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Abstract

In this paper we use an elementary method to give an asymptotical ratio of odd to even r-free numbers
and show that it is asymptotically 2r : 2r − 2.

1 Introduction and Results

Let r > 1 be a fixed integer. A positive integer n is r-free if each of its prime factors appears to the power
at most r − 1. A positive integer n is r-full if each of its prime factors appears to the power at least r. As
usual, 2-full and 3-full numbers are called square-full and cube-full, respectively.
Let Nr(x) be the number of r-free integers ≤ x. It is well know that for r fixed

Nr(x) =
1

ζ(r)
x+O(x1/r). (1)

For a study of these asymptotic formulae, we refer to [2, Equation 14.24 ].
In this paper, we study the odd/even dichotomy for the set of r-free numbers. The motivation follows

from work of Scott [5] and Jameson [3], where it was shown that the ratio of odd to even square-free numbers
is asymptotically 2 : 1. In 2020, the second author [6] used an elementary method to prove the odd/even
dichotomy for the set of square-full numbers. In 2021, Tippawan Puttasontiphot and Teerapat Srichan [7]
extended the method in [6] to the case of cube-full numbers. Very recently, Jameson [4] used this to give a
new proof in [3]. Thus, it would be interesting to generalize these results to the odd/even dichotomy for the
set of r-free numbers by using the method in [6].
Here we prove the following results.

Theorem 1 As x→∞, we have

O(x)

E(x)
∼ 2r

2r − 2 , (2)

where O(x) and E(x) denote the number of odd and even r-free positive integers not greater than x, respec-
tively.

Corollary 2 As x→∞, we have

Codd(x)

Ceven(x)
∼ 2, (3)

where Codd(x) and Ceven(x) denote the number of odd and even square-free positive integers not greater than
x, respectively.
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Notations

Let A be a given set, for x > 1, we denote A(x) be the number of elements in A. f(x) ∼ g(x) means
lim
x→∞

f(x)
g(x) = 1 and we say that f(x) is asymptotic to g(x) as x→∞.

2 Proofs

Proof of Theorem 1. Let E and O be the set of all even and odd r-free integers, respectively. We assume
that,

O(x) ∼ ax and E(x) ∼ bx, for some a, b ∈ R+. (4)

Denote
A1 = {n ∈ E : 4 - n}, A

′

1 = {n ∈ E : 4 | n},
for 2 ≤ k ≤ r − 2,

Ak = {n ∈ A
′

k−1 : 2
k+1 - n}, A

′

k = {n ∈ A
′

k−1 : 2
k+1 | n}.

We note that A
′

k = Ak+1 ∪A
′

k+1. Thus,

E =
( r−2⋃
k=1

Ak

)
∪A

′

r−2. (5)

For 1 ≤ k ≤ r − 2, set Ak are disjoint set. Thus, from (5), we have

E(x) =
( r−2∑
k=1

Ak(x)
)
+A

′

r−2(x). (6)

Now, we note that the element n ∈ Ak is the form n = 2k+1m+ 2k, for some m ∈ N ∪ {0}. Thus, n
2k
is odd

and r-free. This implies that, for 1 ≤ k ≤ r − 2,

Ak(x) = O
( x
2k

)
. (7)

Similary, the element h ∈ A′r−2 is the form h = 2rm1 + 2
r−1, for some m1 ∈ N∪ {0}. Thus, h

2r−1 is odd and
r-free. This implies that,

A
′

r−2(x) = O
( x

2r−1

)
. (8)

Inserting (7) and (8) in (6), we have

E(x) =

r−2∑
k=1

O
( x
2k

)
+O

( x

2r−1

)
=

r−1∑
k=1

O
( x
2k

)
. (9)

In view of (4) and (9), we have

bx =

r−1∑
k=1

a
x

2k
= ax

(
1− 21−r

)
.

This proves (2).
Now it remains to prove the existence of a and b.

In view of (9), we write

Nr(x) = O(x) + E(x) =

r−1∑
k=0

O
( x
2k

)
. (10)
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We replace x in (10) by x/2 and subtract this with (10). We have

Nr(x)−Nr
(x
2

)
= O(x)−O

( x
2r

)
. (11)

Replacing x in (11) by x/2r, we have

Nr

( x
2r

)
−Nr

( x

2r+1

)
= O

( x
2r

)
−O

( x

22r

)
. (12)

In view of (11) and (12), we have

Nr(x)−Nr
(x
2

)
+Nr

( x
2r

)
−Nr

( x

2r+1

)
= O(x)−O

( x

22r

)
.

Repeating this, we have

O(x)−O
( x

2r(k+1)

)
=

k∑
i=0

Nr

( x

2ri

)
−

k∑
i=0

Nr

( x

2ri+1

)
. (13)

The asymptotic formula (1) implies Nr(x) ∼ cx, where c = 1/ζ(r). Then, for ε > 0, we take x0 such that

(c− ε)x ≤ Nr(x) ≤ (c+ ε)x, for x ≥ x0. (14)

To apply inequality (14) with (13), we take k such that x
2rk+r+1

< x0 ≤ x
2rk+1

. Then, we have

(c− ε) x

2ri+1
≤ Nr(

x

2ri+1
) ≤ (c+ ε) x

2ri+1
, (15)

and
(c− ε) x

2ri
≤ Nr(

x

2ri
) ≤ (c+ ε) x

2ri
, (16)

for 0 ≤ i ≤ k. In view of (13), (15) and (16), we have

O(x)−O
( x

2r(k+1)

)
≤

k∑
i=0

(c+ ε)
x

2ri
−

k∑
i=0

(c− ε) x

2ri+1

= x
( c
2
+
3ε

2

) k∑
i=0

1

2ri

≤ x
( c
2
+
3ε

2

) ∞∑
i=0

1

2ri

= x
( c
2
+
3ε

2

) 2r

2r − 1 .

From the choosing k such that x
2rk+r+1

< x0 ≤ x
2r(k+1)

, we have O
(

x
2r(k+1)

)
≤ O(2x0) < 2x0. Then, we have

O(x) ≤ x
(
c+ 3ε

) 2r−1
2r − 1 + 2x0 ≤ x

(
c+ 3ε

) 2r−1
2r − 1 +

2r+1

2r − 1x0.

Thus, for x > x0
ε ,

O(x) ≤ x
(
c+ 3ε

) 2r−1
2r − 1 +

2r−1

2r − 14xε = x
(
c+ 7ε

) 2r−1
2r − 1 .
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By the similar proof we deal with the lower bound. In view of (13), (15) and (16), we have

O(x)−O
( x

2r(k+1)

)
≥

k∑
i=0

(c− ε) x
2ri
−

k∑
i=0

(c+ ε)
x

2ri+1

= x
( c
2
− 3ε
2

) k∑
i=0

1

2ri

= x
( c
2
− 3ε
2

) 2r

2r − 1 − x
( c
2
− 3ε
2

) 2−rk
2r − 1

≥ x
(
c− 3ε

) 2r−1
2r − 1 −

cx

2rk+1(2r − 1) .

We note that 2rx0 ≥ x
2rk+1

. Then, we have

O(x) ≥ O(x)−O
( x

2r(k+1)

)
≥ x

(
c− 3ε

) 2r−1
2r − 1 − cx0

2r

2r − 1 .

Thus, for x > x0
ε ,

O(x) ≥ O(x)−O
( x

2r(k+1)

)
≥ x

(
c− 3ε− 2cε

) 2r−1
2r − 1 .

This proves the existence of a and consequently b also exists, in fact b = c− a.
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