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Abstract

A simple proof for an integral representation of the Catalan numbers that makes use of an ordinary
generating function approach and relies on essentially nothing beyond elementary integral calculus is
presented. Application of the integral representation given is then made in the evaluation of a family of
infinite sums consisting of products between the central binomial coeffi cient and the bicentral binomial
coeffi cient.

1 Introduction

A representation of special numbers obtained from various counting sequences using an integral is one of
a number of important tools available in their analysis. Integral representations for a number of classical
counting numbers are known with the greatest number of representations found for the Catalan numbers
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11].
Recall the nth Catalan number Cn is defined by the recurrence relation Cn =

∑n−1
k=0 CkCn−k−1 for

n ∈ Z>0 = {1, 2, 3, . . .} with C0 = 1. In the case of the Catalan numbers a great many integral representations
are known. A summary of these are to be found in [12]. A canonical example of an integral representation
for the Catalan numbers is given in the following theorem.

Theorem 1 (Penson and Sixdeniers [1, p. 2, Eq. (10)]) For n ∈ Z>0 the Catalan numbers Cn can be
represented by the integral

Cn =
1

2π

∫ 4

0

xn
√

4− x
x

dx. (1)

The integral representation for the Catalan numbers given in (1) was first established by Penson and
Sixdeniers using the Mellin transform [1]. A few years later it was proved by Dana-Picard using a recurrence
relation combined with a telescoping process [2].
A wealth of alternative integral representations for the Catalan numbers stem from (1) on applying various

substitutions. One such alternative representation is obtained on enforcing a substitution of x 7→ 1
x+ 1

4

. Doing

so yields

Cn =
4n+2

π

∫ ∞
0

√
x

(4x+ 1)n+2
dx, (2)

and is the form of the integral representation for the Catalan numbers to be used in section 3. The result
was recently established using a particularly interesting application of Cauchy’s integral formula [10]. As an
alternative to this advanced technique it can be proved using an ordinary generating function approach to
be introduced in the next section.
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638 Proof and Applications of An Integral Representation

2 Proof Using an Ordinary Generating Function Approach

We give a new proof for the integral representation of the Catalan numbers given by (1) using an ordi-
nary generating function approach. Recalling the well-known ordinary generating function for the Catalan
numbers of [13, p. 4, Eq. (1.3)]

∞∑
n=0

Cnx
n =

1−
√

1− 4x

2x
, |x| < 1

4
, (3)

the proof to be given relies on essentially nothing beyond elementary integral calculus.

Proof. Let

Λn =

∫ 4

0

xn
√

4− x
x

dx.

Enforcing a substitution of x 7→ 4x gives

Λn = 4

∫ 1

0

(4x)n
√

1− x
x

dx.

Now consider the following ordinary generating function given by

G(t) =

∞∑
n=0

Λnt
n = 4

∞∑
n=0

∫ 1

0

(4tx)n
√

1− x
x

dx. (4)

After interchanging the summation and the integration, which is permissible due to Fubini’s theorem [14,
Thm. 2.25, p. 55], for all |t| < 1

4 (4) becomes

G(t) = 4

∫ 1

0

√
1− x
x

∞∑
n=0

(4tx)n dx = 4

∫ 1

0

√
1− x
x

dx

1− 4tx

=
2

t

[
√

1− 4t arctan

(√
1− x
x

1√
1− 4t

)
− arctan

(√
1− x
x

)]1
0

=
π
(
1−
√

1− 4t
)

t
= 2π

∞∑
n=0

Cnt
n, (5)

where in the second line the integration performed is elementary while in the third line we have made use
of the ordinary generating function for the Catalan numbers given in (3). Equating equal coeffi cients for tn

in (5) gives Λn = 2πCn from which the desired integral representation for the Catalan numbers then follows
and completes the proof.

3 Some Applications to Infinite Sums

One application for the integral representations found for the Catalan numbers is in their use in the evaluation
of a family of infinite sums that contain the product between the central binomial coeffi cient

(
2n
n

)
and the

bicentral binomial coeffi cient
(
4n
2n

)
. We give six examples and indicate how others in a certain family of

infinite sums can be found. Another example not given here that employs an integral representation for the
Catalan numbers in the evaluation of a similar looking infinite sum can be found in [15].

Proposition 1
∞∑
n=0

(
4n

2n

)(
2n

n

)
1

64n(n+ 1)
=

8
√

2

3π
. (6)
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Proof. Denote the value for the infinite sum to be found by S. From the well-known closed-form expression
for the Catalan numbers in terms of the central binomial coeffi cient, namely [13, p. 4, Eq. (1.6)]

Cn =
1

n+ 1

(
2n

n

)
,

we may write

S =

∞∑
n=0

(
4n

2n

)
Cn
64n

=
16

π

∞∑
n=0

(
4n

2n

)
1

16n

∫ ∞
0

√
t

(4t+ 1)n+2
dt,

after the integral representation for the Catalan numbers given in (2) has been used. Due to the positivity
of all terms involved, the summation and the integration may be interchanged. Doing so yields

S =
16

π

∫ ∞
0

√
t

(4t+ 1)2

∞∑
n=0

(
4n

2n

)
1

(4
√

4t+ 1)2n
dt. (7)

For the infinite sum appearing in (7), applying the classical result for absolutely convergent series of

∞∑
n=0

a2n =
1

2

∞∑
n=0

an +
1

2

∞∑
n=0

(−1)nan, (8)

we find
∞∑
n=0

(
4n

2n

)
1

(4
√

4t+ 1)2n
=

1

2

∞∑
n=0

(
2n

n

)
1

(4
√

4t+ 1)n
+

1

2

∞∑
n=0

(
2n

n

)
(−1)n

(4
√

4t+ 1)n
. (9)

Recalling the ordinary generating function for the central binomial coeffi cients of

∞∑
n=0

(
2n

n

)
xn =

1√
1− 4x

, |x| < 1

4
, (10)

setting, in turn, x = 1
4
√
4t+1

and x = −1
4
√
4t+1

in (10) with the results valid for all t > 0, (9) reduces to

∞∑
n=0

(
4n

2n

)
1

(4
√

4t+ 1)2n
=

4
√

4t+ 1

2

[
1√√

4t+ 1− 1
+

1√√
4t+ 1 + 1

]
=

√
2 4
√

4t+ 1

4
√
t

√√
4t+ 1 + 2

√
t.

Note here the term appearing in square brackets has been algebraically rearranged by finding it square before
taking its square root to give the final expression on the right. Thus (7) becomes

S =
4
√

2

π

∫ ∞
0

√√
4t+ 1 + 2

√
t

(4t+ 1)
7
4

dt.

Substituting t = 1
4 tan2 θ produces

S =
2
√

2

π

∫ π
2

0

sin θ
√

1 + sin θ dθ =
2
√

2

π
· 4

3
=

8
√

2

3π
,

where the last of these integrals is elementary and can be found, for example, by substituting t = tan θ
2 , and

completes the proof.

Proposition 2
∞∑
n=0

(
4n

2n

)(
2n

n

)
1

64n(2n+ 1)(n+ 1)
=

4

π
log
(

3 + 2
√

2
)
− 8
√

2

3π
. (11)
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Proof. The proof proceeds in a similar fashion to that given for Proposition 1. Denoting the sum to be
found by S, in terms of the Catalan numbers which is then expressed in terms of the integral representation
given by (2) one has

S =

∞∑
n=0

(
4n

2n

)
Cn

64n(2n+ 1)
=

16

π

∫ ∞
0

√
t

(4t+ 1)2

∞∑
n=0

(
4n

2n

)
1

16n(2n+ 1)(4t+ 1)n
dt.

Here an interchange between the summation and the integration has been made and is permissible due to
the positivity of all terms involved. Applying the result in (8) to the infinite sum that appears one has

∞∑
n=0

(
4n

2n

)
1

(4
√

4t+ 1)2n(2n+ 1)
=

1

2

∞∑
n=0

(
2n

n

)
1

(4
√

4t+ 1)n(n+ 1)
+

1

2

∞∑
n=0

(
2n

n

)
(−1)n

(4
√

4t+ 1)n(n+ 1)
. (12)

If now in the ordinary generating function for the central binomial coeffi cients given by (10) one replaces x
with t and integrates with respect to t from 0 to x one obtains

∞∑
n=0

(
2n

n

)
xn

n+ 1
=

1−
√

1− 4x

2x
, |x| < 1

4
. (13)

Applying this result, in turn, with x replaced with 1
4
√
4t+1

and −1
4
√
4t+1

in (13), the sums in (12) can be found
and leads to

S =
16
√

2

π

∫ ∞
0

√
t

(4t+ 1)
7
4

√√
4t+ 1− 2

√
t dt,

or

S =
4
√

2

π

∫ π
2

0

sin θ tan θ
√

1− sin θ dθ,

after the same substitution of t = 1
4 tan2 θ as made in Proposition 1 has been used. The final integral is

elementary and can be found on substituting, for example, t = tan θ
2 . The result is

S =
4
√

2

π

(
1√
2

log
(

3 + 2
√

2
)
− 2

3

)
=

4

π
log
(

3 + 2
√

2
)
− 8
√

2

3π
,

and completes the proof.

Proposition 3
∞∑
n=0

(
4n

2n

)(
2n

n

)
1

64n(2n+ 1)
=

4

π
log
(

1 +
√

2
)
.

Proof. From the partial fraction decomposition of

1

(n+ 1)(2n+ 1)
=

2

2n+ 1
− 1

n+ 1
,

combining this result with the values for the sums found in (6) and (11), the result immediately follows and
completes the proof.

Remark 1 An alternative evaluation for the sum found in Proposition 3 is given by Campbell, D’Aurizio,
and Sondow in [16, p. 99].

Proposition 4
∞∑
n=0

(
4n

2n

)(
2n

n

)
2n+ 1

64n(n+ 1)(n+ 2)
=

176
√

2

105π
. (14)
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Proof. We begin by observing that

Cn+1 =
1

n+ 2

(
2n+ 2

n+ 1

)
=

2(2n+ 1)

(n+ 1)(n+ 2)

(
2n

n

)
.

Denoting the sum to be found by S, in terms of the Catalan number Cn+1 it becomes

S =
1

2

∞∑
n=0

(
4n

2n

)
Cn+1
64n

=
32

π

∫ ∞
0

√
t

(4t+ 1)3

∞∑
n=0

(
4n

2n

)
1

16n(4t+ 1)n
dt. (15)

Here the integral representation for the Catalan numbers given by (2) with n replaced with n+ 1 has been
used while the interchange made between the summation and the integration is permissible due to the
positivity of all terms involved. Next applying result (8) to the infinite sum appearing in (15) followed by
the result for the ordinary generating function for the central binomial coeffi cients given in (10) one arrives
at

S =
8
√

2

π

∫ ∞
0

√√
4t+ 1 + 2

√
t

(4t+ 1)
11
4

dt,

or

S =
4
√

2

π

∫ π
2

0

sin θ cos2 θ
√

1 + sin θ dθ,

after the same substitution of t = 1
4 tan2 θ as made in Proposition 1 has been used. The remaining integral

can be again found by elementary means. The result is

S =
4
√

2

π
· 44

105
=

176
√

2

105π
,

and completes the proof.

Proposition 5
∞∑
n=0

(
4n

2n

)(
2n

n

)
1

64n(n+ 2)
=

152
√

2

105π
. (16)

Proof. From the partial fraction decomposition of

2n+ 1

(n+ 1)(n+ 2)
=

3

n+ 2
− 1

n+ 1
,

combining this result with the values for the sums found in (6) and (14), the result immediately follows and
completes the proof.

Proposition 6
∞∑
n=0

(
4n

2n

)(
2n

n

)
1

64n(n+ 1)(n+ 2)
=

128
√

2

105π
.

Proof. From the partial decomposition of

1

(n+ 1)(n+ 2)
=

1

n+ 1
− 1

n+ 2
,

the result is an immediate consequence of the difference between (6) and (16) and completes the proof.
Generalising the methods used in obtaining Propositions 4 and 5 it is possible to find in closed form the

value for any sum of the form
∞∑
n=0

(
4n

2n

)(
2n

n

)
1

64n(n+ k + 1)
, (17)
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where k ∈ Z>0. That such sums could be found in closed form was first observed by Campbell, D’Aurizio,
and Sondow in [16]. These are built up from the base case of k = 0 given by (6). By finding the value for
the sum

∞∑
n=0

(
4n

2n

)
Cn+k
64n

,

using the result for the integral representation of the Catalan numbers given in (2) with n replaced with
n+ k, one finds

∞∑
n=0

(
4n

2n

)
Cn+k
64n

=
22k+1

√
2

π

∫ π
2

0

sin θ cos2k θ
√

1 + sin θ dθ =
22k+1

√
2

π
Ik. (18)

As

Cn+k =
1

n+ k + 1

(
2n+ 2k

n+ k

)
=

2k(2n+ 2k − 1)(2n+ 2k − 3) · · · (2n+ 1)

(n+ k + 1)(n+ k) · · · (n+ 1)

(
2n

n

)
,

the result for (17) then follows from a partial fraction decomposition of the rational function term appearing
in front of the central binomial coeffi cient term in Cn+k. For example, the first four sums after the base sum
found this way are:

k = 1 :

∞∑
n=0

(
4n

2n

)(
2n

n

)
1

64k(n+ 2)
=

152
√

2

105π
;

k = 2 :

∞∑
n=0

(
4n

2n

)(
2n

n

)
1

64k(n+ 3)
=

10 568
√

2

10 395π
;

k = 3 :

∞∑
n=0

(
4n

2n

)(
2n

n

)
1

64k(n+ 4)
=

178 328
√

2

225 225π
;

k = 4 :

∞∑
n=0

(
4n

2n

)(
2n

n

)
1

64k(n+ 5)
=

47 453 768
√

2

72 747 675π
.

As the above four examples show, for low orders of k values for the integral Ik appearing in (18) can be
readily found, these being a positive rational number for each k ∈ Z>0. It would however be nice if a general
expression for the integral Ik in terms of k could be found. To this end it is possible to express Ik in closed
form as the sum of two hypergeometric functions [17, 18]. Here it can be shown that

Ik =
2

3
√

2
2F1

(
−2k,

3

2
;

5

2
; 1

)
+

1

2k + 1
2F1

(
−1

2
, 1; 2k + 2;

1

2

)
=

42k+1(2k + 2)!(2k)!
√

2

(4k + 4)!
+

1

2k + 1
2F1

(
−1

2
, 1; 2k + 2;

1

2

)
.

In the second line the first of the hypergeometric functions has been simplified using the Chu—Vandermonde
identity [19, Entry 15.4.24, p. 387]. Further simplification does not appear possible. Alternatively, as a
simple positive rational number we conjecture that

Ik = 2

k+1∑
n=0

bn+k+12 c∑
i=n

(−1)n

2n+ 2k + 1

(
n+ k + 1

2i

)(
i

n

)
,

and appears the best we can do.

Acknowledgment. The author is grateful to Sangchul Lee for the conjectured expression for the integral
Ik appearing in (18) which expresses its value explicitly in terms of a simple positive rational number.
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