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Abstract

In this paper, we introduce and study the concept of epi convergence for double function sequences
and establish the equivalence between epi convergence of a sequence of functions and the Kuratowski
convergence of their epigraphs.

1 Introduction

The concept of epi convergence is important because it provides a convenient concept of convergence to
approximate minimization problems in the field of mathematical optimization. Recently, studies on double
sequences have gained importance. In this study, we will generalize the concept of epi convergence, which is
known for single function sequences, to the double function sequences.
Double sequences may arise as solutions of partial difference equations. Convergence properties of these

solutions are as important as many others such as boundedness, positivity, oscillatory behaviors, periodicity
(see the articles [7], [12] and [13]. For the detailed information on the subject and the studies on convergence
methods and their applications (see, for examples,[6, 8, 10, 14, 15, 16, 17, 18, 19, 22, 23]).
Now, we recall the basic definitions and concepts. Let’s start by giving the definition of convergence of

a double sequence. The notion of convergence for double sequences was presented by Pringsheim [21].
A double sequence x = (xnm)n,m∈N of real numbers is said to be convergent to L ∈ R in Pringsheim’s

sense if for any ε > 0, there exists Nε ∈ N such that |xnm − L| < ε, whenever n,m > Nε. In this case we
write

P − lim
n,m→∞

xnm = L.

A double sequence x = (xnm) is bounded if and only if there exist a positive integer M such that
|xnm| < M for all n and m.
A double subsequence of a double sequence is defined as follows (see, for example, [20]):
A double subsequence y = (ynm) is a double subsequence of x = (xnm) provided that there exist increasing

index sequences (nj) and (mj) such that y is formed by

xn1m1
xn2m2

xn5m5
xn10m10

xn4m4 xn3m3 xn6m6 −
xn9m9 xn8m8 xn7m7 −
− − − −.

A double sequence x = (xnm) is said to converge regularly if it converges in Pringsheim’s sense and, in
addition, the following finite limits exist:

lim
n→∞

xnm = am (m = 1, 2, 3, ...),

lim
m→∞

xnm = an (n = 1, 2, 3, ...).
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Note that the main drawback of the Pringsheim’s convergence is that a convergent double sequence fails in
general to be bounded. The notion of regular convergence introduced by Hardy [9] lacks this disadvantage.
In addition to the Pringsheim’s convergence, the regular convergence requires the convergence of rows and
columns of a double sequence.
Let x = (xnm) be a double subsequence of real numbers and, for each k, let αk = supk{xmn : m,n ≥ k}.

The Pringsehim limit superior of x = (xnm) is defined as follows:

(i) if αk = +∞ for each k, then P − lim supxnm := +∞;

(ii) if αk < +∞ for some k, then P − lim supxnm := infk{αk}.

Similarly, for eack k, let βk = infk{xmn : m,n ≥ k}. Then the Pringsheim limit inferior of x = (xnm)
is defined as follows:

(iii) if βk = −∞ for each k, then P − lim inf xnm := −∞;

(iv) if βk > +∞ for some k, then P − lim inf xnm := supk{βk}.

Example 1 Let the double sequence (xnm) defined by

xnm =


n, if m = 0,
−m, if n = 0,
(−1)m, if m = n > 0,
0, otherwise.

Then we have P − lim inf xnm = −1 and P − lim supxnm = 1. This sequence is neither bounded above nor
bounded below; however, the Pringsheim limit superior and inferior are both finite numbers.

A double sequence of functions (fnm) is said to be pointwise convergent to f on a set S ⊂ R if for each
point x in S and for each ε > 0, there exists a positive integer N = N(x, ε) such that

|fnm(x)− f(x)| < ε, for all n,m > N.

In this case, we write P − lim fnm(x) = f(x) or fmn → f on S.
An extended real-valued function f : X → [−∞,∞] on a metrizable space X is called lower semicontinuous

provided its epigraph
epif ≡ {(x, α) : x ∈ X,α ∈ R and α ≥ f(x)}

is a closed subset of X × R.
A fundamental convergence concept for sequences of lower semicontinuous functions in optimization

theory, decision theory, homogenization problems and variational analysis is the notion of epi convergence.
During the last three decades the concept of epi convergence was introduced and then it was used in various
investigations in optimization and related areas. There are many papers dealing with the epi convergence of
single sequences of functions. In this paper we will introduce and study the concept of epi convergence for
double sequences of functions.

2 Epi Convergence of Double Sequence of Functions

In order to give the definition of epi convergence of a double sequence of functions, we will first give the
following definition.

Definition 1 Let (X, d) be a metric space. For every x ∈ X let us denote the system of the neighbourhood
of x by U(x). To any double sequence (fnm) of functions from X into [−∞,∞], we have associated two limit
functions:
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(a) The epi limit inferior of the sequence (fnm), denoted by liefnm, is defined by

(liefnm)(x) = sup
V ∈U(x)

P − lim inf
n,m

inf
u∈V

fnm(u).

(b) The epi limit superior of the sequence (fnm), denoted by lsefnm, is defined

(lsefnm)(x) = sup
V ∈U(x)

P − lim sup
n,m

inf
u∈V

fnm(u).

Definition 2 Let (X, d) be a metric space and (fnm) be a double sequence of functions from X into [−∞,∞].
This sequence (fnm) is said to be epi convergent at x if the following equality holds:

(liefnm)(x) = (lsefnm)(x).

This common value is then denoted lime fnm(x):

limefnm(x) = liefnm(x) = lsefnm(x).

For lower semicontinuous functions equivalent definition can be given as following:

Definition 3 Let (fnm) be a double sequence of lower semicontinuous function on a metric space (X, d).
We say that (fnm) is epi convergent to f , in sense of Pringsheim, and we write f = limefnm, provided at
each x ∈ X, the following two conditions both hold:

(c) whenever (xnm) is P-convergent to x, we have

f(x) ≤ P − lim inf
nm

fnm(xnm),

f(x) ≤ lim inf
n

fnm(xnm)

and
f(x) ≤ lim inf

m
fnm(xnm);

(d) there exists a sequence (xnm) is P-convergent to x such that

f(x) = P − lim
nm

fnm(xnm).

Some Examples

Example 2 Let fmn : R→ R be defined by fnm(x) = max{ x
nm ,−1} and f(x) ≡ 0. Then the double function

sequence (fnm) is epi convergent to the function f .

Example 3 Let fmn : R→ R be defined by

f2n,2m(x) =

{
1
nm , if x is rational,
1− 1

nm , otherwise,

and

f2n+1,2m+1(x) = 1− 2f2n,2m =
{
1− 1

nm , if x is rational,
1
nm , otherwise.

Then we have the subsequences (f2n,2m(x)) converging to

g(x) =

{
0, if x is rational,
1, otherwise,
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and (f2n+1,2m+1(x)) converging to

h(x) =

{
1, if x is rational,
0, otherwise.

Since g(x) 6= h(x) ∀x ∈ R, the sequence (fkl(x)) does not convergence pointwise. On the other hand, this
sequence is easily shown to be epi convergent with the epi-limit f(x) ≡ 0, by choosing for any arbitrary x
and a sequence (ynm) according to

y2n,2m rational such that |y2n,2m − x| <
1

nm

and

y2n+1,2m+1 irrational such that |y2n+1,2m+1 − x| <
1

nm
.

Then ykl → x and fkl(ykl) = 1
kl/2 → 0 thus lim supkl fkl < f(x) = 0 whereas 0 = f(x) ≤ P−lim infkl fkl(xkl),

0 = f(x) ≤ lim infk fkl(xkl) and 0 = f(x) ≤ lim inf l fkl(xkl) are trivially satisfied for any sequence (xkl)
converging to x.

Example 4 Take fnm = gnm, where

gnm(x) =

{
0, if x ∈ Q or x = k

j+l , k ∈ Z, j ∈ {1, 2, ..., n}, l ∈ {1, 2, ...m},
−1, otherwise.

Then we have fnm → 0 pointwise, but lime fnm = −1. If we take fnm = (−1)n+mgnm, then we have fnm → 0
pointwise, but lime fnm does not exists at any point.

Example 5 Let fmn : R→ R be defined by fmn(x) = mne(m+n)x. Then we have

P − lim fmn =
{
0, if x ≤ 0,
+∞, if x > 0,

and

limefmn =

 0, if x ≤ 0,
− 1e , if x = 0,
+∞, if x > 0.

Example 6 Let fmn : R→ R be defined by

fmn(x) =


0, if x ≤ − 1

m+n ,
(m+n)x+1

3 , if − 1
m+n ≤ x ≤

1
m+n ,

1, if x ≥ 1
m+n .

Then we have

P − lim fmn =

 0, if x ≤ 0,
1
3 , if x = 0,
1, if x > 0

and

limefmn =

{
0, if x ≤ 0,
1, if x > 0.
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The lower semicontinuity property of functionals has often played an important role in proving the
existence of the extremals of the functionals.

Theorem 1 Let (fnm) be a sequence of lower semicontinuous functional on a metric space (X, d). If (fnm)
is epi convergent to f then the functional f is lower-semicontinuous (l.s.c.).

Proof. Assume that at some x the limit f is not l.s.c. Then there exists an ε > 0 such that in any
neighbourhood U(x, 1

nm ) = {w : d(w, x) < 1
nm} we can find an element wnm ∈ U(x, 1

nm ) satisfying
f(wnm) < f(x) − ε. Since (fnm) is epi convergent to f , we have for all double sequence (wmn) there exists
subsequence (ξvnm) such that

d(ξvnm , wnm) <
1

nm

and
fvnm(ξvnm) < f(wnm) +

1

nm

where (vnm) can be chosen as to be strictly increasing in the Pringsheim sense. Hence we have a double
sequence (ξvnm) which is P-convergent to x with

fvnm(ξvnm) < f(wnm) +
1

nm
< f(x)− ε+ 1

nm

yielding
P − lim inf

nm
fvnm(ξvnm) ≤ f(x)− ε

in contradiction to for all (ξvnm), P-convergent to x,

f(x) ≤ P − lim inf
nm

fvnm(ξvnm)

according to the assumption of epi-convergence.

Definition 4 We say that a double function sequence fnm : X → [0,+∞] is equicoercive if there exists a
compact set K (independent of n and m) such that

inf{fnm(x) : x ∈ X} = inf{fnm(x) : x ∈ K}.

Theorem 2 Let (fmn) be an equicoercive double sequence of functional which is epi converges in the Pring-
sheim sense to the functional f . Assume that (xnm) is a double sequence of minimizers for (fnm), respectively
and P− limnm xnm = L then L is a minimizer of f and

f(L) = min
x∈X

f(x) = P− lim
nm

fnm(xnm) = P− lim
nm
min
x∈X

fnm(x).

Proof. From the (c) part of the definition of epi convergence in the sense of Pringsheim we are granted the
following

f(L) ≤ P− lim inf
nm

fnm(xnm).

Now, for any L0 ∈ X , we know that there exists a double sequence {ynm} such that P − limnm ynm = L0
and

P− lim
nm

fnm(ynm) = f(L0).

Using the fact that xnm is a minimizer of fnm, we obtain the following

f(L0) = P− lim
nm

fnm(ynm) ≥ P− lim sup
nm

fnm(xnm) ≥ P− lim inf
nm

fnm(xnm) ≥ f(L)

and therefore L is a minimizer of f . Eventually, letting L0 = L leads to the fact that all inequalities are in
fact equalities and we have the result.
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3 Kuratowski Convergence of Double Sequences of Sets

The study of Kuratowski convergence of epigraphs originated with Wijsman [24, 25], and has its roots in
convex analysis. This mode of convergence is now usually called epiconvergence in the literature (see, for
example, [1]-[5],[11]). In this section, this concept will be generalized to double set sequences.

Definition 5 Let (Anm) be double sequence of subsets of X. The lower limit of the sequence (Anm) is
defined by

LiAnm = cl

 ⋃
(n,m)∈N×N

⋂
{(k,l):k≥n,l≥m}

clAkl


where cl denotes the closure operation.
The upper limit of the double sequence (Anm) is defined by

LsAnm =
⋂

(n,m)∈N×N

cl

 ⋃
{(k,l):k≥n,l≥m}

clAkl

 .

The double sequence (Anm) is said to be convergent if the following equality holds:

LiAnm = LsAnm.

Its limit, denoted A = LimAnm, is the subset A of X equal to this common value. We shall refer to this
notion of set convergence under the name Kuratowski convergence.

The following theorem make these limits easy to handle:

Theorem 3 Let (Anm) be a double sequence of subset of X. Then

LiAnm =
⋂

N∈N ]
∞

cl

 ⋃
(k,l)∈N

Akl

 (1)

and

LsAnm =
⋂

N∈N∞

cl

 ⋃
(k,l)∈N

Akl

 (2)

where
N∞ = {N ⊂ N× N : N× N \N is finite}

N ]
∞ = {N ⊂ N× N : N is infinite}.

Proof. Formula (2) follows directly from the definition of LsAnm. Let us prove (1).

LiAnm = cl

 ⋃
(n,m)∈N×N

⋂
{(k,l):k≥n,l≥m}

clAkl

 ⊂ ⋂
N∈N ]

∞

cl

 ⋃
(k,l)∈N

Akl

 .

Since the second member is closed, it is equivalent to prove that

⋂
{(k,l): k≥n,l≥m}

clAkl ⊂ cl

 ⋃
(k,l)∈N

Akl
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for all (n,m) ∈ N× N and for all N ∈ N ]
∞. By definition of N ]

∞, since N ∈ N ]
∞ for any (n,m) ∈ N× N

{(k, l) ∈ N× N : k ≥ n, l ≥ m}
⋂
N 6= ∅.

Therefore ⋂
{(k,l):k≥n,l≥m}

clAkl ⊂
⋃

(k,l)∈N

clAkl ⊂ cl

 ⋃
(k,l)∈N

clAkl

 =
⋃

(k,l)∈N

clAkl.

Let us now prove the opposite inclusion

cl(
⋃

(n,m)∈N×N

⋂
{(k,l):k≥n,l≥m}

clAkl) ⊃
⋂

N∈N ]
∞

cl

 ⋃
(k,l)∈N

Akl

 .

It is equivalent to prove that for any sequence of closed sets (Anm)

R = cl

 ⋃
(n,m)∈N×N

⋂
{(k,l):k≥n,l≥m}

Akl

 ⊃ ⋂
N∈N ]

∞

cl

 ⋃
(k,l)∈N

Akl

 = Q.

Let us take x /∈ R and prove that x /∈ Q. Since x /∈ R, there exists a neighbourhood U which contains x and
satisfies; for all (n,m) ∈ N× N there exists kn > n, lm > m such that

U ∩Akn,lm = ∅.

Let us define N = {(kn, lm) : (n,m) ∈ N× N}. N belongs to N ]
∞ and for all (k, l) ∈ N

U ∩Akl = ∅;

equivalently
U ∩ (

⋃
(k,l)∈N

Akl) = ∅.

So we have found an N ∈ N ]
∞ such that

x /∈ cl(
⋃

(k,l)∈N

Akl),

which is equivalent to say that x /∈ Q.

Theorem 4 Let (X, d) be a metric space and (Anm) be a double sequence of subsets of X. Then LiAnm
and LsAnm are two closed subsets of X and LiAnm ⊂ LsAnm.

Proof. Since intersection of closed sets is closed, from (1) and (2) it follows that LiAnm and LsAnm are
closed. The inclusion LiAnm ⊂ LsAnm follows from (1), (2) and the inclusion N∞ ⊂ N ]

∞.

Proposition 1 Let (X, d) be a metric space. For any double sequence (Anm) of subset of X the following
sequential formulations hold:

LiAnm = {x ∈ X : ∃(xnm),∀(n,m) ∈ N× N, xnm ∈ Anm P − lim
n,m→∞

xnm = x} (3)

and
LsAnm = {x ∈ X : ∃(nk,ml),∃(xkl),∀(k, l) ∈ N× N, xkl ∈ Ankml

P − lim
k,l→∞

xkl = x}. (4)
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Proof. Let us first prove (3); the inclusion

LiAnm ⊃ {x = P − lim
n,m→∞

xnm : xnm ∈ Anm}

is true in a metric space. Let (xnm) be such that for all (n,m) ∈ N× N xnm ∈ Anm and

P − lim
n,m→∞

xnm = x;

then for any neighbourhood U of x, there exists NU ∈ N∞ such that⋃
(k,l)∈NU

{xkl} ⊂ U.

Since for any N ∈ N ]
∞, N ∩NU 6= ∅, it follows preceding inclusion that

U ∩

 ⋃
(k,l)∈N

Akl

 6= ∅.
This being true for any neighbourhood of x and any N ∈ N ]

∞, it follows from (1) that

x ∈
⋂

N∈N ]
∞

cl(
⋃

(k,l)∈N

Akl) = LiAnm.

Let us prove the opposite inclusion. Let x ∈ LiAnm and (Ukl) be a countable open neighbourhoods of
x which is decreasing and such that

⋂
(k,l)N×N Ukl = {x}. By definition of LiAnm, for every (k, l) ∈ N× N

there exist integers nk and ml such that

Ukl
⋂
Anm 6= ∅

forall n ≥ nk, m ≥ ml. Let us define a sequence (xnm) in the following way: For each n such tat nk ≤ n <
nk+1 and for each m such that ml ≤ m < mk+1, take xnm ∈ Ukl

⋂
Anm, which is nonvoid. The defined

sequence (xnm) satisfies for all (n,m) ∈ N× N xnm ∈ Anm and for all (k, l) ∈ N× N xnm ∈ Ukl for all
n ≥ nk and m ≥ ml. This exactly the definition of the convergence of the sequence (xnm) to x.
The proof of (4) can be obtained in a similar way.

From this proposition, we get the sequential definitions of convergence of a double sequence of sets.

Definition 6 Let (Anm) be a double sequence of closed subsets of X. We say that (Anm) is Kuratowski
convergent to a closed subset A of X provided A = LiAnm = LsAnm, where

LiAnm = {x ∈ X : there exist a sequence (anm) P-convergent to

x with anm ∈ Anm for all but finitely many pairs of integers (n,m)}

and

LsAnm = {x ∈ X : there exists positive integers n1 < n2 < n3 < ...,

m1 < m2 < m3 < ... and akl ∈ Ankml
such that P − lim

k,l→∞
akl = x}.

When A = LiAnm = LsAnm, we write A = LimAnm.
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Example 7 Let (Anm) be the following double sequence of sets:

Anm = {1,
1

2
,
1

3
, ...,

1

n+m
}.

For any n,m ∈ N

cl

 ∞⋃
k≥n,l≥m

Akl

 = {0} ∪ { 1

n+m
: n,m ∈ N}

and
∞⋂

n,m=1

cl

 ∞⋃
k≥n,l≥m

Akl

 = {0} ∪ { 1

n+m
: n,m ∈ N}.

Similarly
∞⋂

k≥n,l≥m
Akl = Anm,

∞⋃
n,m=1

∞⋂
k≥n,l≥m

Akl = {
1

n+m
: n,m ∈ N}

and

cl

 ∞⋃
n,m=1

∞⋂
k≥n,l≥m

Akl

 = {0} ∪ { 1

n+m
: n,m ∈ N}

and then the double sequence (Anm) is Kuratowski convergent to

{0} ∪ { 1

n+m
: n,m ∈ N}.

Example 8 Let (Anm) be the following double sequence of sets

Anm = {(x, y) ∈ R2 : y ≤ nmx}.

This double sequence of sets is Kuratowski convergent to the set

A = {(x, y) ∈ R2 : 0 ≤ x}

Example 9 Let the double set sequence (Anm) be defined by

Anm = {(x, y) ∈ R2 : |x|
n+m
2 + |y|

n+m
2 ≤ 1}.

Then this double sequence of sets is Kuratowski convergent to the set

A = {(x, y) ∈ R2 : |x| ≤ 1, |y| ≤ 1}.

Theorem 5 Let (X, d) be a metric space and (fnm) a double sequence of functions from X into [−∞,∞].
The limit sets Li(epifnm) and Ls(epifnm) are still epigraphs. They are equal to the epigraphs of lsefnm and
liefnm respectively, that is,

Li(epifnm) = epi(lsefnm) (5)

Ls(epifnm) = epi(liefnm). (6)
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Proof. Let us first prove (5). By definition Li, (x, α) ∈ Li(epifnm) if and only if: For all V ∈ U(x) and for
all ε > 0, there exists (n,m) ∈ N× N such that for all k ≥ n, l ≥ m

(V × (α− ε, α+ ε)) ∩ epifkl 6= ∅.

This is equivalent to for all V ∈ U(x) and for all ε > 0, there exist (n,m) ∈ N × N such that for all k ≥ n,
l ≥ m and xkl ∈ V satisfying

α+ ε > fkl(xkl).

This can be reformulated in the following way:

α ≥ sup
V ∈U(x)

inf
(n,m)∈N×N

sup
{(k,l):k≥n,l≥m}

inf
u∈V

fkl(u)

that is

α ≥ sup
V ∈U(x)

P − lim sup
n,m→∞

inf
u∈V

fnm(u) = (lsefnm)(x)

which means (x, α) ∈ epi(lsefnm).
Let us prove (6). By definition Ls, (x, α) ∈ Ls(epifnm) if and only if: for all (n,m) ∈ N × N , for all

V ∈ U(x) and for all ε > 0, there exists k ≥ n, l ≥ m such that

(V × (α− ε, α+ ε)) ∩ epifkl 6= ∅.

Because the sets are epigraphs, this is equivalent to: for all (n,m) ∈ N × N, for all V ∈ U(x) and for all
ε > 0, there exists xkm ∈ V such that

α+ ε > fkl(xkl).

This can be reformulated in the following way:

α ≥ sup
V ∈U(x)

sup
(n,m)∈N×N

inf
{(k,l):k≥n,l≥m}

inf
u∈V

fkl(u)

that is,

α ≥ sup
V ∈U(x)

P − lim inf
n,m→∞

inf
u∈V

fnm(u) = (liefnm)(x)

which means (x, α) ∈ epi(liefnm).
We are now able to state the main result of this paper and establish the equivalence between the epi

convergence of a double sequence of functions and the Kuratowski convergence of double sequences of set of
their epigraphs. It is direct consequence of Definition 2 and Thoerem 5.

Theorem 6 Let (X, d) be a metric space and (fnm) a double sequence of functions from X into [−∞,∞].
The sequence(fnm) is epi convergent if and only if the sequence of sets (epifnm) is convergent in the Kura-
towski sense. In that case following equality holds:

epi(limefnm) = Lim(epifnm).

Theorem 6 allows us to interpret, by consideration of epigraphs, the epi convergence of a double sequence
of functions in terms of double set convergence.

Acknowledgment. The author is thankful to the referees for their valuable comments.
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