for functions associated with a nephroid domain, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM, 114(2020), 20 pp.
- [27] L. A. Wani and A. Swaminathan, Starlike and convex functions associated with a nephroid domain, Bull. Malays. Math. Sci. Soc., 44(2021), 79–104.