Radius Of Starlikeness Of Functions Defined By Ratios Of Analytic Functions*

Ahmad Sulaiman Ahmad El-Faqeer ${ }^{\dagger}$, Maisarah Haji Mohd ${ }^{\dagger}$, Shamani Supramaniam ${ }^{\dagger}$, Vaithiyanathan Ravichandran ${ }^{\ddagger}$
Received 15 January 2021

Abstract

Let f and g be analytic functions on the open unit disk $\mathbb{D} \subset \mathbb{C}$ with f / g belonging to the class \mathcal{P} of functions with positive real part (consisting of all functions p analytic in \mathbb{D} with $p(0)=1$ and $\operatorname{Re} p(z)>0$) or to its subclass consisting of functions p with $|p(z)-1|<1$. We obtain the sharp radius constants for the function f to be starlike of order α, parabolic starlike, or to belong to few other related classes when $g / k \in \mathcal{P}$ where k denotes the Koebe function defined by $k(z)=z /(1-z)^{2}$.

1 Introduction

Let \mathcal{A} be the class of all analytic functions f on the open unit disk $\mathbb{D}=\mathcal{D}_{1}$ normalized by $f(0)=0$ and $f^{\prime}(0)=1$, and let \mathcal{S} be the subclass of all univalent function in \mathcal{A} where $\mathcal{D}_{r}=\{z \in \mathcal{C}:|z|<r\}$. It is well-known that every convex (or starlike) function f maps \mathbb{D}_{r} onto a convex (or respectively starlike) domain. Though every convex univalent function is starlike (of order $1 / 2$), the converse is not true in general. However, every starlike function $f \in \mathcal{A}$ maps each \mathbb{D}_{r} onto a convex domain for $r \leq 2-\sqrt{3}$. This number $2-\sqrt{3}$ is called the radius of convex of starlike functions. This idea can be extended to any two arbitrary subclasses \mathcal{F} and \mathcal{G} of \mathcal{A}. The \mathcal{G} radius of \mathcal{F}, denoted by $\mathcal{R}_{\mathcal{G}}(\mathcal{F})$, is defined as the largest number $\mathcal{R}_{\mathcal{G}}$ such that $r^{-1} f(r z) \in \mathcal{G}$ for all r with $0<r<\mathcal{R}_{\mathcal{G}}$, and for all $f \in \mathcal{F}$. Whenever the class \mathcal{G} is characterized by a geometric property \mathbf{P} the number $\mathcal{R}_{\mathcal{G}}$ is called as the radius of the property \mathbf{P} of the class \mathcal{F}. Although there are variety of radius problems considered in literature (see $[5,9,10,11,14,13,26,27]$), we investigate the functions f characterized by the ratio of f with another function $g \in \mathcal{A}$; these types of problems were considered by MacGregor [16, 17, 18]. Ali et al. [1] determined various radii results for functions f satisfying the following conditions:
(i) $\operatorname{Re}(f(z) / g(z))>0$ where $\operatorname{Re}(g(z) / z)>0$ or $\operatorname{Re}(g(z) / z)>1 / 2$.
(ii) $|(f(z) / g(z)-1)-1|<1$ where $\operatorname{Re}(f(z) / g(z))>0$ or g is convex.

All these classes are associated to class of functions with positive real part; this class, denoted by \mathcal{P}, consists of all analytic functions $p: \mathbb{D} \rightarrow \mathbb{C}$ with $p(0)=1$ and $\operatorname{Re}(p(z))>0$ for all $z \in \mathbb{D}$. Asha and Ravichandran [21] investigated several radii for the functions $f / g \in \mathcal{P}$ and $(1+z) g / z \in \mathcal{P}$, belonging to some subclasses of starlike functions (see [7, 8] for further works). For $0 \leq \alpha<1$, we let $\mathcal{P}(\alpha):=\{p \in \mathcal{P}: \operatorname{Rep}(z)>\alpha\}$. Let k be the Koebe function defined by $k(z)=z /(1-z)^{2}$. In this paper, we consider the two subclasses Π_{1} and Π_{2} of analytic functions given below:

$$
\Pi_{1}=:\{f \in \mathcal{A}: f / g \in \mathcal{P} \text { for some } g \in \mathcal{A} \text { with } g / k \in \mathcal{P}\}
$$

[^0]and
$$
\Pi_{2}=:\{f \in \mathcal{A}:|f / g-1|<1 \text { for some } g \in \mathcal{A} \text { with } g / k \in \mathcal{P}\}
$$

We determine radii for functions in these two classes Π_{1} and Π_{2} to belong to several subclasses of starlike functions which we discuss below. In 1985, Padmanabhan and Parvatham [20] used the Hadamard product (convolution) and subordination to introduce the class of functions $f \in \mathcal{A}$ satisfying $z\left(k_{\alpha} * f\right)^{\prime} /\left(k_{\alpha} * f\right) \prec h$ where $k_{\alpha}(z)=z /(1-z)^{\alpha}, \alpha \in \mathbb{R}$, and h is convex. This class reduces to the usual classes of starlike and convex functions respectively for $\alpha=1$ and $\alpha=2$ when h is the normalized mapping of \mathbb{D} onto the right half-plane. In 1989, Shanmugam [22] studied the class

$$
\mathcal{S}_{g}^{*}(\varphi)=:\left\{f \in \mathcal{A}: z(f * g)^{\prime} /(f * g) \prec \varphi\right\}
$$

where g is fixed and φ a convex function, respectively; this class includes several classes defined by means of linear operator such as Ruscheweyh differential operator and Sălăgean operator. When $g(z)=z /(1-z)$ and $g(z)=z /(1-z)^{2}$, the subclass $\mathcal{S}_{g}^{*}(\varphi)$ is denoted respectively by $\mathcal{S}^{*}(\varphi)$ and $\mathcal{K}(\varphi)$. In 1992, Ma and Minda [15] studied growth, distortion, covering theorems and coefficient problems for the classes $\mathcal{S}^{*}(\varphi)$ and $\mathcal{K}(\varphi)$ when $\varphi \in \mathcal{P}$ is just a univalent function mapping unit disk \mathbb{D} onto domain symmetric with respect to the real line and starlike with respect to $\varphi(0)=1$ and $\varphi^{\prime}(0)>0$. For $\varphi(z)=(1+(1-2 \alpha) z) /(1-z)$ with $0 \leq \alpha<1$, the classes $\mathcal{S}^{*}(\varphi)$ and $\mathcal{K}(\varphi)$ reduce to the class $\mathcal{S}^{*}(\alpha)$ of starlike functions of order α and the class $\mathcal{K}(\alpha)$ of convex functions of order α respectively. For more work in this direction, see [3, 6]. When φ equals $1+(2 / \pi)^{2}(\log ((1+\sqrt{z}) /(1-\sqrt{z})))^{2}, \sqrt{1+z}, e^{z}, 1+(4 / 3) z+(2 / 3) z^{2}, \sin z, z+\sqrt{1+z^{2}}$ and $1+\left(z k+z^{2} /\left(k^{2}-k z\right)\right)$ where $k=\sqrt{2}+1$, we denote the class $\mathcal{S}^{*}(\varphi)$ respectively by $\mathcal{S}_{P}, \mathcal{S}_{L}^{*}, \mathcal{S}_{e}^{*}, \mathcal{S}_{c}^{*}$, $\mathcal{S}_{\text {sin }}^{*}, \mathcal{S}_{\mathbb{G}}^{*}$, and \mathcal{S}_{R}^{*}. The class \mathcal{S}_{L}^{*} was introduced by Sokól and Stankiewicz [25]. We refer to [21, 7, 8] for information about the other classes.

2 Radius Results for the Class Π_{1}

Recall that Π_{1} is defined by

$$
\Pi_{1}=:\{f \in \mathcal{A}: f / g \in \mathcal{P} \text { for some } g \in \mathcal{A} \text { with } g / k \in \mathcal{P}\}
$$

The functions $f_{0}, f_{1}: \mathbb{D} \rightarrow \mathbb{C}$ defined by

$$
\begin{equation*}
f_{0}(z)=\frac{z(1+z)^{2}}{(1-z)^{4}} \quad \text { and } \quad f_{1}(z)=\frac{z}{(1+z)^{2}} \tag{1}
\end{equation*}
$$

belong to the class Π_{1} and therefore the class Π_{1} is non-empty. They satisfy the required conditions with the functions $g_{0}, g_{1}: \mathbb{D} \rightarrow \mathbb{C}$ defined by

$$
g_{0}(z)=\frac{z(1+z)}{(1-z)^{3}} \quad \text { and } \quad g_{1}(z)=\frac{z}{1-z^{2}}
$$

indeed, we have

$$
\operatorname{Re} \frac{f_{i}(z)}{g_{i}(z)}>0 \quad \text { and } \quad \operatorname{Re} \frac{(1-z)^{2} g_{i}(z)}{z}>0
$$

for $i=0,1$. The function f_{0} is an extremal function for the radius problem that we consider. The function f_{1} is univalent, but the function f_{0} is not univalent as the coefficients of the Taylor's series $f_{0}(z)=z+6 z^{2}+$ $19 z^{3}+44 z^{4}+\cdots$ do not satisfy the de Branges theorem. The derivative of f_{0} is given by

$$
f_{0}^{\prime}(z)=\frac{\left(1+6 z+z^{2}\right)(1+z)}{(1-z)^{5}}
$$

Since $f_{0}^{\prime}(-3+2 \sqrt{2})=0$, the function f_{0} is a non-univalent functions and therefore the radius of univalence cannot exceed $3-2 \sqrt{2}$. By Theorem $1(1)$, the radius of starlikeness of the class Π_{1} is $3-2 \sqrt{2}$ and it follows that the radius of univalence of this class is also $3-2 \sqrt{2} \approx 0.171573$.

The other radius results for the class Π_{1} are given in the following theorem.

Theorem 1 The following radius results hold for the class Π_{1} :
(1) The $\mathcal{S}^{*}(\alpha)$ radius is $R_{\mathcal{S}^{*}(\alpha)}=(1-\alpha) /\left(3+\sqrt{8+\alpha^{2}}\right), \quad 0 \leq \alpha<1$.
(2) The \mathcal{S}_{L}^{*} radius is $R_{\mathcal{S}_{L}^{*}}=(\sqrt{2}-1)(\sqrt{10}-3) \approx 0.067217$.
(3) The \mathcal{S}_{P} radius is $R_{\mathcal{S}_{P}}=(6-\sqrt{33}) / 3 \approx 0.0851$.
(4) The \mathcal{S}_{e}^{*} radius is $R_{\mathcal{S}_{e}^{*}}=(e-1) /\left(3 e+\sqrt{8 e^{2}+1}\right) \approx 0.1080$.
(5) The \mathcal{S}_{c}^{*} radius is $R_{\mathcal{S}_{c}^{*}}=(9-\sqrt{73}) / 4 \approx 0.1140$.
(6) The $\mathcal{S}_{\sin }^{*}$ radius is $R_{\mathcal{S}_{\sin }^{*}}=\sin (1) /\left(\sqrt{9+\sin ^{2}(1)+2 \sin (1)}+3\right) \approx 0.1320$.
(7) The $\mathcal{S}_{\mathbb{\bigotimes}}^{*}$ radius is $R_{\mathcal{S}_{\mathbb{C}}^{*}}=3 / \sqrt{2}-\sqrt{1 / 2(11-2 \sqrt{2})} \approx 0.09999$.
(8) The \mathcal{S}_{R}^{*} radius $R_{\mathcal{S}_{R}^{*}}=(3-2 \sqrt{5-2 \sqrt{2}}) /(2 \sqrt{2}-1) \approx 0.0289$.

We need the following lemmas to prove our results.
Lemma 1 ([1, Lemma 2.2, p.4]) For $0<\alpha<\sqrt{2}$, let \mathbf{r}_{a} be given by

$$
\mathbf{r}_{a}= \begin{cases}\left(\sqrt{1-a^{2}}-\left(1-a^{2}\right)\right)^{\frac{1}{2}}, & 0<a \leq 2 \sqrt{2} / 3 \\ \sqrt{2}-a, & 2 \sqrt{2} / 3 \leq a<\sqrt{2}\end{cases}
$$

Then $\left\{\omega:|\omega-a|<r_{a}\right\} \subseteq\left\{\omega:\left|\omega^{2}-1\right|<1\right\}$.
Lemma 2 ([23, Lemma 1, p. 321]) For $a>\frac{1}{2}$, let \mathbf{r}_{a} be given by

$$
\mathbf{r}_{a}= \begin{cases}a-\frac{1}{2}, & \frac{1}{2}<a \leq \frac{3}{2} \\ \sqrt{2 a-2}, & a \geq \frac{3}{2}\end{cases}
$$

Then $\left\{w:|w-a|<r_{a}\right\} \subseteq\{w:$ Rew $>|w-1|\}$.
Lemma 3 ([19, Lemma 2.2, p.368]) For $e^{-1}<a<e$, let \mathbf{r}_{a} be given by

$$
\mathbf{r}_{a}= \begin{cases}a-e^{-1}, & e^{-1}<a \leq \frac{e+e^{-1}}{2} \\ e-a, & \frac{e+e^{-1}}{2} \leq a \leq e\end{cases}
$$

Then $\left\{w:|w-a|<\mathbf{r}_{a}\right\} \subseteq\{w:|\log w|<1\}=\Omega_{e}$.
Lemma 4 ([24, Lemma 2.2, p. 926]) For $\frac{1}{3}<a<3$, let \mathbf{r}_{a} be given by

$$
\mathbf{r}_{a}= \begin{cases}a-\frac{1}{3}, & \frac{1}{3}<a \leq \frac{5}{3} \\ 3-a, & \frac{5}{3} \leq a \leq 3\end{cases}
$$

Then $\left\{w:|w-a|<\mathbf{r}_{a}\right\} \subseteq \Omega_{c}$, where Ω_{c} is the region bonded by the cardioid given

$$
\left\{x+i y:\left(9 x^{2}+9 y^{2}-18 x+5\right)^{2}-16\left(9 x^{2}+9 y^{2}-6 x+1\right)=0\right\}
$$

Lemma 5 ([2, Lemma 3.3, p.7]) For $1-\sin 1<a<1+\sin 1$, let $r_{a}=\sin 1-|a-1|$. Then $\left\{w:|\omega-a|<\mathbf{r}_{a}\right\} \subseteq$ $\Omega_{s} ; \Omega_{s}$ is the image of the unit disk \mathbb{D} under $1+\sin z$.

Lemma 6 ([4, Lemma 2.1, p. 3]) For $\sqrt{2}-1<a<\sqrt{2}+1$, let $\mathbf{r}_{a}=1-|\sqrt{2}-a|$. Then

$$
\left\{w:|w-a|<\mathbf{r}_{a}\right\} \subseteq\left\{w:\left|w^{2}-1\right|<2|w|\right\}
$$

Lemma 7 ([12, Lemma 2.2, p. 202]) For $2(\sqrt{2}-1)<a<2$, let \mathbf{r}_{a} be given by

$$
\mathbf{r}_{a}= \begin{cases}a-2(\sqrt{2}-1), & 2(\sqrt{2}-1)<a \leq \sqrt{2}, \\ 2-a, & \sqrt{2} \leq a \leq 2 .\end{cases}
$$

Then $\left\{w:|w-a|<\mathbf{r}_{a}\right\}$, where Ω_{r} is the image of the disk \mathbb{D} under the function $1+\left(z k+z^{2}\right) /\left(k^{2}-k z\right)$, $k=\sqrt{2}+1$.

Proof of Theorem 1. Let the function $f \in \Pi_{1}$. Then there is a function $g: \mathbb{D} \rightarrow \mathbb{C}$ satisfying

$$
\begin{equation*}
\operatorname{Re}\left(\frac{f(z)}{g(z)}\right)>0 \quad \text { and } \quad \operatorname{Re}\left(\frac{(1-z)^{2} g(z)}{z}\right) \quad \forall z \in \mathbb{D} \text {. } \tag{2}
\end{equation*}
$$

Define functions $p_{1}, p_{2}: \mathbb{D} \rightarrow \mathbb{C}$ as the following.

$$
\begin{equation*}
p_{1}(z)=\frac{(1-z)^{2} g(z)}{z} \quad \text { and } \quad p_{2}(z)=\frac{f(z)}{g(z)} . \tag{3}
\end{equation*}
$$

By using (2) and (3), we have $p_{1}, p_{2} \in \mathcal{P}$, and $f(z)=z p_{1}(z) p_{2}(z) /(1-z)^{2}$. Then it follows that

$$
\begin{equation*}
\frac{z f^{\prime}(z)}{f(z)}=\frac{z p_{1}^{\prime}(z)}{p_{2}(z)}+\frac{z p_{2}^{\prime}(z)}{p_{2}(z)}+\frac{1+z}{1-z} . \tag{4}
\end{equation*}
$$

The bilinear transformation $(1+z) /(1-z)$ maps the disk $|z| \leq r$ onto the disk

$$
\begin{equation*}
\left|\frac{1+z}{1-z}-\frac{1-r^{2}}{1+r^{2}}\right| \leq \frac{2 r}{1-r^{2}} . \tag{5}
\end{equation*}
$$

For $p \in \mathcal{P}(\alpha)$, we have

$$
\begin{equation*}
\left|\frac{z p^{\prime}(z)}{p(z)}\right| \leq \frac{2(1-\alpha) r}{(1-r)(1+(1-2 \alpha) r)}, \quad|z| \leq r . \tag{6}
\end{equation*}
$$

Using (4), (5) and (6), we see that the function f maps disk $|z| \leq r$ into disk

$$
\begin{equation*}
\left|\frac{z f^{\prime}(z)}{f(z)}-\frac{1+r^{2}}{1-r^{2}}\right| \leq \frac{6 r}{1-r^{2}} \tag{7}
\end{equation*}
$$

From (7), it follows that

$$
\begin{equation*}
\operatorname{Re} \frac{z f^{\prime}(z)}{f(z)} \geq \frac{1-6 r+r^{2}}{1-r^{2}} \geq 0, \tag{8}
\end{equation*}
$$

for all $0 \leq r \leq 3-2 \sqrt{2}$. Therefore, the function $f \in \Pi_{1}$ is starlike in $|z| \leq 3-2 \sqrt{2} \approx 0.171573$. Hence, all our radii found here must be less or equal to $3-2 \sqrt{2}$.

1. The number $\rho=R_{\mathcal{S}^{*}(\alpha)}$, is the smallest positive root of the equation $(1+\alpha) r^{2}-6 r+1-\alpha=0$ in $[0,1]$. For $0<r \leq \mathrm{R}_{\mathcal{S}^{*}(\alpha)}$, from (8), it follows that

$$
\operatorname{Re} \frac{z f^{\prime}(z)}{f(z)} \geq \frac{1-6 r+r^{2}}{1-r^{2}} \geq \frac{1-6 \rho+\rho^{2}}{1-\rho^{2}}=\alpha .
$$

This shows that the radius of starlikeness of order α is at least $R_{\mathcal{S}^{*}(\alpha)}$. To show that it is sharp, consider the function $f_{0} \in \Pi_{1}$ given in (1). For this function f_{0}, we have

$$
\frac{z f_{0}^{\prime}(z)}{f_{0}(z)}=\frac{1+6 z+z^{2}}{1-z^{2}}
$$

At $z=-\rho$, we have

$$
R e \frac{z f_{0}^{\prime}(z)}{f_{0}(z)}=\frac{1-6 \rho+\rho^{2}}{1-\rho^{2}}=\alpha
$$

proving the sharpness of the radius.
2. We can give a proof using Lemma 1 but we give a different proof here. The number $\rho:=R_{\mathcal{S}_{L}}$ is the smallest positive root of the equation $(1+\sqrt{2}) r^{2}+6 r+1-\sqrt{2}=0$ in interval (0,1), and, from (7), it is clear that, for $0 \leq r \leq \rho$,

$$
\begin{equation*}
\left|\frac{z f^{\prime}(z)}{f(z)}-1\right| \leq\left|\frac{z f^{\prime}(z)}{f(z)}-\frac{1+r^{2}}{1-r^{2}}\right|+\frac{2 r^{2}}{1-r^{2}} \leq \frac{6 r+2 r^{2}}{1-r^{2}} \leq \frac{6 \rho+\rho^{2}}{1-\rho^{2}}=\sqrt{2}-1 \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\frac{z f^{\prime}(z)}{f(z)}+1\right| \leq 2+\left|\frac{z f^{\prime}(z)}{f(z)}-1\right| \leq \sqrt{2}+1 \tag{10}
\end{equation*}
$$

Thus, from (9) and (10), it follows that, for $0 \leq r \leq \rho$,

$$
\left|\left(\frac{z f^{\prime}(z)}{f(z)}\right)^{2}-1\right|=\left|\frac{z f^{\prime}(z)}{f(z)}-1\right|\left|\frac{z f^{\prime}(z)}{f(z)}+1\right| \leq(\sqrt{2}+1)(\sqrt{2}-1)=1
$$

For the function $f_{0} \in \Pi_{1}$ given in (1), we have, at $z=\rho$,

$$
\frac{z f_{0}^{\prime}(z)}{f_{0}(z)}=1+\frac{6 \rho+2 \rho^{2}}{1-\rho^{2}}=\sqrt{2}
$$

and so, at $z=\rho$,

$$
\left|\left(\frac{z f_{0}^{\prime}(z)}{f_{0}(z)}\right)^{2}-1\right|=1
$$

This proves the sharpness.
3. For $\rho:=R_{\mathcal{S}_{P}}=(6-\sqrt{33}) / 3$, we have

$$
\frac{1}{2}<1 \leq a=\frac{1+r^{2}}{1-r^{2}} \leq \frac{1+\rho^{2}}{1-\rho^{2}}=\frac{3 \sqrt{33}-1}{16} \approx 1.0146<3 / 2
$$

Also, for $\rho=R_{\mathcal{S}_{P}}$, we have

$$
\frac{6 \rho}{\left(1-\rho^{2}\right)} \leq \frac{1+\rho^{2}}{1-\rho^{2}}-\frac{1}{2}
$$

and the disk in (7) for $r=\rho$ becomes

$$
\left|\frac{z f^{\prime}(z)}{f(z)}-a\right|=\left|\frac{z f^{\prime}(z)}{f(z)}-\frac{1+\rho^{2}}{1-\rho^{2}}\right| \leq \frac{1+\rho^{2}}{1-\rho^{2}}-\frac{1}{2}=a-\frac{1}{2}
$$

By Lemma 2, it follows that the disk in (7) lies inside region $\Omega_{P A R}$. This proves that the radius of parabolic starlikeness is at least $R_{\mathcal{S}_{P}}$.
The radius is sharp for the function $f_{0} \in \Pi_{1}$. At the point $z=-\rho=-R_{\mathcal{S}_{P}}$, we have

$$
\operatorname{Re}\left(\frac{z f_{0}^{\prime}(z)}{f_{0}(z)}\right)=\frac{1-6 \rho+\rho^{2}}{1-\rho^{2}}=\frac{1}{2}=\frac{6 \rho-2 \rho^{2}}{1-\rho^{2}}=\left|\frac{z f_{0}^{\prime}(z)}{f_{0}(z)}-1\right|
$$

4. For $e^{-1}<a \leq \frac{e+e^{-1}}{2}$, Lemma 3 gives

$$
\begin{equation*}
\left\{w \in \mathbb{C}:|w-a|<a-e^{-1}\right\} \subseteq\{w \in \mathbb{C}:|\log w|<1\}=: \Omega_{e} \tag{11}
\end{equation*}
$$

For $\rho=R_{\mathcal{S}_{e}^{*}}$, we have

$$
e^{-1}<a:=\frac{1+\rho^{2}}{1-\rho^{2}}=\frac{1+9 e^{2}}{e\left(1+3 \sqrt{1+8 e^{2}}\right)} \approx 1.0236 \leq \frac{e+e^{-1}}{2} \approx 1.5430
$$

and, ρ being smallest positive root of the equation $(1+e) r^{2}-6 e r+e-1=0$,

$$
\frac{6 \rho}{1-\rho^{2}} \leq \frac{1+\rho^{2}}{1-\rho^{2}}-\frac{1}{e}=a-e^{-1}
$$

Consequently, the disk in (7) for $r=\rho$ becomes

$$
\left|\frac{z f^{\prime}(z)}{f(z)}-a\right|=\left|\frac{z f^{\prime}(z)}{f(z)}-\frac{1+\rho^{2}}{1-\rho^{2}}\right| \leq \frac{1+\rho^{2}}{1-\rho^{2}}-\frac{1}{e}=a-e^{-1}
$$

By (11) the above disk is inside Ω_{e} proving that the \mathcal{S}_{e}^{*} radius for the class Π_{1} is at least $R_{\mathcal{S}_{e}^{*}}$. The result is sharp for the function f_{0} given in (1). Indeed, at $z=-\rho$ where $\rho=R_{\mathcal{S}_{e}^{*}}$, we have

$$
\left|\log \left(\frac{z f_{0}^{\prime}(z)}{f_{0}(z)}\right)\right|=\left|\log \left(\frac{1-6 \rho+\rho^{2}}{1-\rho^{2}}\right)\right|=1
$$

5. For $\frac{1}{3}<a \leq \frac{5}{3}$, by an application of Lemma 4, it follows that

$$
\left\{w \in \mathbb{C}:|w-a|<a-\frac{1}{3}\right\} \subseteq \Omega_{c}
$$

where Ω_{c} is the domain bounded by the cardioid $\left\{x+i y:\left(9 x^{2}+9 y^{2}-18 x+5\right)^{2}-16\left(9 x^{2}+9 y^{2}-6 x+1\right)=\right.$ $0\}$. For $\rho=R_{\mathcal{S}_{c}^{*}}$, we have

$$
\frac{1}{3}<a:=\frac{1+\rho^{2}}{1-\rho^{2}}=\frac{3 \sqrt{73}-1}{24} \approx 1.0263 \leq \frac{5}{3}
$$

and, ρ being the smallest positive root of the equation $2 r^{2}-9 r+1=0$,

$$
\frac{6 \rho}{1-\rho^{2}}=\frac{1+\rho^{2}}{1-\rho^{2}}-\frac{1}{3}
$$

Therefore, the disk in (7) becomes

$$
\left|\frac{z f^{\prime}(z)}{f(z)}-a\right|=\left|\frac{z f^{\prime}(z)}{f(z)}-\frac{1+\rho^{2}}{1-\rho^{2}}\right| \leq=\frac{1+\rho^{2}}{1-\rho^{2}}-\frac{1}{3}=a-\frac{1}{3}
$$

and this disk is inside Ω_{c}. This shows that \mathcal{S}_{c}^{*} radius is at least $R_{\mathcal{S}_{c}^{*}}$.
For the function f_{0} given in (1), at $z=\rho=R_{\mathcal{S}_{c}^{*}}$, we have

$$
\frac{z f_{0}^{\prime}(z)}{f_{0}(z)}=\frac{1-6 \rho+\rho^{2}}{1-\rho^{2}}=\frac{1}{3}=\varphi_{c}(-1) \in \partial \varphi_{c}(\mathbb{D})
$$

where $\varphi_{c}(z)=1+4 z / 3+2 z^{2} / 3$.
6. For $\rho=R_{\mathcal{S}_{\text {sin }}^{*}}$, and $a:=\left(1+r^{2}\right) /\left(1-r^{2}\right)$, we have

$$
|a-1|=\frac{2 \rho^{2}}{1-\rho^{2}} \approx 0.13199<\sin 1 \approx 0.8414
$$

and

$$
\frac{6 \rho}{1-\rho^{2}} \leq \sin 1-\frac{2 \rho^{2}}{1-\rho^{2}}
$$

The disk in (7) for $r=\rho$ becomes

$$
\left|\frac{z f^{\prime}(z)}{f(z)}-a\right|=\left|\frac{z f^{\prime}(z)}{f(z)}-\frac{1+\rho^{2}}{1-\rho^{2}}\right| \leq \sin 1-\frac{2 \rho^{2}}{1-\rho^{2}}=\sin 1-|1-a|
$$

Lemma 5 shows that the disk in (7) is inside Ω_{s} where $\Omega_{s}=: \varphi_{s}(\mathbb{D})$ is the image of the unit disk \mathbb{D} under the mapping $\varphi_{s}(z)=1+\sin z$. This proves that the $\mathcal{S}_{\mathrm{sin}}^{*}$ radius is at least $R_{\mathcal{S}_{\sin }^{*}}$. For the function f_{0} given in (1), with $\rho=R_{\mathcal{S}_{\text {sin }}^{*}}$, we have

$$
\left(\frac{z f^{\prime}(z)}{f(z)}\right)=\frac{1+6 \rho+\rho^{2}}{1-\rho^{2}}=1+\sin 1 \in \varphi_{s}(1) \in \partial \varphi_{s}(\mathbb{D}) .
$$

7. For $\rho=R_{\mathcal{S}_{\mathbb{C}}^{*}}$, we have

$$
a:=\frac{1+\rho^{2}}{1-\rho^{2}} \approx 1.0202 \in(\sqrt{2}-1, \sqrt{2}+1)
$$

and

$$
\frac{1-6 \rho+\rho^{2}}{1-\rho^{2}}=\sqrt{2}-1
$$

The disk in (7) becomes

$$
\left|\frac{z f^{\prime}(z)}{f(z)}-a\right| \leq 1-|\sqrt{2}-a|
$$

and by Lemma 6 it lies inside $\left\{w:\left|w^{2}-1\right|<2|w|\right\}$. This shows that $\mathcal{S}_{\mathbb{C}}^{*}$ radius is at least $R_{\mathcal{S}_{\mathbb{C}}^{*}}$. The sharpness follows as the function f_{0} defined in (1) satisfies, at $z=\rho=R_{\mathcal{S}_{\mathbb{C}}^{*}}$,

$$
\begin{aligned}
\left|\left(\frac{z f_{0}^{\prime}(z)}{f_{0}(z)}\right)^{2}-1\right| & =\left|\left(\frac{1-6 \rho+\rho^{2}}{1-\rho^{2}}\right)^{2}-1\right|=2(\sqrt{2}-1) \\
& =2 \frac{1-6 \rho+\rho^{2}}{1-\rho^{2}}=2\left|\frac{z f_{0}^{\prime}(z)}{f_{0}(z)}\right|
\end{aligned}
$$

8. For $\rho=R_{\mathcal{S}_{R}^{*}}$, we have

$$
2(\sqrt{2}-1)<a:=\frac{1+\rho^{2}}{1-\rho^{2}} \approx 1.00167 \leq \sqrt{2}<2
$$

and

$$
\frac{1-6 \rho+\rho^{2}}{1-\rho^{2}}=2-2 \sqrt{2}
$$

The disk (7) becomes

$$
\left|\frac{z f^{\prime}(z)}{f(z)}-a\right|<a-2(\sqrt{2}-1)
$$

and this disk, by Lemma 7 , lies inside the domain Ω_{r}. This proves that \mathcal{S}_{R}^{*} radius is at least $R_{\mathcal{S}_{R}^{*}}$.
To prove sharpness, consider the function $f_{0} \in \Pi_{1}$ given in (1). At $z=-\rho=-R_{\mathcal{S}_{R}^{*}}$, we have

$$
\frac{z f^{\prime}(z)}{f(z)}=\frac{1-6 \rho+\rho^{2}}{1-\rho^{2}}=2(\sqrt{2}-1)=\varphi_{r}(-1) \in \partial \varphi_{r}(\mathbb{D})
$$

where $\varphi_{r}(z)=1+\left(k z+z^{2}\right) /\left(k^{2}-k z\right), k=\sqrt{2}+1$.

3 Radius Results for the Class Π_{2}

The functions $f_{2}, f_{3}: \mathbb{D} \rightarrow \mathbb{C}$ defined by

$$
\begin{equation*}
f_{2}(z)=\frac{z}{1-z} \quad \text { and } \quad f_{3}(z)=\frac{z(1+z)^{2}}{(1-z)^{3}} \tag{12}
\end{equation*}
$$

satisfy the conditions $\left|f_{i}(z) / g_{i}(z)-1\right|<1$ and $\operatorname{Re}\left((1-z)^{2} g_{i}(z)\right)>0$ for $i=2,3$ with $g_{2}, g_{3}: \mathbb{D} \rightarrow \mathbb{C}$ defined by

$$
g_{2}(z)=\frac{z}{1-z^{2}} \quad \text { and } \quad g_{3}(z)=\frac{z(1+z)}{(1-z)^{3}}
$$

and hence $f_{2}, f_{3} \in \Pi_{2}$. This proves that the class Π_{2} is non-empty. The Taylor series $f_{3}(z)=z+5 z^{2}+13 z^{3}+$ $25 z^{4}+\cdots$ shows that it is not univalent. It is an extremal function for the radius problems we consider. The derivative of f_{3} is given by

$$
f_{3}^{\prime}(z)=\frac{(1+5 z)(1+z)}{(1-z)^{4}}
$$

Since $f_{3}^{\prime}(-1 / 5)=0$ and, by Theorem $2(1)$, the radius of starlikeness of the class Π_{1} is $1 / 5$, it follows that the radius of univalence of this class is also $1 / 5$. The other radius results for class Π_{2} are given in the following theorem.

Theorem 2 The following radius results hold for the class Π_{2} :
(1) The $\mathcal{S}^{*}(\alpha)$ radius is $R_{\mathcal{S}^{*}(\alpha)}=2(1-\alpha) /\left(5+\sqrt{4 \alpha^{2}-4 \alpha+25}\right), \quad 0 \leq \alpha<1$.
(2) The \mathcal{S}_{L}^{*} radius is at least $R_{\mathcal{S}_{L}^{*}}=(\sqrt{4 \sqrt{2}+25}-5) /(2(\sqrt{2}+2)) \approx 0.0786$.
(3) The \mathcal{S}_{p} radius is $R_{\mathcal{S}_{p}}=5-2 \sqrt{6} \approx 0.1010$.
(4) The \mathcal{S}_{e}^{*} radius is $\mathcal{S}_{e}^{*}=(2(e-1)) /\left(5 e+\sqrt{25 e^{2}-4 e+4}\right) \approx 0.1276$.
(5) The \mathcal{S}_{c}^{*} radius is $R_{\mathcal{S}_{c}^{*}}=(15-\sqrt{217}) / 2 \approx 0.1345$.
(6) The $\mathcal{S}_{\mathrm{sin}}^{*}$ radius is at least $\mathcal{S}_{\sin }^{*}=(\sqrt{25+4(3+\sin (1)) \sin (1)}-5) /(2(3+\sin (1))) \approx 0.1508$.
(7) The $\mathcal{S}_{\mathbb{\overparen { C }}}^{*}$ radius is $R_{\mathcal{S}_{\mathbb{C}}}^{*}=(5-\sqrt{41-12 \sqrt{2}}) /(2(\sqrt{2}-1)) \approx 0.1183$.
(8) The \mathcal{S}_{R}^{*} radius is $R_{\mathcal{S}_{R}^{*}}=(5-\sqrt{81-40 \sqrt{2}}) /(4(\sqrt{2}-1)) \approx 0.0345$.

It is worth to point out that $R_{\mathcal{S}_{P}^{*}}=R_{\mathcal{S}^{*}(1 / 2)}$ and $R_{\mathcal{S}_{e}^{*}}=R_{\mathcal{S}^{*}(1 / e)}$ in both theorems.
Proof. Since $|w-1|<1$ is equivalent to $\operatorname{Re}(1 / w)>1 / 2$, the condition $|f(z) / g(z)-1|<1$ is the same as the condition $\operatorname{Re}(g(z) / f(z))>1 / 2$. Let the function $f \in \Pi_{2}$. Let $g: \mathbb{D} \rightarrow \mathbb{C}$ be chosen such that

$$
\begin{equation*}
\operatorname{Re}\left(\frac{g(z)}{f(z)}\right)>\frac{1}{2} \quad \text { and } \quad \operatorname{Re}\left(\frac{(1-z)^{2}}{z} g(z)\right) \tag{13}
\end{equation*}
$$

Define $p_{1}, p_{2}: \mathbb{D} \rightarrow \mathbb{C}$ by

$$
\begin{equation*}
p_{1}(z)=\frac{(1-z)^{2}}{z} g(z), \quad \text { and } \quad p_{2}(z)=\frac{g(z)}{f(z)} \tag{14}
\end{equation*}
$$

From (13) and (14), it follows that the function $p_{1} \in \mathcal{P}$, the function $p_{2} \in \mathcal{P}(1 / 2)$, and $f(z)=(z /(1-$ $\left.z)^{2}\right) p_{1}(z) / p_{2}(z)$. A calculation shows that

$$
\begin{equation*}
\frac{z f^{\prime}(z)}{f(z)}=\frac{z p_{1}^{\prime}(z)}{p_{1}(z)}-\frac{z p_{2}^{\prime}(z)}{p_{2}(z)}+\frac{1+z}{1-z} \tag{15}
\end{equation*}
$$

The bilinear transformation $\omega=(1+z) /(1-z)$ maps the disk $|z| \leq r$ onto disk

$$
\begin{equation*}
\left|\frac{1+z}{1-z}-\frac{1+r^{2}}{1-r^{2}}\right| \leq \frac{2 r}{1-r^{2}} \tag{16}
\end{equation*}
$$

Using (16) and (6) in (15), we get

$$
\begin{equation*}
\left|\frac{z f^{\prime}(z)}{f(z)}-\frac{1+r^{2}}{1-r^{2}}\right| \leq \frac{5 r+r^{2}}{1-r^{2}} \tag{17}
\end{equation*}
$$

From (17), it follows that

$$
\begin{equation*}
\operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)}\right) \geq \frac{1-5 r}{1-r^{2}} \geq 0 \tag{18}
\end{equation*}
$$

for $0 \leq r \leq 1 / 5$. For the function f_{3} given in (12), we have

$$
\frac{z f_{3}^{\prime}(z)}{f_{3}(z)}=\frac{1+5 z}{1-z^{2}}=0
$$

for $z=-1 / 5$. Thus, the radius of starlikeness of the class Π_{2} is $1 / 5$. All radius values to be computed here will be less or equal to $1 / 5$.

1. The number $\rho:=R_{\mathcal{S}^{*}(\alpha)}$ is the smallest positive root of the equation $\alpha r^{2}-5 r+1-\alpha=0$. For $0<r \leq R_{\mathcal{S}^{*}(\alpha)}$, from (18), we have

$$
\operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)}\right) \geq \frac{1-5 r}{1-r^{2}} \geq \frac{1-5 \rho}{1-\rho^{2}}=\alpha
$$

For the function $f_{3} \in \Pi_{2}$ given in (12), we have, at $z=-\rho=-R_{\mathcal{S}^{*}(\alpha)}$,

$$
\frac{z f_{3}^{\prime}(z)}{f_{3}(z)}=\frac{1-5 \rho}{1-\rho^{2}}=\alpha
$$

This proves that the radius of starlikeness of order α is $R_{\mathcal{S}^{*}(\alpha)}$.
2. From (17), it follows that

$$
\begin{equation*}
\left|\frac{z f^{\prime}(z)}{f(z)}-1\right| \leq\left|\frac{z f^{\prime}(z)}{f(z)}-\frac{1+r^{2}}{1-r^{2}}\right|+\frac{2 r^{2}}{1-r^{2}} \leq \frac{5 r+3 r^{2}}{1-r^{2}} \tag{19}
\end{equation*}
$$

The number $\rho=R_{\mathcal{S}_{L}^{*}}$ is the positive root of the equation

$$
5 r+3 r^{2}-\left(1-r^{2}\right)(\sqrt{2}-1)=0
$$

For $0<r \leq \rho=R_{\mathcal{S}_{L}^{*}}$, we have

$$
\begin{equation*}
\frac{5 r+3 r^{2}}{1-r^{2}} \leq \frac{5 \rho+3 \rho^{2}}{1-\rho^{2}}=\sqrt{2}-1 \tag{20}
\end{equation*}
$$

Therefore, by (19) and (20), it follows for $0<r \leq \rho=R_{\mathcal{S}_{L}^{*}}$ that

$$
\begin{equation*}
\left|\frac{z f^{\prime}(z)}{f(z)}-1\right| \leq \sqrt{2}-1 \tag{21}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\frac{z f^{\prime}(z)}{f(z)}+1\right| \leq \sqrt{2}+1 \tag{22}
\end{equation*}
$$

The last two inequalities (21) and (22) immediately yield

$$
\left|\left(\frac{z f^{\prime}(z)}{f(z)}\right)^{2}-1\right| \leq\left|\frac{z f^{\prime}(z)}{f(z)}+1\right|\left|\frac{z f^{\prime}(z)}{f(z)}-1\right| \leq(\sqrt{2}+1)(\sqrt{2}-1)=1
$$

This proves that \mathcal{S}_{L}^{*} is at least $R_{\mathcal{S}_{L}^{*}}$.
3. For $0 \leq r \leq \rho:=R_{\mathcal{S}_{P}}=5-2 \sqrt{6}$, we have for

$$
\frac{1}{2}<1 \leq a=\frac{1+\rho^{2}}{1-\rho^{2}}=\frac{5 \sqrt{6}}{12}<3 / 2
$$

and, ρ being the smallest positive root of the equation $r^{2}-10 r+1=0$,

$$
\frac{5 \rho+\rho^{2}}{\left(1-\rho^{2}\right)} \leq \frac{1+\rho^{2}}{1-\rho^{2}}-\frac{1}{2}
$$

The disk in (17) becomes

$$
\left|\frac{z f^{\prime}(z)}{f(z)}-\frac{1+\rho^{2}}{1-\rho^{2}}\right| \leq \frac{1+\rho^{2}}{1-\rho^{2}}-\frac{1}{2}
$$

By Lemma 2, the disk in (17) is inside the region $\Omega_{P A R}$. Thus, the radius of parabolic starlikeness of the class Π_{2} is at least $R_{\mathcal{S}_{p}}$.
For the function f_{3} given in (12) at $z=-\rho$ where $\rho=R_{\mathcal{S}_{p}}$, we have

$$
\operatorname{Re}\left(\frac{z f_{3}^{\prime}(z)}{f_{3}(z)}\right)=\frac{1-5 \rho}{1-\rho^{2}}=\frac{5 \rho-\rho^{2}}{1-\rho^{2}}=\left|\frac{z f_{3}^{\prime}(z)}{f_{3}(z)}-1\right| .
$$

4. For $\rho=R_{\mathcal{S}_{e}^{*}}$, we have $1 / e<a:=\left(1+\rho^{2}\right) /\left(1-\rho^{2}\right) \approx 1.0331 \leq\left(e+e^{-1}\right) / 2$ and

$$
\frac{5 \rho+\rho^{2}}{1-\rho^{2}}=\frac{1+\rho^{2}}{1-\rho^{2}}-\frac{1}{e}
$$

The disk in (17) becomes

$$
\left|\frac{z f^{\prime}(z)}{f(z)}-\frac{1+\rho^{2}}{1-\rho^{2}}\right| \leq \frac{1+\rho^{2}}{1-\rho^{2}}-\frac{1}{e}
$$

By Lemma 3, this disk is inside the region Ω_{e}, proving that \mathcal{S}_{e}^{*} radius is at least $R_{\mathcal{S}_{e}^{*}}$.
The result is sharp for the function f_{3} given in (12). For this function, we have, at $z=-\rho$ where $\rho=R_{\mathcal{S}_{e}^{*}}$,

$$
\left|\log \left(\frac{z f_{3}^{\prime}(z)}{f_{3}(z)}\right)\right|=\left|\log \left(\frac{1-5 \rho}{1-\rho^{2}}\right)\right|=\left|\log \left(e^{-1}\right)\right|=1
$$

5. For $\rho=R_{\mathcal{S}_{c}^{*}}$, we have $1 / 3<a:=\left(1+\rho^{2}\right) /\left(1-\rho^{2}\right)=\frac{1}{72}(1+5 \sqrt{217}) \approx 1.03686 \leq 5 / 2$ and, ρ being the smallest positive root of $r^{2}-15 r+2=0$,

$$
\frac{5 \rho+\rho^{2}}{1-\rho^{2}}=\frac{1+\rho^{2}}{1-\rho^{2}}-\frac{1}{3}
$$

The disk in (17) becomes

$$
\left|\frac{z f^{\prime}(z)}{f(z)}-\frac{1+\rho^{2}}{1-\rho^{2}}\right| \leq \frac{1+\rho^{2}}{1-\rho^{2}}-\frac{1}{3}
$$

By Lemma 3, this disk is inside the region Ω_{c}, proving that \mathcal{S}_{c}^{*} radius is at least $R_{\mathcal{S}_{c}^{*}}$.
The radius is sharp for the function f_{3} given in (12). At $z=-\rho$ where $\rho=R_{\mathcal{S}_{c}^{*}}$, we have

$$
\frac{z f_{3}^{\prime}(z)}{f_{3}(z)}=\frac{1-5 \rho}{1-\rho^{2}}=\frac{1}{3}=\varphi_{c}(-1) \in \partial \varphi_{c}(\mathbb{D})
$$

where $\varphi_{c}(z)=1+4 z / 3+2 z^{2} / 3$.
6. For $\rho=R_{\mathcal{S}_{\text {sin }}^{*}}$, and $a:=\left(1+\rho^{2}\right) /\left(1-\rho^{2}\right)$, we have

$$
|a-1|=\frac{2 \rho^{2}}{1-\rho^{2}} \approx 0.0465396<\sin 1 \approx 0.8414
$$

and

$$
\frac{5 \rho+\rho^{2}}{1-\rho^{2}} \leq \sin 1-\frac{2 \rho^{2}}{1-\rho^{2}}
$$

The disk in (7) for $r=\rho$ becomes

$$
\left|\frac{z f^{\prime}(z)}{f(z)}-a\right|=\left|\frac{z f^{\prime}(z)}{f(z)}-\frac{1+\rho^{2}}{1-\rho^{2}}\right| \leq \sin 1-\frac{2 \rho^{2}}{1-\rho^{2}}=\sin 1-|1-a|
$$

Lemma 5 shows that the disk in (17) is inside Ω_{s} where $\Omega_{s}=: \varphi_{s}(\mathbb{D})$ is the image of the unit disk \mathbb{D} under the mapping $\varphi_{s}(z)=1+\sin z$. This proves that the $\mathcal{S}_{\sin }^{*}$ radius is at least $R_{\mathcal{S}_{\mathrm{sin}}^{*}}$.
7. For $\rho=R_{\mathcal{S}_{\overparen{J}}^{*}}$, we have

$$
a:=\frac{1+\rho^{2}}{1-\rho^{2}} \approx 1.02839 \in(\sqrt{2}-1, \sqrt{2}+1)
$$

and

$$
\frac{5 \rho+\rho^{2}}{1-\rho^{2}}=\frac{1+\rho^{2}}{1-\rho^{2}}+1-\sqrt{2}
$$

The disk in (17) becomes

$$
\left|\frac{z f^{\prime}(z)}{f(z)}-a\right| \leq 1-|\sqrt{2}-a|
$$

and by Lemma 6 it lies inside $\left\{w:\left|w^{2}-1\right|<2|w|\right\}$. This shows that $\mathcal{S}_{\mathbb{C}}^{*}$ radius is at least $R_{\mathcal{S}_{\mathbb{Z}}^{*}}$. The sharpness follows as the function f_{3} defined in (12) satisfies, at $z=\rho=R_{\mathcal{S}_{马}^{*}}$,

$$
\begin{aligned}
\left|\left(\frac{z f_{3}^{\prime}(z)}{f_{3}(z)}\right)^{2}-1\right| & =\left|\left(\frac{1-5 \rho}{1-\rho^{2}}\right)^{2}-1\right|=2(\sqrt{2}-1) \\
& =2 \frac{1-5 \rho}{1-\rho^{2}}=2\left|\frac{z f_{3}^{\prime}(z)}{f_{3}(z)}\right|
\end{aligned}
$$

8. For $\rho=R_{\mathcal{S}_{R}^{*}}$, we have

$$
2(\sqrt{2}-1)<a:=\frac{1+\rho^{2}}{1-\rho^{2}} \approx 1.00238 \leq \sqrt{2}<2
$$

and

$$
\frac{5 \rho+\rho^{2}}{1-\rho^{2}}=\frac{1+\rho^{2}}{1-\rho^{2}}-2(\sqrt{2}-1)
$$

The disk (17) becomes

$$
\left|\frac{z f^{\prime}(z)}{f(z)}-a\right|<a-2(\sqrt{2}-1)
$$

By Lemma 7 , this disk lies inside the domain Ω_{r}. This proves that \mathcal{S}_{R}^{*} radius is at least $R_{\mathcal{S}_{R}^{*}}$. To prove sharpness, consider the function $f_{3} \in \Pi_{2}$ given in (12). At $z=-\rho=-R_{\mathcal{S}_{R}^{*}}$, we have

$$
\frac{z f_{3}^{\prime}(z)}{f_{3}(z)}=\frac{1-5 \rho}{1-\rho^{2}}=2(\sqrt{2}-1)=\varphi_{r}(-1) \in \partial \varphi_{r}(\mathbb{D})
$$

where $\varphi_{r}(z)=1+\left(k z+z^{2}\right) /\left(k^{2}-k z\right), k=\sqrt{2}+1$.

Acknowledgment. Dedicated to the memory of Prof. Ataharul Islam. This work was supported in parts by the Universiti Sains Malaysia's Research University grant 1001/PMATHS/8011015 and Short Term Research grant 304/PMATHS/6315107.

References

[1] R. M. Ali, N. K. Jain and V. Ravichandran, Radii of starlikeness associated with the lemniscate of Bernoulli and the left-half plane, Appl. Math. Comput., 218(2012), 6557-6565.
[2] N. E. Cho, V. Kumar, S. S. Kumar and V. Ravichandran, Radius problems for starlike functions associated with the sine function, Bull. Iranian Math. Soc., 45(2019), 213-232.
[3] P. L. Duren, Univalent Functions, GTM, 259, Springer-Verlag, New York, 1983.
[4] S. Gandhi and V. Ravichandran, Starlike functions associated with a lune, Asian-Eur. J. Math., $10(2017), 12 \mathrm{pp}$.
[5] P. Goel and S. Sivaprasad Kumar, Certain class of starlike functions associated with modified sigmoid function, Bull. Malays. Math. Sci. Soc., 43(2020), 957-991.
[6] A. W. Goodman, Univalent Functions. Vol. II, Mariner, Tampa, FL, 1983.
[7] R. Kanaga and V. Ravichandran, Starlikeness for certain close-to-star functions, Hacettepe J. Math. Stat., 50(2021), 414-432.
[8] S. K. Lee, K. Khatter, and V. Ravichandran, Radius of starlikeness for classes of analytic functions, Bull. Malays. Math. Sci. Soc., 43(2020), 4469-4493.
[9] B. Kowalczyk and A. Lecko, Radius problem in classes of polynomial close-to-convex functions I, Bull. Soc. Sci. Lett. Ł ódź Sér. Rech. Déform., 63(2013), 65-77.
[10] B. Kowalczyk and A. Lecko, Radius problem in classes of polynomial close-to-convex functions II. Partial solutions, Bull. Soc. Sci. Lett. Łódź Sér. Rech. Déform., 63(2013), 23-34.
[11] B. Kowalczyk, A. Lecko and B. Śmiarowska, On some coefficient inequality in the subclass of close-toconvex functions, Bull. Soc. Sci. Lett. Łódź Sér. Rech. Déform., 67(2017), 79-90.
[12] S. Kumar and V. Ravichandran, A subclass of starlike functions associated with a rational function, Southeast Asian Bull. Math., 40(2016), 199-212.
[13] V. Kumar, N. E. Cho, O. S. Kwon and Y. J. Sim, Radius estimates and convolution properties for analytic functions, Bull. Iranian Math. Soc., 44(2018), 1627-1640.
[14] A. Lecko, Y. J. Sim, and B. Śmiarowska, The fourth-order Hermitian Toeplitz determinant for convex functions, Anal. Math. Phys., 10(2020), 11pp.
[15] W. C. Ma and D. Minda, A unified treatment of some special classes of univalent functions, in Proceedings of the Conference on Complex Analysis (Tianjin, 1992), 157-169, Conf. Proc. Lecture Notes Anal., I, Int. Press, Cambridge, MA.
[16] T. H. MacGregor, The radius of convexity for starlike functions of order 12 , Proc. Amer. Math. Soc., 14(1963), 71-76.
[17] T. H. MacGregor, The radius of univalence of certain analytic functions, Proc. Amer. Math. Soc., 14(1963), 514-520.
[18] T. H. MacGregor, A class of univalent functions, Proc. Amer. Math. Soc., 15(1964), 311-317.
[19] R. Mendiratta, S. Nagpal and V. Ravichandran, A subclass of starlike functions associated with left-half of the lemniscate of Bernoulli, Internat. J. Math., 25(2014), 17 pp.
[20] K. S. Padmanabhan and R. Parvatham, Some applications of differential subordination, Bull. Austral. Math. Soc., 32(1985), 321-330.
[21] A. Sebastian and V. Ravichandran, Radius of starlikness of certain analytic functions, Math. Slovaca, 83(2021), 83-104.
[22] T. N. Shanmugam, Convolution and diferential subordination, Internat. J. Math. Math. Sci., 12(1989), 333-340.
[23] T. N. Shanmugam and V. Ravichandran, Certain properties of uniformly convex functions, Computational methods and function theory 1994 (Penang), 319-324, Ser. Approx. Decompos., 5, World Sci. Publ., River Edge, NJ, 1995.
[24] K. Sharma, N. K. Jain and V. Ravichandran, Starlike functions associated with a cardioid, Afr. Mat., 27(2016), 923-939.
[25] J. Sokól and J. Stankiewicz, Radius of convexity of some subclasses of strongly starlike functions, Zeszyty Nauk. Politech. Rzeszowskiej Mat., 19(1996), 101-105.
[26] L. A. Wani and A. Swaminathan, Radius problems for functions associated with a nephroid domain, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM, 114(2020), 20 pp.
[27] L. A. Wani and A. Swaminathan, Starlike and convex functions associated with a nephroid domain, Bull. Malays. Math. Sci. Soc., 44(2021), 79-104.

[^0]: *Mathematics Subject Classifications: 30C45; 30C80.
 ${ }^{\dagger}$ School of Mathematical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
 ${ }^{\ddagger}$ Department of Mathematics, National Institute of Technology, Tiruchirappalli-620 015, India

