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Abstract

Huanglongbing disease is a severe disease of the citrus trees and the most destructive disease world-
wide, which has proved diffi cult to control. We study in the present work by formulating a mathematical
model for huanglongbing (HLB) transmission between citrus trees and Asian Citrus Psyllid (ACP). The
model incorporates a fraction of susceptible citrus trees that undergo irrigation and nutrition with a
view to preventing transmission of HLB between citrus trees and ACP population, as irrigation and
nutrition have been shown to boost trees’immunity. The basic reproduction number, R0, global stability
of disease-free and endemic equilibrium points are studied, for understanding and prediction of HLB
transmission. We proceed further to carry out sensitivity analysis in order to determine the parameters
that R0 is most sensitive to, positively and negatively. The results indicate that the parameters α (ACP
biting rate) and ρ (fraction of susceptible ACP who are sensitive to insecticides) are the most domi-
nant sensitivity indices towards the basic reproduction number. This suggests that constant practice
of irrigation and nutrition can effectively lower R0. Numerical simulation is performed to confirm the
analytical results and to investigate various control strategies. Our result suggests that adoption of con-
stant practice of irrigation and nutrition will lead to reduction in the transmission of HLB in citrus tree
population. However the intervention strategy needs to be implemented together with other intervention
strategies. The results obtained from this study can help the citrus trees industries and the biologists to
adopt better understanding of the modeling strategies to control HLB.

1 Introduction

Huanglongbing (HLB) disease is a disease of citrus trees caused by Candidature Liberibacter species carried
by Asian Citrus Psyllid (ACP). It is one of the most devastating diseases in Asian, African and American
countries. It is the most severe citrus disease that is currently devastating citrus industries worldwide.
Psychologically, HLB acts by disrupting the phloem, the tissue in the inner part of the branches and stem
of the tree, resulting in the accumulation of high levels of starch, as well as reducing its ability to uptake
nutrients [24]. Practically, all commercial citrus species and cultivars are vulnerable to HLB. The disease has
an array of symptoms which can be detected anywhere on the plant, from the roots to the leaves, changing
the chemical characteristics sensory attributes of the fruit. Some of HLB symptoms include olive green
of leaves, green veins, vein yellowing, mottling, stunted and dieback of twigs [5]. HLB can impact citrus
production in many ways. HLB increases the mortality rate of trees. It negatively affects marketable yields
per tree. HLB also increases citrus production costs and compromises the influx of nutrients to the fruit as
it produces severe adverse effects on it [23].
Citrus trees under any type of stress are less able to resist ACP infestation. According to [22], if stress can

be reduced by ensuring irrigation and nutrition, the trees may show less severe disease symptoms, including
milder effects on fruit production and yield. While some growers have reported milder disease symptoms,
increased fruit yields and improved fruit quality with fertigation, have been reported. A study developed by
[3] stated that citrus grooves have not been intensively managed with respect to nutrition and water, such
that trees are continually exposed to some level of stress. Attacks of insects and pathogens, either direct or
opportunistic, contribute to additional stress that affects fruit yields and quality.
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Mathematical models of infectious diseases have been studied extensively by researchers. See for instance
[27, 28, 29, 30, 31, 25, 34, 6, 10, 1, 11, 12, 14, 15, 16, 20, 4, 9, 37, 18, 36, 32, 8, 13] and the references cited
therein. Also, mathematical models for plant epidemics have been developed by researchers. [33] developed
a mathematical model of huanglongbing with cross protection. A threshold value, R0, is established and the
existence of a backward bifurcation was presented. Their results suggest that cross protection is a promotion
control measure and replanting trees is bad for HLB control. In another development, [17] studied an HLB
model by taking into account seasonal fluctuations. Further, they considered switching coeffi cients and
switching control schemes in their model. They specifically studied the effects of switching control schemes
on the dynamics of the model. They analysed the global dynamics of the impulsive switching model for
huanglongbing. They finally performed numerical simulations which indicate that spring and autumn are
the optimum seasons for killing psyllids and winter is the optimum season for removing infected trees. [35]
proposed a deterministic dynamical model to explore the transmission dynamics of HLB between citrus
tree and Asian citrus psyllid (ACP). They analysed the model using theory of dynamical system and the
analytical results show that the disease-free equilibrium is globally asymptotically stable when the basic
reproduction number, R0 < 1 and when R0 > 1, the system is uniformly persistent. They further carried
out global sensitivity analysis to know the parameters that have great impact on HLB transmission dynamics
and the results of the global sensitivity analysis reveal that R0 is very sensitive to conversion rate, removal
rate of symptomatic citrus trees and infectious enhancement coeffi cient, but not sensitive to the maximum
number of citrus trees that can be planted in the grove and the recruitment rate of ACP. They applied
optimal control theory to the model which indicates that spraying of insecticides is more effective than
other control strategies in reducing the number of ACP in the early phase of transmission of HLB. [26]
developed a mathematical model of HLB to investigate the transmission dynamics of the disease between
ACP and citrus trees incorporating sensitive and resistant strains of ACP. They derived an expression for
the basic reproduction number R0 of HLB. Their findings reveal that the disease-free equilibrium is locally
asymptotically stable if R0 < 1 and if R0 > 1, the system is uniformly persistent. They applied global
sensitivity analysis of R0, in order to obtain some parameters that have the greatest influence on HLB
transmission dynamics. They proceeded further to carry out optimal control analysis accompanied with
numerical simulations. The results from sensitivity analysis show that R0 is very sensitive to environmental
carrying capacity of citrus trees k, ACP biting rate bv, vaccination rate νh, transmission probability from
ACP to citrus trees αh and βh. The optimal control results indicate that the weights in the objective function
have little impact on the optimal control strategy. They finally concluded that the intensity of insecticide
resistant present in ACP population may slightly reduce the effectiveness of control measures.

Our work differs from the existing work on HLB in the following sense: In [33], the authors developed a
mathematical model of HLB incorporating cross protection. They investigated the effect of cross protection
in controlling the spread of HLB without considering the impact of irrigation and nutrition on the disease
dynamics. Cross protection is a significant protection against a disease due to an immune response elicited
against a related organism but irrigation and nutrition is a natural way of boosting citrus trees’immunity
against HLB. Irrigation and nutrition have proved to be more effi cient than cross protection because it
boosts trees’ immunity naturally but cross protection (vaccination) may be imperfect and may not even
work for citrus trees with compromised immunity. Also in [33], the resistance of ACP (Asian Citrus Psyllid)
which may sometimes be limited resources availability, was not considered. This was considered in our
work. In [26], they developed HLB model to consider the optimality of intervention strategies i.e., removal
of infectious citrus trees and spraying of insecticides, but they did not take into account some important
prevention measures (irrigation and nutrition). Irrigation and nutrition have better advantages than removal
of symptomatic citrus trees and insecticides spraying because it will not allow HLB to invade citrus trees
population in the first place. Our sensitivity analysis results confirm this. That is, R0 is most sensitive to the
fraction of susceptible citrus trees that undergo irrigation and nutrition, in a negative sense. This implies that
irrigation and nutrition factors greatly reduce R0 below one, which indicates that HLB transmission will die
out of the citrus tree population if irrigation and nutrition are effectively practised. In summary, the studies
mentioned above have considered several factors that contribute to the spread, prevention and containment
of HLB in tree population without considering the effect of irrigation and nutrition on the disease dynamics.
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Irrigation is the artificial process of applying controlled amounts of water to land to assist in production
of crops while nutrition is the process of supplying Nitrogen (N), Phosphorus (P) and Potassium (K) to
plants so as to enable them to germinate, grow and fight off diseases and pests. Irrigation and nutrition
have been proved to be effective when preventing citrus trees from being attacked and damaged by ACP,
as it reduces stress on citrus trees. This is because citrus trees under any type of stress are less able to
resist ACP infestation [22]. Motivated by the above, this study seeks to investigate the impact of irrigation
and nutrition on the dynamics of HLB in citrus tree population. Based on the consideration of irrigation
and nutrition, we formulate a compartmental model to incorporate fraction of susceptible citrus trees that
undergo irrigation and nutrition. Basic reproduction number, R0, of the formulated model is obtained and
global analyses are done for R0 < 1 and R0 > 1. We also introduce sensitivity analysis of R0 of the model
which makes it more realistic and biologically significant.
The rest of the paper is organized in the following way: The description of the model and definitions of

variables and parameters are explained in section 2. Section 3 is devoted on the calculation of basic repro-
duction number and establishment of global stability of disease-free and existence of endemic equilibria. In
section 4, sensitivity analysis of R0 is performed. Analytical results obtained in the section 3 are numerically
verified in section 5 with the help of realistic values of the model parameters. Section 6 wraps the modeling
work with conclusion.

2 Model Formulation

The total citrus tree population is subdivided into four compartments; Sc, Ec, Ic, Qc, which is interpreted
as (i) susceptible citrus trees, (ii) exposed citrus trees, (iii) infectious citrus trees and (iv) vaccinated citrus
trees so that Nh(t) = Sc(t) + Ec(t) + Ic(t) + Qc(t). The total Asian Citrus Psyllid population denoted as
Np(t), is subdivided into three compartments; (i) susceptible ACP, (ii) exposed ACP and (iii)infectious ACP,
so that Np(t) = Sp(t) + Ep(t) + Ip(t). We assume that emergence and replanting of trees enter citrus tree
population at the rate λ. The disease transmission terms for citrus trees and ACP population are given
as αaScIp and αdSpIc where α is the ACP biting rate, a is the transmission probability from Ip to Sc and
d is the transmission probability from Ic to Sp. The homogeneity of the proposed model assumes that all
host have identical rates of disease-causing contacts, i.e., average biting rate a. We let θ be a fraction of
susceptible citrus trees that undergo irrigation and watering while ρ represents a fraction of susceptible ACP
that are sensitive to insecticides. Citrus trees are vaccinated at a rate v. Exposed citrus trees progress to
become infectious at a rate ω. Infectious citrus trees are removed at a rate g or die due to huanglongbing
infection at a rate δ. There is recruitment rate into susceptible ACP at a rate η. There is progression rate
from exposed ACP to infectious ACP at a rate β. Natural death rate occurs in citrus tree population at a
rate µ while it occurs in ACP population at a rate κ. The description of variables and parameters used for
the model are given in Tables 1 and 2.
Applying the assumptions, description of terms above, Table 1, Table 2 and Figure 1, the transmission

dynamics of the disease is formulated below:

Table 1: Description of state variables of model (1)-(7)

Variables Decription
Sc Susceptible citrus trees
Ec Exposed citrus trees
Ic Infectious citrus trees
Qc Vaccinated citrus trees
Sp Susceptible ACP
Ep Exposed ACP
Ip Infectious ACP
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Figure 1: Scheme of Huanglongbing model.

Table 2: Summary of the parameters

Parameter Meaning Value (year−1) Reference
λ Emergence and replanting rate of citrus trees 100 Assumed
α ACP biting rate 10 Assumed
a Transmission probability from Ip to Sc 0.048 [35]
θ Fraction of susceptible citrus trees that undergo irrigation and nutrition 0.5 Assumed
µ Natural mortality rate in citrus trees 0.04 [35]
v Vaccination rate 2 Assumed
η Recruitment rate of ACP 5000 Assumed
ω Disease progression rate of exposed citrus trees 0.17 Assumed
δ Disease related death rate 0.1 [35]
d Transmission probability from Ic to Sp 0.00039 [35]
κ Natural mortality rate of ACP 4.0556 Assumed
β Progression rate from Ep to Ip 12.1667 Assumed
ρ Fraction of susceptible ACP that are sensitive to insecticides 0.6 [35]

dSc
dt

= λ− αa(1− θ)ScIp − (µ+ v)Sc, (1)

dEc
dt

= αa(1− θ)ScIp − (ω + µ)Ec, (2)

dIc
dt

= ωEc − (δ + µ)Ic, (3)

dQc
dt

= vSc − µQc, (4)

dSp
dt

= η − αd(1− ρ)SpIc − κSp, (5)

dEp
dt

= αd(1− ρ)SpIc − (β + κ)Ep, (6)

dIp
dt

= βEp − κIp. (7)
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(1)—(3) are independent of the state Qc and after decoupling the equations for Qc from the model, we have
the remaining equations of the model below

dSc
dt

= λ− αa(1− θ)ScIp − (µ+ v)Sc, (8)

dEc
dt

= αa(1− θ)ScIp − (ω + µ)Ec, (9)

dIc
dt

= ωEc − (δ + µ)Ic, (10)

dSp
dt

= η − αd(1− ρ)SpIc − κSp, (11)

dEp
dt

= αd(1− ρ)SpIc − (β + κ)Ep, (12)

dIp
dt

= βEp − κIp. (13)

2.1 Basic Properties of the Model

Theorem 1 The solutions Sc(t), Ec(t), Ic(t), Sp(t), Ep(t), Ip(t) of the Huanglongbing model with nonneg-
ative initial data Sc(0), Ec(0), Ic(0), Sp(0), Ep(0), Ip(0), remain nonnegative for all time t > 0.

Proof. Equation (8) can be written as

dSc
dt

+ (αa(1− θ)Ip + µ+ ν)Sc ≥ 0,

d

dt

[
Sc(t) exp

(∫ t

0

αa(1− θ)Ip(ζ) + (µ+ ν)t

)]
≥ 0. (14)

Integrating (14) gives

Sc(t) ≥ Sc(0) exp

(
−
∫ t

0

αa(1− θ)Ip(ζ) + (µ+ ν)t

)
≥ 0.

In a similar manner, it can be shown that other state variables Ec(t), Ic(t), Sp(t), Ep(t), Ip(t) are nonnegative
for all t > 0.

Next, we show that
Γ = Γc × Γp ⊂ R3+ ×R3+,

where

Γc =

{
(Sc, Ec, Ic) ∈ R3+ : Nc ≤

λ

ν + µ

}
and Γp =

{
(Sp, Ep, Ip) ∈ R3+ : Np ≤

η

κ

}
is a positive invariant region.

Theorem 2 The region Γ is positively invariant with respect to the model (8)—(13).

Proof. The slope of the total citrus tree population is given by
dNc
dt

= λ− (ν+µ)Nc which on solving yields

Nc(t) = Nc(0)e−(ν+µ)t +
λ

ν + µ
(1− e−(ν+µ)t).

A similar approach for the ACP population gives

Np(t) = Np(0)e−κt +
η

κ
(1− e−κt).
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It follows that Nc(t) −→
λ

ν + µ
and Np(t) −→

η

κ
as t −→∞. In particular, Nc(t) ≤

λ

ν + µ
if Nc(0) ≤ λ

ν + µ

and Np(t) ≤
η

κ
if Np(0) ≤ η

κ
. Hence, Γ is positively invariant. Therefore, it is suffi cient to study the

dynamics of model (8)—(13) in region Γ where the model can be considered as being epidemiologically and
mathematically well-posed.

3 Model Analysis

The section is devoted to the qualitative analysis of the model (8)—(13). In the sequel, we shall be analyzing
the disease-free equilibrium point, endemic equilibrium point and sensitivity of the model parameters.

3.1 Disease-Free Equilibrium

The disease-free equilibrium is the point at which the population is free of the disease. In this study, it
refers to the situation where huanglongbing no longer exists in the population. We obtain the disease-free
equilibrium point E0 by setting the disease compartments, (Ec, Ic, Ep, Ip), to zero and equating the right
hand side of (8)—(13) to zero. The resulting system of algebraic equations is then solved and we obtain

E0 =

(
λ

v + µ
, 0, 0,

η

κ
, 0, 0

)
.

To analyse the stability of the disease-free equilibrium point, we need to first obtain the basic reproduction
number R0. The basic reproduction number is the expected number of new cases by primary one in a
susceptible population throughout his infectious period. For example R0 = 2 means an infectious individual
will spread the infection to two people within the period when he is infectious. The basic reproduction
number is obtained by expressing (8)—(13) as the difference between the rate of new infection in each infected
compartment F and the rate of transfer between each infected compartment G. Hence, we have

dEc
dt
dIc
dt
dEp
dt
dIp
dt


= F −G =


αa(1− θ)ScIp

0
αd(1− ρ)SpIc

0

−


r2Ec
−ωEc + r3Ic

(κ+ β)Ep
−βEp + κIp



and

S = JFJ
−1
G =


0 0 0 0

0 0
αd(1− ρ)η

κr4

αd(1− ρ)ηβ

κr4
0 0 0 0

αa(1− θ)λ
r1r2

αa(1− θ)λω
r1r2r3

0 0

 .
R0 is the maximum eigenvalue of matrix S and it’s given as

R0 =

√
a(1− θ)(1− ρ)λωdηβα2

r1r2r3κ(κ+ β)
,

where
r1 = v + µ, r2 = ω + µ, r3 = δ + µ and r4 = κ+ β.
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3.2 Local Stability of Disease-Free Equilibrium Solution

Clearly, the disease-free equilibrium is locally asymptotically stable if R0 < 1. To see this, we obtain the
Jacobian matrix of the system (8)—(13) evaluated at E0:

JE0 =



−r1 0 0 0 0
−αa(1− θ)λ

r1

0 −r2 0 0 0
αa(1− θ)λ

r1
0 ω −r3 0 0 0

0 0
−αd(1− ρ)η

κ
−κ 0 0

0 0
αd(1− ρ)η

κ
0 −(β + κ) 0

0 0 0 0 β −κ


(15)

Two of the eigenvalues are −r1 and −κ. The other four are eigenvalues of the matrix
−r2 0 0

αa(1− θ)λ
r1

ω −r3 0 0

0
αd(1− ρθ)

κ
−(β + κ) 0

0 0 β −κ

 (16)

whose characteristic equation is
a4x

4 + a3x
3 + a2x

2 + a1x+ a0 = 0 (17)

where

a0 = r1r2r3κ(β + κ)− α2aλωβdη(1− θ)(1− ρ), (18)

a1 = r2r3 + 2r2r3κ+ r2κβ + r2κ
2 + r3κ

2 − r3κβ, (19)

a2 = r2r3 + r2β + r3β + κβ + κ2 + 2r2κ+ 2r3κ, (20)

a3 = r2 + r3 + β + 2κ, (21)

a4 = 1. (22)

Further manipulation of a0 in terms of the basic reproduction number, R0, yields

a0 = r1r2r3κ(β + κ)(1−R20) (23)

One sees from (18)—(22) that all ai’s are positive. Moreover, if R0 < 1, it follows from (23) that a0 > 0.
Therefore the disease-free equilibrium point E0 is locally asymptotically stable. The following theorem
summarizes the above result:

Theorem 3 The Huanglongbing model is locally asymptotically stable at infection-free equilibrium E0 if
R0 < 1.

The above theorem implies that a small invasion of infectious citrus trees into a completely susceptible
citrus trees population will not lead to an outbreak of the disease.

3.3 Global Stability of Disease-Free Equilibrium Solution

Theorem 4 The disease-free equilibrium E0 of the model is globally asymptotically stable in Γ if R0 < 1
and unstable if R0 > 1.
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Proof. Consider the Lyapunov function

L =
ω

r2r3
Ec +

1

r3
Ic +

κR0
αd(1− ρ)η

Ep +
κ(κ+ β)R0
αd(1− ρ)ηβ

Ip.

Its time derivative is

L̇ =
ω

r2r3
(αa(1− θ)ScIp − r2Ec) +

1

r3
(ωEc − r3Ic) +

κR0
αd(1− ρ)η

(αd(1− ρ)SpIc − (β + κ)Ep)

+
κ(κ+ β)R0
αd(1− ρ)ηβ

(βEp − κIp)

=
ωαa(1− θ)Sc

r2r3
− Ic +

κR0SpIc
η

− κ2(κ+ β)R0Ip
αd(1− ρ)ηβ

=

[
ωαa(1− θ)Sc

r2r3
− κ2(κ+ β)R0
αd(1− ρ)ηβ

]
Ip +

(
κR0Sp
η

− 1

)
Ic

≤
[√

ωa(1− θ)(κ+ β)λr1κ
2

r2r3dβη(1− ρ)
(R0 − 1)

]
Ip + (R0 − 1)Ic

≤
[√

ωa(1− θ)(κ+ β)λr1κ
2

r2r3dβη(1− ρ)
.Ip + Ic

]
(R0 − 1)

Therefore, L̇ ≤ 0 for R0 ≤ 1 and L̇ = 0 if and only if R0 = 1 or Ic = 0 and Ip = 0. Consequently,
the largest compact invariant set in {(Sc, Ec, Ic, Qc, Sp, Ep, Ip) ∈ Γ : L̇ = 0} is the E0 and by Lyapunov-
Lasalle’s invariance principle, the disease-free equilibrium point is globally stable in Γ if R0 ≤ 1 but globally
asymptotically stable in Γ if R0 < 1. Note that Γ is a positive invariant set containing all the solutions of
R7+. This completes the proof.

Remark 1 The epidemiological implication of Theorem 4 is that huanglongbing infection can be eradicated
irrespective of the initial sizes of the sub-population of the model whenever R0 < 1.

3.4 Existence of Endemic Equilibrium Point

An infection or a disease is said to be endemic in a population when it persists at a baseline level in a
geographic location. The endemic equilibrium point is the baseline value to which the sub-populations
finally settle. The endemic equilibrium point is obtained by setting the right side of (8)—(13) to zero and
solving the resulting system of algebraic equations. The endemic equilibrium solution is therefore E1 =
(S∗c , E

∗
c , I
∗
c , S

∗
p , E

∗
p , I
∗
p ), where

S∗c =
λ

G∗c + r1
, E∗c =

λG∗c
r2(G∗c + r1)

, I∗c =
ωλG∗c

r2r3(G∗c + r1)
,

S∗p =
η

G∗p + κ
, E∗p =

G∗pη

(κ+G∗p)(κ+ β)
, I∗p =

βηG∗p
κ(G∗p + κ)(κ+ β)

,

where the forces of infection for citrus trees and ACP at equilibrium state are

G∗c = αa(1− θ)I∗p and G∗p = αd(1− ρ)I∗c .

Substituting I∗p , G
∗
p, I
∗
c and G

∗
c in G

∗
c = αa(1− θ)I∗p gives the following linear equation

X1G
∗
c +X2 = 0,
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where
X1 = r1r2(αd(1− ρ)λωr2 + r2) and X2 = (r1r2)

2(1−R20).
Therefore,

G∗c =
−X2

X1
≤ 0 if X2 ≥ 0 at R0 ≤ 1,

and no endemic equilibrium exists. On the other hand, G∗c =
−X2

X1
> 0 if X2 < 0 at R0 > 1. Hence, an

endemic equilibrium exists only at R0 > 1.
The theorem below summarizes the above result.

Theorem 5 The model (8)—(13) has a unique endemic equilibrium solution whenever R0 > 1, and no
endemic equilibrium solution otherwise.

3.5 Global Stability of the Endemic Equilibrium Solution

The endemic equilibrium solution E1 is locally asymptotically stable if R0 > 1. This can be shown by
linearizing the nonlinear system (8)—(13) around the endemic equilibrium solution. The rest follows by
Routh-Hurwitz’s theorem [19]. We make use of Goh-Volterra type Lyapunov function [21] and establish the
global asymptotic stability of endemic equilibrium in what follows:

Theorem 6 The unique endemic equilibrium E1, is globally asymptotically stable whenever R0 > 1.

Proof. Given the following equations which are satisfied by the endemic equilibrium point E1:

λ = αa(1− θ)S∗c I∗p + µhS
∗
c , (24)

αa(1− θ)S∗c I∗p = r1E
∗
c , (25)

ωE∗c = r2I
∗
c , (26)

η = κS∗p + αd(1− ρ)S∗pI
∗
c , (27)

αd(1− ρ)S∗pI
∗
c = r4E

∗
p , (28)

βE∗p = κI∗p . (29)

Consider the following Goh-Volterra Lyapunov function

V =

(
Sc − S∗c − S∗c ln

Sc
S∗c

)
+

(
Ec − E∗c − E∗c ln

Ec
E∗c

)
+ a

(
Ic − I∗c − I∗c ln

Ic
I∗c

)
+

(
Sp − S∗p − S∗p ln

Sp
S∗p

)
+

(
Ep − E∗p − E∗p ln

Ep
E∗p

)
+ b

(
Ip − I∗p − I∗p ln

Ip
I∗p

)
where

a =
αdS∗p
r3

and b =
αa(1− θ)S∗c

κ
.

The time derivative of the Lyapunov function is obtained as

V̇ =

(
1− S∗c

Sc

)
S′c +

(
1− E∗c

Ec

)
E′c + a

(
1− I∗c

Ic

)
I ′c +

(
1−

S∗p
Sp

)
S′p +

(
1−

E∗p
Ep

)
E′p + b

(
1−

I∗p
Ip

)
I ′p

=

(
1− S∗c

Sc

)
(λ− αa(1− θ)ScIp − r1Sc) +

(
1− E∗c

Ec

)
(αa(1− θ)ScIp − r2Ec)

+a

(
1− I∗c

Ic

)
(ωEc − r3Ic) +

(
1−

S∗p
Sp

)
(η − αdScIp − κSp) +

(
1−

E∗p
Ep

)
(αdSpIc − r4Ep)

+b

(
1−

I∗p
Ip

)
(βEp − κIp).
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Using (24)—(29), we have

V̇ =

(
1− S∗c

Sc

)
(αa(1− θ)S∗c I∗p + r1S

∗
c − αa(1− θ)ScIp − r1Sc +

(
1− E∗c

Ec

)
(αa(1− θ)ScIp − r2Ec)

+a

(
1− I∗c

Ic

)
(ωEc − r3Ic) +

(
1−

S∗p
Sp

)
(η − αdScIp − κSp +

(
1−

E∗p
Ep

)
(αdSpIc − r4Ep)

+b

(
1−

I∗p
Ip

)
(βEp − κIp).

Ignoring some terms and further simplification gives

V̇ = αa(1− θ)S∗c I∗p + r1E
∗
c + r4E

∗
p + ar3I

∗
c + bκI∗p −

αa(1− θ)(S∗c )2I∗p
Sc

− αa(1− θ)IpScE∗c
Ec

−
αd(S∗p)2I∗c

Sp

− aωEcI
∗
c

Ic
−
αdSpIcE

∗
p

Ep
−
bβEpI

∗
p

Ip
+ 2r1S

∗
c −

r1(S
∗
c )2

Sc
− r1Sc −

κ(S∗p)2

Sp
− κSp + 2κS∗p + αdS∗pI

∗
c .

Replacing a and b by their values and exploiting (24)—(29) gives

aω =
αdI∗cS

∗
p

E∗c
, (30)

bβ =
αa(1− θ)S∗c I∗p

E∗p
. (31)

Using (24)—(31), we have

V̇ = r1S
∗
c

(
2− S∗c

Sc
− Sc
S∗c

)
+ 3αa(1− θ)S∗c I∗p −

αa(1− θ)(S∗c )2I∗p
Sc

− αa(1− θ)ScIpE∗c
Ec

−
αdS∗pEc(I

∗
c )2

IcE∗c
+ κS∗p(2−

S∗p
Sp
− Sp
S∗p

) + 3αdS∗pI
∗
c −

αd(S∗p)2I∗c
Sp

−
αdIcSpE

∗
p

Ep

−
αa(1− θ)(I∗p )2EpS

∗
c

E∗pIp

(
3− S∗c

Sc
− ScE

∗
c Ic

S∗cEcI
∗
c

− EcI
∗
c

E∗c Ic

)
= r1S

∗
c

(
2− S∗c

Sc
− Sc
S∗c

)
+ κS∗p

(
2−

S∗p
Sp
− Sp
S∗p

)
+ αa(1− θ)I∗pS∗c

(
3− S∗c

Sc
− ScIpE

∗
c

S∗c I
∗
pEc

−
dS∗pEc(I

∗
c )2

E∗c Ica(1− θ)I∗pS∗c

)
+ αdS∗pI

∗
c

(
3−

S∗p
Sp
−
IcSpE

∗
p

S∗pI
∗
cEp

−
a(1− θ)(I∗p )2EpS

∗
c

E∗pIpdS
∗
pI
∗
c

)
.

Using arithmetic-geometric means inequality, i.e., n − (a1 + a2 + ... + an) ≤ 0, where a1.a2...an = 1 and
a1, a2, ..., an > 0, it follows that V̇ ≤ 0 with V = 0 if and only if Sc = S∗c , Ec = E∗c , Ic = I∗c ,
Sp = S∗p , Ep = E∗p , Ip = I∗p . Hence, the largest compact invariant subset of the set where V̇ = 0 is
(Sc, Ec, Ic, Sp, Ep, I

∗
p ) = (S∗c , E

∗
c , I
∗
c , S

∗
p , E

∗
p , I
∗
p ) and by classical stability theorem of Lyapunov and LaSalle’s

Invariance Principle, it follows that every solution in Γ approaches E1 for R0 > 1 as t→∞.

Remark 2 The epidemiological implication of Theorem 6 is that Huanglongbing disease will invade a popu-
lation if each infected host passes on, the infection to more than one other host (i.e., R0 > 1). This further
implies that citrus tree population that starts with either small or large Huanglonbing infection (i.e., irre-
spective of the initial sizes of the infectious population) increases and turns into epidemic whenever R0 > 1.
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Figure 2: Sensitivity analysis between R0 and its associated parameters.

3.6 Sensitivity Analysis

In this section, a sensitivity analysis of parameters of the model system (8)—(13) is carried out so as to
determine the relative importance of model parameters on the disease infection. The rationale is to consider
and to manage several factors responsible for huanglongbing infection.
Sensitivity indices are computed numerically to find out parameters that have reasonable impact on basic

reproduction number R0 and which of the parameters is most sensitive, which can help in combating the
disease.
The normalized forward sensitivity index of a variable to a parameter is the ratio of the relative change

in the variable to the relative change in the parameter. When the variable is a differentiable function of the
parameter, the sensitivity index may be alternatively defined using partial derivatives.
The normalized forward sensitivity index of a variable, u(p), that depends differentiably on a parameter,

p, is defined as

Nu
p =

∂u

∂p
× p

u
for u 6= 0.

Thus to investigate the sensitivity of R0 to parameter pi, we have

NR0
pi =

∂R0
∂pi
× pi
R0

,

where pi, i ∈ N denotes each parameter involved in computing R0. We compute sensitivity index of each
parameter with respect to R0 using parameters values in Table 2. For instance:

NR0
α =

∂R0
∂α
× α

R0
= 1.000000.

Figure 2 gives the sensitivity indices on R0 with respect to each parameter. Figure 2 indicates that R0
is most sensitive to ACP biting rate (α) in the positive sense and R0 is most sensitive to the fraction of
susceptible ACP who are sensitive to insecticides (ρ), in a negative sense. This suggests that a 10% increase
(or decrease) of ACP biting rate, α, would correspond to a 10% increase or (decrease) of R0. Likewise, a 10%
increase (or decrease) of the fraction of susceptible ACP who are sensitive to insecticides ρ, would correspond
to a 7.5% decrease (or increase) in the value of R0. Another striking parameter of interest is the fraction of
susceptible citrus trees that undergo irrigation and nutrition θ. That is, a 10% increase (or decrease) of θ
would correspond to a 5% decrease (or increase) in the value of R0. Other relevant parameters responsible
for the transmission and spread of HLB are emergence and replanting rate of citrus trees λ, transmission
probability from Ip to Sc a, recruitment rate of ACP η, transmission probability from Ic to Sp, d and
progression rate from Ep to Ip, β and disease progression rate of exposed citrus tree to infectious citrus trees
ω. Therefore, the above interpretations recommend that intervention strategies that can effectively decrease
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the ACP biting rate α, emergence and replanting of citrus trees, a, recruitment rate of ACP η, transmission
probability from Ic to Sp, d, and progression rate from Ep to Ip, β, should be used to control the disease
transmission effectively. In addition, irrigation and nutrition of fraction of susceptible citrus trees have been
shown to have negative impact on R0. This suggests that farmers should make irrigation and nutrition
their first priority in citrus trees plantation. This method will make the susceptible citrus trees to be less
attackable by ACP, as it boosts their immune response. Further, as we know that insecticide is the most
widely followed option for reducing ACP, alternation and rotation of insecticides with different chemistry
is needed to overcome the incidence of fraction of susceptible ACP who are resistant to insecticides since
sensitivity analysis has revealed that fraction of susceptible ACP that are sensitive to insecticides reduces
R0 the most.

Figure 3: Simulation results showing the global stability of the endemic equilibrium.

4 Numerical Simulations

In order to understand the picture of the disease behaviour, this section presents numerical simulations
for huanglongbing model using the parameter values in Table 2. Model (8)—(13) is solved using classical
Runge-Kutta method on Matlab platform.
We investigate, numerically, the stability of the equilibrium solutions. For this purpose, we pick different

initial values for the variables and observe the solution trajectories over time. Figure 3 represents the solution
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Figure 4: Simulation results showing the global stability of the disease-free equilibrium.

trajectories of the model using the parameter values in Table 2. With these parameter values, R0 = 4.9189.
It is observed, in Figure 3, that the population of the susceptible citrus trees reduces whereas the populations
of exposed and infectious citrus trees increase and settle at the equilibrium position. In ACP population, the
susceptible ACP population reduces while the exposed and infectious ACP increase. In the both citrus tree
and ACP populations, the susceptible classes decrease and settle at equilibrium positions while the disease
classes increase and also settle at equilibrium positions. The equilibrium point for which all the classes settle
is the endemic equilibrium point. This confirms Theorem 6.
Figure 4 represents the solution trajectories of the model taking θ = 0.95, ρ = 0.95 and other parameter

values as contained in Table 2. With these parameter values, R0 = 0.55. From Figure 4, it can be seen that
exposed citrus tree population Ec and infectious citrus tree population Ic converge to their corresponding
disease-free equilibrium solution. This indicates that the infected citrus trees disappear from the population
whenever R0 < 1. In ACP population, we can observe that there are always susceptible ACP in the
population but the exposed and infectious ACP shrink to zero for R0 < 1. This implies that huanglongbing
infection is cleared from the population for R0 < 1. This confirms Theorem 4.
Next we investigate possible intervention strategies towards mitigating the spread of huanglongbing in-

fection. For this purpose, we choose initial values as Sc(0) = 1500, Ec(0) = 80, Ic(0) = 3, Qc(0) = 20,
Sp(0) = 1000, Ep(0) = 3, Ip(0) = 3. Since the condition R0 < 1 is suffi cient for disease eradication, we
therefore seek parameter combination such that R0 < 1. From the sensitivity analysis, R0 is most sensitive
to ACP biting rate α in the positive sense and sensitive to the fraction of susceptible ACP that are sensitive
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Figure 5: Impact of irrigation and nutrition together with vaccination of susceptible citrus trees to control
the spread of huanglongbing.

to insecticides, natural mortality rate of ACP, fraction of susceptible citrus trees that undergo irrigation
and nutrition, vaccination rate, in the negative sense. We therefore build control strategies about these
parameters.
Next we investigate the impact of irrigation in controlling the spread of huanglongbing. Since the condi-

tion R0 < 1 is suffi cient for disease eradication, we find the fraction of susceptible citrus trees that undergo
irrigation and nutrition, θ, such that R0 < 1. Taking θ = 0.9795 makes R0 = 0.996. Therefore to effectively
control the spread of huanglongbing infection with the use of irrigation and nutrition, minimum of 98% of the
susceptible citrus trees must be irrigated and the irrigation must be 100% effective. This appears unrealistic,
we therefore consider the impact of this intervention strategy together with vaccination of citrus trees. This
is shown in Figure 5.
In Figure 5, it is seen that there is no significant difference in the trend of the infection once the value of

basic reproduction number remains unchanged. However, when θ and v are combined such that R0 = 0.628,
there is a significant reduction in population of infected classes. Thus efforts must be made towards improving
greatly on vaccination as well as irrigation of susceptible citrus trees in order to have a rapid decrease in the
spread of huanglongbing infection.
Next we investigate the influence of the use of insecticide in controlling the spread of huanglongbing.

Taking ρ = 0.985, while other parameters remain as contained in Table 2, makes R0 = 0.952. Therefore to
effectively control the spread of huanglongbing infection with the use of insecticide, the insecticide used must
be upward of 98.5% effective. This appears unrealistic as the effi cacy of insecticide may decrease with time,
we therefore consider the impact of using insecticide together with vaccination of citrus trees. Combination
of the use of insecticide and vaccination of citrus trees such that R0 < 1 is shown in Figure 6. Figure 6 shows
that all the infected classes tend to zero over time however, increase in vaccination rate lowers the peak of
infection in citrus trees while increase in the effi cacy of insecticide lowers the peak of infected ACP.

5 Conclusion

Our aim is to investigate the impact of irrigation and nutrition on HLB dynamics. This leads us to formulate
a mathematical model of HLB transmission that takes into account a fraction of susceptible citrus trees that
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Figure 6: Impact of using insecticide together with vaccination of susceptible citrus trees to control the
spread of haunglongbing.

undergo irrigation and nutrition. We determine the basic reproduction number, R0, and prove that if R0 < 1,
the disease-free equilibrium is globally asymptotically stable. We prove the global asymptotic stability of
disease-free equilibrium points. We further establish the existence condition for endemic equilibrium points
for R0 > 1. A global asymptotic stability of endemic equilibrium point is established and validated using
numerically, simulations.

From our numerical results, we found that effective prevention of citrus trees through irrigation and
nutrition has a positive impact in reducing the spread of HLB. However, this alone might not be suffi cient
unless it is implemented in conjunction with other intervention strategies such as vaccination susceptible
citrus trees. It is therefore noted that using a single strategy will place a heavy demand on the strategy and
as such may not be effective. Therefore combining at least two intervention strategies effectively will help in
curtailing the spread of the infection.

Irrigation and nutrition practice as proposed in the present study is important for every citrus growers
and production managers as it minimizes environmental stresses, especially closer to the harvesting window.
Also, it increases profitability and enhances sustainability and worldwide competitiveness. This is because
citrus trees supplied with suffi cient water and nutrients grow stronger, better tolerates pests and stresses as
a result of boosted immunity and yield more consistently to produce good quality fruits. This study will
help the citrus tree industries to guide future research needs. This study can be applied to some regions with
realistic data on HLB transmission that would allow to show the impact of irrigation and nutrition practice
on citrus trees.

We have assumed the use of perfect vaccine in this work. That is, a vaccinated susceptible citrus tree
is perfectly protected against HLB infection. This may not be true in reality as studies have shown that
the effi cacy of vaccine reduces with time [2]. The use of imperfect vaccine and the influence of weather on
the dynamics of HLB infection may be considered in the future work. Further, this study can be extended
by introducing fractional order into the formulated model. In this case, the model will be given fractional
differential equations. All these directions need more investigation and therefore, they are left for future
works.
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