On Inequalities For The Derivative Of A Polynomial With Restricted Zeros*

Faroz Ahmad Bhat ${ }^{\dagger}$

Received 11 December 2021

Abstract

If $P(z)=a_{n} \prod_{j=1}^{n}\left(z-z_{j}\right)$ is a complex polynomial of degree n having all its zeros in $|z| \leq K$ where $K \geq 1$, then Kumar [8] proved that $$
\begin{equation*} \max _{|z|=1}\left|P^{\prime}(z)\right| \geq\left(\frac{2}{1+K^{n}}+\frac{\left(\left|a_{n}\right| K^{n}-\left|a_{0}\right|\right)(K-1)}{\left(1+K^{n}\right)\left(\left|a_{n}\right| K^{n}+\left|a_{0}\right| K\right)}\right) \sum_{j=1}^{n} \frac{K}{K+\left|z_{j}\right|} \max _{|z|=1}|P(z)| . \tag{A} \end{equation*}
$$

In this paper we first extend inequality (A) to the class of polynomials having s-fold zero at origin and then establish the polar derivative analogue of the result obtained.

1 Introduction

A well known inequality due to Bernstein [5] states that if $P(z)$ is a polynomial of degree n, then

$$
\begin{equation*}
\max _{|z|=1}\left|P^{\prime}(z)\right| \leq n \max _{|z|=1}|P(z)| . \tag{1}
\end{equation*}
$$

In connection with inequality (1), P. Erdös conjectured and later Lax [9] proved that if $P(z)$ is a polynomial of degree n having no zeros in $|z|<1$, then

$$
\begin{equation*}
\max _{|z|=1}\left|P^{\prime}(z)\right| \leq \frac{n}{2} \max _{|z|=1}|P(z)| \tag{2}
\end{equation*}
$$

The inequality (2) is best possible and equality holds if $P(z)=\alpha+\beta z$, where $|\alpha|=|\beta|$. On the other hand Turan's classical inequality [14] provides the lower bound estimate to the size of derivative of a polynomial on the unit circle relative to the size of polynomial itself when zeros lie in $|z| \leq 1$. It states that if $P(z)$ is a polynomial of degree n having all its zeros in $|z| \leq 1$, then

$$
\begin{equation*}
\max _{|z|=1}\left|P^{\prime}(z)\right| \geq \frac{n}{2} \max _{|z|=1}|P(z)| . \tag{3}
\end{equation*}
$$

Equality in (3) holds for polynomials having all zeros on $|z|=1$. As a generalisation of (3) to the polynomials having all their zeros in $|z| \leq K$ where $K \geq 1$, Govil [6] proved if $P(z)$ is a polynomial of degree n having all its zeros in $|z| \leq K, K \geq 1$, then

$$
\begin{equation*}
\max _{|z|=1}\left|P^{\prime}(z)\right| \geq \frac{n}{1+K^{n}} \max _{|z|=1}|P(z)| . \tag{4}
\end{equation*}
$$

The inequality (4) is sharp and equality holds for the polynomial $P(z)=z^{n}+K^{n}$. While considering the modulus of each zero of $P(z)$ in inequality (3), Aziz [1] established the following generalisation of

[^0]inequality (3) to the class of polynomials having all their zeros in $|z| \leq K$ where $K \geq 1$ by proving that if $P(z)=a_{n} \prod_{j=1}^{n}\left(z-z_{j}\right)$ is a complex polynomial of degree n with $\left|z_{j}\right| \leq K, K \geq 1$, then
\[

$$
\begin{equation*}
\max _{|z|=1}\left|P^{\prime}(z)\right| \geq \frac{2}{1+K^{n}} \sum_{j=1}^{n} \frac{K}{K+\left|z_{j}\right|} \max _{|z|=1}|P(z)| \tag{5}
\end{equation*}
$$

\]

Very recently Kumar [8] while preserving the modulus of each zero in the inequality (5) sharpened the inequality by proving that if $P(z)$ is a polynomial of degree n having all its zeros in $|z| \leq K, K \geq 1$, then

$$
\begin{equation*}
\max _{|z|=1}\left|P^{\prime}(z)\right| \geq\left(\frac{2}{1+K^{n}}+\frac{\left(\left|a_{n}\right| K^{n}-\left|a_{0}\right|\right)(K-1)}{\left(1+K^{n}\right)\left(\left|a_{n}\right| K^{n}+\left|a_{0}\right| K\right)}\right) \sum_{j=1}^{n} \frac{K}{K+\left|z_{j}\right|} \max _{|z|=1}|P(z)| . \tag{6}
\end{equation*}
$$

Let $D_{\alpha} P(z)$ denote the polar derivative of a polynomial of degree n with respect to a real or complex number α. Then

$$
D_{\alpha} P(z)=n P(z)+(\alpha-z) P^{\prime}(z)
$$

The polar derivative $D_{\alpha} P(z)$ is a polynomial of degree at most $n-1$. Furthermore, it generalizes the ordinary derivative $P^{\prime}(z)$ of $P(z)$ in the sense that

$$
\lim _{\alpha \rightarrow \infty} \frac{D_{\alpha} P(z)}{\alpha}=P^{\prime}(z)
$$

uniformly with respect to z for $|z| \leq R, R>0$.
For more information about the polar derivative of a polynomial one can refer monographs by Rahman and Schmeisser or Milovanovic et al. [10]. The analogue of inequality (4) for the polar derivative of a polynomial was established by Aziz and Rather [3] who proved that if $P(z)$ is a polynomial of degree n having all its zeros in $|z| \leq K, K \geq 1$, then for every $\alpha \in C$ with $|\alpha| \geq K$

$$
\begin{equation*}
\max _{|z|=1}\left|D_{\alpha} P(z)\right| \geq n\left(\frac{|\alpha|-K}{1+K^{n}}\right) \max _{|z|=1}|P(z)| \tag{7}
\end{equation*}
$$

Several refinements of inequality (7) can be found in the literature (see [4], [12] and [13]). For the class of polynomials having s-fold zero at origin, inequality (7) was recently refined by Govil and Kumar [7] by establishing that if $P(z)=z^{s}\left(a_{0}+a_{1} z+\ldots+a_{n-s} z^{n-s}\right), 0 \leq s \leq n$ is a polynomial of degree n having all its zeros in $|z| \leq K, K \geq 1$, then for every $\alpha \in C$ with $|\alpha| \geq K$

$$
\max _{|z|=1}\left|D_{\alpha} P(z)\right| \geq \frac{|\alpha|-K}{1+K^{n}}\left(n+s+\frac{\left|a_{n-s}\right| K^{n-s}-\left|a_{0}\right|}{\left|a_{n-s}\right| K^{n-s}+\left|a_{0}\right|}\right) \max _{|z|=1}|P(z)|
$$

2 Main Results

In this paper we generalize the inequality (6) to the class of polynomials having s-fold zero at origin. In fact we prove

Theorem 1 If $P(z)=z^{s}\left(a_{0}+a_{1} z+\ldots+a_{n-s} z^{n-s}\right)=a_{n-s} z^{s} \prod_{j=1}^{n-s}\left(z-z_{j}\right), 0 \leq s \leq n$ with $z_{j} \neq 0$ for $1 \leq j \leq n-s$ is a polynomial of degree n which has all its zeros in $|z| \leq K$ with $K \geq 1$, then

$$
\begin{equation*}
\max _{|z|=1}\left|P^{\prime}(z)\right| \geq\left(\frac{2}{1+K^{n-s}}+\frac{(K-1)\left(\left|a_{n-s}\right| K^{n-s}-\left|a_{0}\right|\right)}{\left(1+K^{n-s}\right)\left(\left|a_{n-s}\right| K^{n-s}+\left|a_{0}\right| K\right)}\right)\left(s+\sum_{j=1}^{n-s} \frac{K}{K+\left|z_{j}\right|}\right) \max _{|z|=1}|P(z)| . \tag{8}
\end{equation*}
$$

Remark 1 If we take $s=0$ in Theorem 1, we obtain inequality (6).

If we take $K=1$ in Theorem 1, we obtain the following refinement of inequality (3) for the polynomials having s-fold zero at origin.

Corollary 1 If $P(z)=z^{s}\left(a_{0}+a_{1} z+\ldots+a_{n-s} z^{n-s}\right)=a_{n-s} z^{s} \prod_{j=1}^{n-s}\left(z-z_{j}\right), 0 \leq s \leq n$ with $z_{j} \neq 0$ for $1 \leq j \leq n-s$ is a polynomial of degree n which has all its zeros in $|z| \leq 1$, then

$$
\max _{|z|=1}\left|P^{\prime}(z)\right| \geq\left(s+\sum_{j=1}^{n-s} \frac{1}{1+\left|z_{j}\right|}\right) \max _{|z|=1}|P(z)|
$$

We next prove the following extension of Theorem 1 to the polar derivative of a polynomial having s-fold zero at origin.

Theorem 2 If $P(z)=z^{s}\left(a_{0}+a_{1} z+\ldots+a_{n-s} z^{n-s}\right)=a_{n-s} z^{s} \prod_{j=1}^{n-s}\left(z-z_{j}\right), 0 \leq s \leq n$ with $z_{j} \neq 0$ for $1 \leq j \leq n-s$ is a polynomial of degree n having all its zeros in $|z| \leq K, K \geq 1$, then for any complex number α with $|\alpha| \geq K$

$$
\begin{align*}
\max _{|z|=1}\left|D_{\alpha} P(z)\right| \geq & \left(\frac{2}{1+K^{n-s}}+\frac{(K-1)\left(\left|a_{n-s}\right| K^{n-s}-\left|a_{0}\right|\right)}{\left(1+K^{n-s}\right)\left(\left|a_{n-s}\right| K^{n-s}+\left|a_{0}\right| K\right)}\right) \\
& \times\left(s(|\alpha|-K)+\sum_{j=1}^{n-s} \frac{K(|\alpha|-K)}{K+\left|z_{j}\right|}\right) \max _{|z|=1}|P(z)| \tag{9}
\end{align*}
$$

Remark 2 If we divide both sides to inequality (9) by $|\alpha|$ and let $|\alpha| \rightarrow \infty$ in (9), we get (8) and thus Theorem 1 is a special case of Theorem 2.

Remark 3 If we take $s=0$ in Theorem 2, we obtain Theorem 1.4 due to Kumar [8].

3 Lemmas

The first lemma is the generalization of Schwarz Lemma due to Osserman [11].

Lemma 1 Let $f(z)$ be analytic in $|z|<1$ such that $|f(z)|<1$ for $|z|<1$ and $f(0)=0$. Then

$$
|f(z)| \leq|z| \frac{|z|+\left|f^{\prime}(0)\right|}{1+\left|f^{\prime}(0)\right||z|} \quad \text { for }|z|<1
$$

The next lemma is due to Aziz and Mohammad [2].
Lemma 2 If $P(z)$ is a polynomial of degree n, then for any $R \geq 1$ and $0 \leq \theta \leq 2 \pi$

$$
\left|P\left(R e^{i \theta}\right)\right|+\left|Q\left(R e^{i \theta}\right)\right| \leq\left(1+R^{n}\right) \max _{|z|=1}|P(z)|
$$

where $Q(z)=z^{n} \overline{P(1 / \bar{z})}$.
Lemma 3 If $P(z)=z^{s}\left(a_{0}+a_{1} z+\ldots+a_{n-s} z^{n-s}\right), 0 \leq s \leq n$ is a polynomial of degree $n \geq 1$ having s-fold zero at origin and all other zeros in $|z| \geq 1$, then for any $R \geq 1$

$$
\max _{|z|=R}|P(z)| \leq \frac{\left(1+R^{n}\right)\left(\left|a_{0}\right|+R\left|a_{n-s}\right|\right)}{(1+R)\left(\left|a_{0}\right|+\left|a_{n-s}\right|\right)} \max _{|z|=1}|P(z)|
$$

Proof. Let $P(z)=z^{s}\left(a_{0}+a_{1} z+\ldots+a_{n-s} z^{n-s}\right)=z^{s} A(z)$, where $A(z)=a_{0}+a_{1} z+\ldots+a_{n-s} z^{n-s}$ is a polynomial of degree $n-s$. Then $A(z)$ has no zero in $|z|<1$. Therefore the conjugate polynomial $B(z):=z^{n-s} \overline{A(1 / \bar{z})}$ of $A(z)$ has all its zeros in $|z| \leq 1$. It follows that the polynomial $F(z)=\frac{z B(z)}{A(z)}$ satisfies the hypothesis of Lemma 1 and hence we obtain for $|z|<1$,

$$
|F(z)| \leq|z| \frac{|z|+\left|F^{\prime}(0)\right|}{1+\left|F^{\prime}(0)\right||z|}
$$

which is equivalent to

$$
\begin{equation*}
|B(z)| \leq \frac{|z|\left|a_{0}\right|+\left|a_{n-s}\right|}{\left|a_{0}\right|+\left|a_{n-s}\right||z|}|A(z)| \quad \text { for } \quad|z|<1 . \tag{10}
\end{equation*}
$$

Replacing z by $1 / z$ in (10), we get for $|z|>1$

$$
\begin{equation*}
\left|z^{s} A(z)\right| \leq \frac{\left|a_{0}\right|+\left|a_{n-s}\right||z|}{\left|a_{0}\right||z|+\left|a_{n-s}\right|}|B(z)| . \tag{11}
\end{equation*}
$$

Since the inequality (11) is already true for all z on $|z|=1$. Therefore for any $R \geq 1$ and $0 \leq \theta<2 \pi$, we have

$$
\begin{equation*}
\left|P\left(R e^{i \theta}\right)\right| \leq \frac{\left|a_{0}\right|+\left|a_{n-s}\right| R}{\left|a_{0}\right| R+\left|a_{n-s}\right|}\left|B\left(R e^{i \theta}\right)\right| . \tag{12}
\end{equation*}
$$

Inequality (12) in conjunction with Lemma 2 and the fact that $z^{n} \overline{P(1 / \bar{z})}=B(z)$ yields the desired inequality.

Lemma 4 If $P(z)=z^{s}\left(a_{0}+a_{1} z+\ldots+a_{n-s} z^{n-s}\right), 0 \leq s \leq n$ is a polynomial of degree n with all its zeros in $|z| \leq K$ and $K \geq 1$, then

$$
\max _{|z|=K}|P(z)| \geq\left(\frac{2 K^{n}}{1+K^{n-s}}+\frac{K^{n}(K-1)\left(\left|a_{n-s}\right| K^{n-s}-\left|a_{0}\right|\right)}{\left(1+K^{n-s}\right)\left(\left|a_{n-s}\right| K^{n-s}+\left|a_{0}\right| K\right)}\right) \max _{|z|=1}|P(z)| .
$$

Proof. Since $P(z)$ has all its zeros in $|z| \leq K, K \geq 1$, the polynomial $G(z)=P(K z)$ has all its zeros in the unit disc $|z| \leq 1$. Hence the $(n-s)$ th degree polynomial $H(z)=z^{n} G(1 / z)$ has no zero in $|z|<1$. Therefore applying Lemma 3 to the polynomial $H(z)$ with $R=K, K \geq 1$, we have

$$
\max _{|z|=K}|H(z)| \leq \frac{\left(1+K^{n-s}\right)\left(\left|a_{n-s}\right| K^{n}+\left|a_{0}\right| K^{s+1}\right)}{(1+K)\left(\left|a_{n-s}\right| K^{n}+\left|a_{0}\right| K^{s}\right)} \max _{|z|=1}|H(z)|,
$$

which is equivalent to

$$
\begin{equation*}
\max _{|z|=1}|G(z)| \geq \frac{(1+K)\left(\left|a_{n-s}\right| K^{n}+\left|a_{0}\right| K^{s}\right)}{\left(1+K^{n-s}\right)\left(\left|a_{n-s}\right| K^{n}+\left|a_{0}\right| K^{s+1}\right)} \max _{|z|=K}|H(z)| . \tag{13}
\end{equation*}
$$

But $H(z)=z^{n} G(1 / z)=z^{n} P(K / z)$ so that

$$
\begin{equation*}
\max _{|z|=K}|H(z)|=K^{n} \max _{|z|=1}|P(z)| . \tag{14}
\end{equation*}
$$

Using (14) in (13), we get

$$
\begin{equation*}
\max _{|z|=1}|G(z)| \geq K^{n} \frac{(1+K)\left(\left|a_{n-s}\right| K^{n}+\left|a_{0}\right| K^{s}\right)}{\left(1+K^{n-s}\right)\left(\left|a_{n-s}\right| K^{n}+\left|a_{0}\right| K^{s+1}\right)} \max _{|z|=1}|P(z)| . \tag{15}
\end{equation*}
$$

Replacing $G(z)$ by $P(K z)$ in (15) and simplifying we get

$$
\max _{|z|=K}|P(z)| \geq\left(\frac{2 K^{n}}{1+K^{n-s}}+\frac{K^{n}(K-1)\left(\left|a_{n-s}\right| K^{n-s}-\left|a_{0}\right|\right)}{\left(1+K^{n-s}\right)\left(\left|a_{n-s}\right| K^{n-s}+\left|a_{0}\right| K\right)}\right) \max _{|z|=1}|P(z)| .
$$

4 Proofs of Theorems

Proof of Theorem 1. Since $P(z)=a_{n-s} z^{s} \prod_{j=1}^{n-s}\left(z-z_{j}\right), 0 \leq s \leq n$ has all its zeros in $|z| \leq K$, the polynomial $G(z)=P(K z)=K^{n} a_{n-s} z^{s} \prod_{j=1}^{n-s}\left(z-z_{j} / K\right)$ has all its zeros in $|z| \leq 1$. Hence for all z on $|z|=1$ for which $G(z) \neq 0$, we have

$$
\frac{z G^{\prime}(z)}{G(z)}=s+\sum_{j=1}^{n-s} \frac{z}{z-\frac{z_{j}}{K}} .
$$

This gives

$$
\operatorname{Re}\left(\frac{z G^{\prime}(z)}{G(z)}\right)=s+\operatorname{Re}\left(\sum_{j=1}^{n-s} \frac{z}{z-z_{j} / K}\right) \geq s+\sum_{j=1}^{n-s} \frac{K}{K+\left|z_{j}\right|}
$$

Which implies

$$
\left|\frac{z G^{\prime}(z)}{G(z)}\right| \geq s+\sum_{j=1}^{n-s} \frac{K}{K+\left|z_{j}\right|}
$$

for all z on $|z|=1$ for which $G(z) \neq 0$. Therefore

$$
\begin{equation*}
\max _{|z|=1}\left|G^{\prime}(z)\right| \geq\left(s+\sum_{j=1}^{n-s} \frac{K}{K+\left|z_{j}\right|}\right) \max _{|z|=1}|G(z)| \tag{16}
\end{equation*}
$$

or equivalently

$$
K \max _{|z|=1}\left|P^{\prime}(K z)\right| \geq\left(s+\sum_{j=1}^{n-s} \frac{K}{K+\left|z_{j}\right|}\right) \max _{|z|=1}|P(K z)|
$$

Using Lemma 4 and the fact that $K^{n-1} \max _{|z|=1}\left|P^{\prime}(z)\right| \geq\left|P^{\prime}(K z)\right|$, we get

$$
K^{n} \max _{|z|=1}\left|P^{\prime}(z)\right| \geq\left(s+\sum_{j=1}^{n-s} \frac{K}{K+\left|z_{j}\right|}\right) \times\left(\frac{2 K^{n}}{1+K^{n-s}}+\frac{K^{n}(K-1)\left(\left|a_{n-s}\right| K^{n-s}-\left|a_{0}\right|\right)}{\left(1+K^{n-s}\right)\left(\left|a_{n-s}\right| K^{n-s}+\left|a_{0}\right| K\right)}\right) \max _{|z|=1}|P(z)|
$$

which is equivalent to

$$
\max _{|z|=1}\left|P^{\prime}(z)\right| \geq\left(\frac{2}{1+K^{n-s}}+\frac{(K-1)\left(\left|a_{n-s}\right| K^{n-s}-\left|a_{0}\right|\right)}{\left(1+K^{n-s}\right)\left(\left|a_{n-s}\right| K^{n-s}+\left|a_{0}\right| K\right)}\right) \times\left(s+\sum_{j=1}^{n-s} \frac{K}{K+\left|z_{j}\right|}\right) \max _{|z|=1}|P(z)| .
$$

This completes the proof of Theorem 1.
Proof of Theorem 2. Since $P(z)$ has all its zeros in $|z| \leq K, K \geq 1$, the polynomial $G(z)=P(K z)$ has all its zeros in $|z| \leq 1$. Therefore for $|\alpha| / K \geq 1$, it can be easily seen that

$$
\max _{|z|=1}\left|D_{\alpha / K} G(z)\right| \geq \frac{(|\alpha|-K)}{K} \max _{|z|=1}\left|G^{\prime}(z)\right|
$$

or

$$
\max _{|z|=K}\left|D_{\alpha} P(z)\right| \geq \frac{(|\alpha|-K)}{K} \max _{|z|=1}\left|G^{\prime}(z)\right|
$$

Using inequality (16), we have

$$
\max _{|z|=K}\left|D_{\alpha} P(z)\right| \geq \frac{(|\alpha|-K)}{K}\left(s+\sum_{j=1}^{n-s} \frac{K}{K+\left|z_{j}\right|}\right) \max _{|z|=1}|G(z)|
$$

which is equivalent to

$$
\max _{|z|=K}\left|D_{\alpha} P(z)\right| \geq \frac{(|\alpha|-K)}{K}\left(s+\sum_{j=1}^{n-s} \frac{K}{K+\left|z_{j}\right|}\right) \max _{|z|=K}|P(z)|
$$

Now applying Lemma 4 in the right hand side of above inequality, we get

$$
\begin{align*}
\max _{|z|=K}\left|D_{\alpha} P(z)\right| \geq & \frac{(|\alpha|-K)}{K}\left(s+\sum_{j=1}^{n-s} \frac{K}{K+\left|z_{j}\right|}\right) \\
& \times\left(\frac{2 K^{n}}{1+K^{n-s}}+\frac{K^{n}(K-1)\left(\left|a_{n-s}\right| K^{n-s}-\left|a_{0}\right|\right)}{\left(1+K^{n-s}\right)\left(\left|a_{n-s}\right| K^{n-s}+\left|a_{0}\right| K\right)}\right) \max _{|z|=1}|P(z)| \tag{17}
\end{align*}
$$

Since $D_{\alpha} P(z)$ is a polynomial of degree at most $n-1$, it follows that

$$
\max _{|z|=K}\left|D_{\alpha} P(z)\right| \leq K^{n-1} \max _{|z|=1}\left|D_{\alpha} P(z)\right|
$$

Using this observation in (17), we obtain

$$
\begin{aligned}
\max _{|z|=1}\left|D_{\alpha} P(z)\right| \geq & \left(s(|\alpha|-K)+\sum_{j=1}^{n-s} \frac{K(|\alpha|-K)}{K+\left|z_{j}\right|}\right) \\
& \times\left(\frac{2}{1+K^{n-s}}+\frac{(K-1)\left(\left|a_{n-s}\right| K^{n-s}-\left|a_{0}\right|\right)}{\left(1+K^{n-s}\right)\left(\left|a_{n-s}\right| K^{n-s}+\left|a_{0}\right| K\right)}\right) \max _{|z|=1}|P(z)|
\end{aligned}
$$

Which is the desired inequality and completes the proof of Theorem 2.
Acknowledgment. The author is indebted to the anonymous referee and editor for their valuable suggestions.

References

[1] A. Aziz, Integral mean estimates for polynomials with restricted zeros, J. Approx. Theory, 55(1988), 232-239.
[2] A. Aziz and Q. G. Mohammad, Growth of polynomials with zeros outside a circle, Proc. Am. Math. Soc., 81(1981), 549-553.
[3] A. Aziz and N. A. Rather, A refinement of a theorem of Paul Turan concerning polynomials, Math. inequal. Appl., 1(1998), 231-238.
[4] A. Aziz and N. A. Rather, Inequalities for the polar derivative of a polynomial with restricted zeros, Math. Balk., 17(2003), 15-28.
[5] S. Bernstein, Lecons Sur Les Proprietes Extremales Et La Meilleure Approximation Des Fonctions Analytiques D'une Variable Reelle, Gauthier-Villars, Paris (1926).
[6] N. K. Govil, On the derivative of a polynomial, Proc. Am. Math. Soc., 41(1973), 543-546.
[7] N. K. Govil and P. Kumar, On sharpening of an inequality of Turan, Appl. Anal. Discrete Math., 13(2019), 711-720.
[8] P. Kumar, On the inequalities concerning polynomials, Complex Anal. Oper. Theory, 14(2020), 1-11.
[9] P. D. Lax, Proof of a conjecture due to Erdös on the derivative of a polynomial, Bull. Am. Math. Soc., 50(1944), 509-513.
[10] G. V. Milovanovic, D. S. Mitrinovic and Th. M. Rassias, Topics in Polynomials, Extremal Properties, Inequalities, Zeros, World Scientific Publishing co., Singapore 1994.
[11] R. Osserman, A sharp Schwarz inequality on the boundary, Proc. Am. Math. Soc., 128 (2000), 35133517.
[12] N. A. Rather, A. Iqbal and I. Dar, Inequalities concerning the polar derivatives of polynomials with restricted zeros, Non linear Funct. Anal. Appl., 24(2019), 813-826.
[13] N. A. Rather, I. Dar, A. Iqbal, Inequalities for the derivative of polynomials with restricted zeros, Korean J. Math., 28(2020), 931-942.
[14] P. Turan, Űber die Ableitung von Polynomen, Compositio Math., 7(1939), 89-95.

[^0]: *Mathematics Subject Classifications: 20F05, 20F10, 20F55, 68Q42.
 ${ }^{\dagger}$ Department of Mathematics South Campus, University of Kashmir, Srinagar 190006, India

