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Abstract

We perform group analysis of the second order linear differential equation with the most general
variable time delay by developing a Lie type invariance condition using Taylor’s theorem for a function of
more than one variable. This condition is then used to obtain the symmetry algebra and make a complete
group classification of this delay differential equation. We deduce certain compatibility conditions for
the infinitesimals which lead to an extension of the symmetry algebra. Finally, we obtain a change of
variables leading the differential equation with variable delay to be reduced to a differential equation
with constant delay.

1 Introduction

In modeling several physical phenomena, we have to account for the fact that the unknown function may
not only depend on an instant value of time t but also at earlier instants t∗ < t. Such equations called delay
differential equations are studied in [4, 5, 7] and have numerous applications which can be seen in [9]. Such
equations cannot be easily solved owing to the presence of the delay terms and as such the properties of
these equations can be effectively studied using group analysis. The theory of group analysis developed for
ordinary and partial differential equations can be found in [2, 3, 8]. Literature on the stability, qualitative
analysis and oscillation criteria for delay differential equations can be seen [1, 21, 22].
Lie’s motivation to model the continuous symmetries of differential equations using Lie groups came from

Galois who modeled the discrete symmetries of algebraic equations using Galois groups. While numerical
methods are used in several problems such as [18], the invariance of such differential equations under these
Lie groups is the only unified explanation for solving differential equations. As seen in [15], invariance laws
are the essential requirement for reproducing experiments at different places and time.
Consider the global form of the Lie group, t̄ = φ(t, x; ε), x̄ = ψ(t, x; ε). Let φ and ψ be analytic functions

in t and x. Further, we assume that they have a convergent Taylor series in ε. Then, the infinitesimals are
given by

Φ(t, x) =
∂φ(t, x; 0)

∂ε
and Ψ(t, x) =

∂ψ(t, x; 0)

∂ε
.

A definition of an admitted Lie group using Lie-Bäcklund operators for functional differential equations
was proposed by Tanthanuch and Meleshko in [19, 20]. This definition was used in [11] to classify some
first order delay differential equations. Later in [6], all classes of linear first-order delay ordinary differential
systems having additional symmetries were identified and representatives of each class were provided. This
definition helped Pue-on [17] to classify second order differential equations with constant delay. A group
method is suggested in [10] to study functional differential equations, based on the search for symmetries
of underdetermined systems of differential equations, using the principle of factorization. First-order linear
neutral differential equations were classified in [12] by developing an invariance condition using Taylor’s
theorem. Group analysis of differential equations of fractional order are investigated in [16] and their exact
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solutions have been found. An application of Lie symmetry analysis is seen in [13] to obtain invariant
solutions of a model in the study of early carcinogenesis.
We will be developing an invariance condition for

f(t, x(t), x′(t), x(g(t)), x′(g(t)), x′′(t)) = 0,

where f is defined on I ×D5, for some open set D in R and an open interval I in R. The function g(t) is
assumed to be suffi ciently smooth with g(t) < t.
The invariance condition will be developed using Taylor’s theorem for a function of several variables. An

increase in delay is seen on using Lie-Bäcklund operators. No such increase in delay is observed using the
technique developed here. Motivated by [14], which classifies a system of ordinary differential equations of
the second order, we perform a symmetry analysis of second order differential equation with the most general
time delay.
In the following section, we develop a novel approach to obtain the Lie invariance condition for second

order differential equations with variable delay. This condition is used in Section 3 to obtain the symmetry
algebra of the second order linear differential equation. Certain compatibility conditions are then developed
in Section 4 to obtain the additional symmetries admitted by this differential equation. We then introduce
a change of variables in Section 5 to transform the differential equation with variable delay to a differential
equation with constant delay. We then present an example to illustrate our results.

2 Lie Type Invariance Condition for Second Order Delay Differ-
ential Equations

We develop a Lie type invariance condition for the most general time-delayed linear second order delay
differential equation. The delay term is specified in order to determine this linear delay differential equation
completely.

Theorem 1 Let F be defined on a 6-dimensional space I1×D× I2×D3, where D is an open set in R, and
I1, I2 are any intervals in R. Then the second order delay differential equation

d2x

dt2
= F (t, x, g(t), x(g(t)), x′(t), x′(g(t))), (1)

with the notations, Φg = Φ(g(t), x(g(t))) and Ψg = Ψ(g(t), x(g(t))), has the Lie type invariance condition

ΦFt + ΨFx + ΦgFg(t) + ΨgFx(g(t)) + Ψ[t]Fx′(t) + Ψg
[t]Fx′(g(t))

= Ψtt + (2Ψtx − Φtt)x
′ + (Ψxx − 2Φtx)x′2 − Φxxx

′3 + (Ψx − 2Φt)x
′′ − 3Φxx

′x′′.

where,
Ψ[t] = Dt(Ψ)− x′Dt(Φ),

Ψ[tt] = Dt(Ψ[t])− x′′Dt(Φ), where Dt =
∂

∂t
+ x′

∂

∂x
+ x′′

∂

∂x′
+ · · · ,

Ψg
[t] = (Ψg)g(t) + ((Ψg)x(g(t)) − (Φg)g(t))x

′(g(t))− (x′(g(t)))
2

(Φg)x(g(t)).

Proof. We consider the infinitesimal form of the Lie group under which the delay differential equation is
invariant, which is given by

t̄ = t+ εΦ(t, x) +O(ε2), x̄ = x+ εΨ(t, x) +O(ε2),

where Φ and Ψ are defined in the introduction. It follows that

g(t) = g(t) + εΦ(g(t), x(g(t))) +O(ε2),



594 Group Analysis of Linear Differential Equation with Variable Delay

and
x(g(t)) = x(g(t)) + εΨ(g(t), x(g(t))) +O(ε2).

Then

dx̄

dt̄
=

[
dx

dt
+ (Ψt + Ψxx

′)ε+O(ε2)

] [
1− (Φt + Φxx

′)ε+O(ε2)
]

=
dx

dt
+ [Ψt + (Ψx − Φt)x

′ − Φxx
′2]ε+O(ε2).

With the notation Dt =
∂

∂t
+ x′

∂

∂x
, we can write

dx̄

dt̄
=

dx

dt
+ (Dt(Ψ)− x′Dt(Φ))ε+O(ε2)

=
dx

dt
+ Ψ[t]ε+O(ε2),

where Ψ[t] = Dt(Ψ)− x′Dt(Φ) = Ψt + (Ψx − Φt)x
′ − Φxx

′2. Now,

d2x̄

dt̄2
=

(
d2x

dt2
+Dt(Ψ[t])ε+O(ε2)

)
(1− εDt(Φ) +O(ε2))

=
d2x

dt2
+ (Dt(Ψ[t])−Dt(Φ)x′′)ε+O(ε2).

So Ψ[tt] = Dt(Ψ[t])− x′′Dt(Φ). We will require to extend the definition of Dt because Ψ[t] contains t, x and
x′. Hence we have

Dt =
∂

∂t
+ x′

∂

∂x
+ x′′

∂

∂x′
+ · · · .

Expanding Ψ[tt], gives

Ψ[tt] = Ψtt + (2Ψtx − Φtt)x
′ + (Ψxx − 2Φtx)x′2 − Φxxx

′3 + (Ψx − 2Φt)x
′′ − 3Φxx

′x′′.

With the notations Φg = Φ(g(t), x(g(t))) and Ψg = Ψ(g(t), x(g(t))), it follows that

x′(g(t)) = x′(g(t)) + [(Ψg)g(t) +
(
(Ψg)x(g(t)) − (Φg)g(t)

)
x′(g(t))− ((x′(g(t)))

2
(Φg)x(g(t))]ε+O(ε2).

Let Ψg
[t] = (Ψg)g(t) + ((Ψg)x(g(t)) − (Φg)g(t))x

′(g(t))− (x′(g(t)))
2

(Φg)x(g(t)). For invariance,

d2x̄

dt̄2
= F (t̄, x̄, g(t), x(g(t)),

dx̄

dt̄
,
dx̄

dt̄
(g(t))).

This gives

d2x

dt2
+ Ψ[tt]ε+O(ε2) = F (t+ εΦ +O(ε2), x+ εΨ +O(ε2), g(t) + εΦg +O(ε2), x(g(t)) + εΨg +O(ε2),

dx

dt
+ εΨ[t] +O(ε2),

dx

dt
(g(t)) + Ψg

[t]ε+O(ε2))

= F (t, x, g(t), x(g(t)), x′(t), x′(g(t))) + (ΦFt + ΨFx + ΦgFg(t) + ΨgFx(g(t)) + Ψ[t]Fx′(t)

+Ψg
[t]Fx′(g(t)))ε+O(ε2).

Equating the coeffi cient of ε, we get

ΦFt + ΨFx + ΦgFg(t) + ΨgFx(g(t)) + Ψ[t]Fx′(t) + Ψg
[t]Fx′(g(t))

= Ψtt + (2Ψtx − Φtt)x
′ + (Ψxx − 2Φtx)x′2 − Φxxx

′3 + (Ψx − 2Φt)x
′′ − 3Φxx

′x′′. (2)
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Equation (2) gives us the desired invariance condition.
The prolonged operator for equation (1) is

ζ = Φ
∂

∂t
+ Φg

∂

∂(g(t))
+ Ψ

∂

∂x
+ Ψg ∂

∂x(g(t))
.

Equation (1) has the following extended operator:

ζ(1) = Φ
∂

∂t
+ Φg

∂

∂(g(t))
+ Ψ

∂

∂x
+ Ψg ∂

∂x(g(t))
+ Ψ[t]

∂

∂x′
+ Ψg

[t]

∂

∂x′(g(t))
+ Ψ[tt]

∂

∂x′′
. (3)

Defining

∆ =
d2x

dt2
− F (t, x(t), g(t), x(g(t)), x′(t), x′(g(t))) = 0,

we get
ζ(1)∆ = Ψ[tt] − ΦFt −ΨFx − ΦgFg(t) −ΨgFx(g(t)) −Ψ[t]Fx′(t) −Ψg

[t]Fx′(g(t)). (4)

Comparing equation (4) with equation (2), we get

Ψ[tt] = Ψtt + (2Ψtx − Φtt)x
′ + (Ψxx − 2Φtx)x′2 − Φxxx

′3 + (Ψx − 2Φt)x
′′ − 3Φxx

′x′′.

We get an invariance condition for equation (1) as ζ(1)∆ |∆=0= 0, on substituting x′′ = F into ζ(1)∆ = 0.
This condition will be used in computing the determining equations.

3 Symmetries of the Second Order Differential Equation with the
Most General Time Delay

We now turn to obtain the equivalent symmetries of

x′′(t) + α(t)x′(g(t)) + β(t)x(t) + γ(t)x′(t) + ρ(t)x(g(t)) = 0, (5)

where α(t), β(t), γ(t) and ρ(t) are twice differentiable functions. Applying the operator defined by equation
(3) to the delay term, t1 = g(t), we get

Φ1 = g′(t)Φ. (6)

Applying the operator defined by equation (3) to equation (5), we get

Ψtt + (2Ψtx − Φtt)x
′ + (Ψxx − 2Φtx)x′2 − Φxxx

′3 + (Ψx − 2Φt)x
′′ − 3Φxx

′x′′

+Φ
[
α′(t)x′(t1) + β′(t)x(t) + γ′(t)x′(t) + ρ′(t)x(t1)

]
+ Ψβ(t) + ρ(t)Ψg + α(t)

[
Ψg
t1

+((Ψg)x(t1) − (Φg)t1)x
′(t1)− (Φg)x(t1)x

′(t1)
2
]

+ γ(t)
[
Ψt + (Ψx − Φt)x

′ − Φxx
′2
]

= 0.

Using equation (5), we can substitute for x′′ to get the following determining equations

Ψtt + (2Ψtx − Φtt)x
′ + (Ψxx − 2Φtx)x′2 − Φxxx

′3 + (Ψx − 2Φt)[−α(t)x′(t1)− β(t)x(t)− γ(t)x′(t)

−ρ(t)x(t1)]− 3Φxx
′[−α(t)x′(t1)− β(t)x(t)− γ(t)x′(t)− ρ(t)x(t1)] + Φ

[
α′(t)x′(t1)

+β′(t)x(t) + γ′(t)x′(t) + ρ′(t)x(t1)
]

+ Ψβ(t) + ρ(t)Ψg

+α(t)[Ψg
t1 + ((Ψg)x(t1) − (Φg)t1)x

′(t1)− (Φg)x(t1)x
′(t1)

2
] + γ(t)[Ψt + (Ψx − Φt)x

′ − Φxx
′2] = 0. (7)

Splitting equation (7) with respect to x′(t1)
2 and solving the resulting equation we get

Φ(t, x) = A(t). (8)
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Splitting equation (7) with respect to x′2, and using equation (8), we get

Ψ(t, x) = B(t)x+ C(t). (9)

Further, the Lie invariance condition on the delay equation t1 = g(t) gives

Φg = g′(t)Φ = g′(t)A(t) = A(t1). (10)

Substituting equations (8), (9) and (10) in equation (7), we get

B′′(t)x+ C ′′(t) + (2B′(t)−A′′(t))x′ + (B(t)− 2A′(t))[−α(t)x′(t1)− β(t)x(t)− γ(t)x′(t)− ρ(t)x(t1)]

+Φ[−α′(t)x′(t1)− β′(t)x(t)− γ′(t)x′(t)− ρ′(t)x(t1)] + β(t)(B(t)x+ C(t)) + γ(t)[B′(t)x+ C ′(t)

+(B(t)−A′(t))x′] + ρ(t)(B(t1)x(t1) + C(t1)) + α(t)[B′(t1)x(t1) + C ′(t1) + (B(t1)−A′(t1))x′(t1)]

= 0. (11)

Splitting equation (11) with respect to x, we get

B′′(t) + 2A′(t)β(t) +A(t)β′(t) + γ(t)B′(t) = 0. (12)

Splitting equation (11) with respect to x′, we get

2B′(t)−A′′(t) +A(t)γ′(t) +A′(t)γ(t) = 0. (13)

Splitting equation (11) with respect to x(t1), we get

2A′(t)ρ(t) +A(t)ρ′(t) + ρ(t)B(t1)− ρ(t)B(t) + α(t)B′(t1) = 0. (14)

Splitting equation (11) with respect to x′(t1), we get

2A′(t)α(t) +A(t)α′(t)− α(t)B(t) + α(t)B(t1)− α(t)A′(t1) = 0. (15)

Splitting equation (11) with respect to the constant term, we get

C ′′(t) + α(t)C ′(t1) + β(t)C(t) + γ(t)C ′(t) + ρ(t)C(t1) = 0, (16)

From equation (16), we see that C(t) satisfies equation (5). Solving equation (13), we get

B(t) =
1

2
A′(t)− 1

2
γ(t)A(t) + c1, (17)

where c1 is an arbitrary constant. Substituting equation (17) into equation (12), we get

A′′′(t) + [4β(t)− 2γ′(t)− γ2(t)]A′(t) + [2β′(t)− γ(t)γ′(t)− γ′′(t)]A(t) = 0. (18)

From equation (17), we have

B(t1) =
1

2
A′(t1)− 1

2
γ(t1)A(t1) + c1, (19)

and consequently,

B′(t1) =
1

2
A′′(t1)− 1

2
(γ′(t1)A(t1) + γ(t1)A′(t1)). (20)

Differentiating equation (10) with respect to t, we get

A′(t1) = A′(g(t)) =
g′′(t)A(t)

g′(t)
+A′(t), (21)
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and differentiating equation (21) with respect to t, we get

A′′(t1) = A′′(g(t)) =
g′′′(t)

[g′(t)]
2A(t) +

g′′(t)

[g′(t)]
2A
′(t)− [g′′(t)]

2

[g′(t)]
3 A(t) +

A′′(t)

g(t)
. (22)

Substituting equation (17) into equation (14) and using equations (19)—(22), we get

α(t)

g′(t)
A′′(t) +

[
4ρ(t) + α(t)

(
g′′(t)

[g′(t)]
2 − γ(g(t))

)]
A′(t)

+
[
2ρ′(t) + α(t)

(
g′′′(t)

[g′(t)]
2 −

[g′′(t)]
2

[g′(t)]
3 − γ

′(g(t))g′(t)− γ(g(t))g′′(t)

g′(t)

)

+ρ(t)

(
g′′(t)

g′(t)
− γ(g(t))g′(t) + γ(t)

)]
A(t) = 0. (23)

Substituting equation (17) into equation (14) and using equations (10) and equation (17), we get

α(t)A′(t) +

[
α′(t) +

α(t)

2

(
γ(t)− γ(g(t))g′(t)− g′′(t)

g′(t)

)]
A(t) = 0. (24)

Since α(t), β(t), γ(t), ρ(t) and g(t) are arbitrary, equations (18), (23) and (24) together with equation (10)
have only one solution, namely A(t) = 0. Thus, we get

Φ(t, x) = 0, Ψ(t, x) = c1x+D(t).

Therefore, we obtain the infinitesimal generator of the corresponding Lie group to be

ζ∗ = Φ(t, x)
∂

∂t
+ Ψ(t, x)

∂

∂x
= (c1x+D(t))

∂

∂x
. (25)

We have just established the following result:

Theorem 2 The second order linear differential equation with the most general variable time delay given by

x′′(t) + α(t)x′(g(t)) + γ(t)x′(t) + β(t)x(t) + ρ(t)x(g(t)) = 0,

for suffi ciently smooth functions α(t), β(t), γ(t), and ρ(t) admits the two dimensional group generated by

ζ∗1 = x
∂

∂x
, ζ∗2 = D(t)

∂

∂x
, where D(t) solves equation (5).

It should be noted that if in place of equation (5) we had the corresponding nonhomogeneous delay
differential equation given by

x′′(t) + α(t)x′(g(t)) + γ(t)x′(t) + β(t)x(t) + ρ(t)x(g(t)) = h(t), (26)

for suffi ciently smooth functions α(t), β(t), γ(t), ρ(t), and h(t), then we can establish the following corollary:

Corollary 1 The second order linear differential equation with the most general variable time delay given

by equation (26) admits the two dimensional group generated by, ζ∗1 = (x − x1(t))
∂

∂x
, ζ∗2 = D(t)

∂

∂x
, where

D(t) solves equation (5) and x1(t) is the particular solution of equation (26).
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4 Extensions of the Symmetry Algebra

In this section, we will discuss certain conditions on the obtained equations which result in non-trivial
solutions and consequently make the symmetry algebra larger.
We can write equation (24) as

A′(t) = M(t)A(t), (27)

where

M(t) = − 1

α(t)

[
α′(t) +

α(t)

2

(
γ(t)− γ(g(t))g′(t)− g′′(t)

g′(t)

)]
.

Substituting equation (27) in equation (21) and using equation (10), we get[
M(g(t)) [g′(t)]

2 − g′′(t)− g′(t)M(t)
]
A(t) = 0.

Therefore, either A(t) = 0, or
M(g(t)) [g′(t)]

2
= g′′(t) + g′(t)M(t). (28)

Since A(t) must satisfy equation (27), we can write the general solution as

A(t) = c2 exp

(∫ t

0

M(y)dy

)
, (29)

where c2 is an arbitrary non-zero constant.
We are now in a position to prove our result.

Theorem 3 Under the hypothesis that equations (10), (18), (23) and (24) have nontrivial solutions, the
delay differential equation given by (5) admits a symmetry algebra larger than the one given in Theorem 2.
The symmetry algebra in this case is given by

ζ∗∗ = A(t)
∂

∂t
+

1

2
(A′(t)− γ(t)A(t) + c1)x

∂

∂x
+D(t)

∂

∂x
.

Proof. We prove the result in cases:
Case 1: Let α(t) 6= 0, then equations (10) and (27) have a nontrivial solution if equation (28) holds.
In addition, if equations (18) and (23) are satisfied by α(t), β(t), γ(t), ρ(t) and A(t), then

Φ(t, x) = A(t), Ψ(t, x) =
1

2
[A′(t)− γ(t)A(t) + c1]x+D(t).

Therefore, we obtain the infinitesimal generator of the corresponding Lie group to be

ζ∗ = Φ(t, x)
∂

∂t
+ Ψ(t, x)

∂

∂x
= A(t)

∂

∂t
+

(
1

2
[A′(t)− γ(t)A(t) + c1]x+D(t)

)
∂

∂x
. (30)

We see that the symmetry algebra is larger.
Case 2: Let α(t) = 0, ρ(t) 6= 0.
Then equation (24) identically holds. We can then rewrite equation (23) as

A′(t) = M1(t)A(t), (31)

where

M1(t) =

[
−1

2

ρ′(t)

ρ(t)
− 1

4

g′′(t)

g′(t)
+

1

4
γ(g(t))g′(t)− 1

4
γ(t)

]
.

Equations (10) and (31) have nontrivial solutions if g(t) and M1(t) satisfy equation (28). The additional
symmetry is seen when β(t) and γ(t) satisfy equation (18) and when A(t) = c3

∫ t
0
M(y)dy, where c3 is an

arbitrary constant.
Once again the corresponding infinitesimal generator of the Lie group is given as in equation (30).

Remark 1 The additional symmetries admitted are found to be

aζ∗∗ = A(t)
∂

∂t
+

1

2
(A′(t)− γ(t)A(t))x

∂

∂x
. (32)
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5 A Reduction Result

In this section, we will use the additional symmetries obtained in Section 4 to transform the second order
differential equation with the most general variable delay to a second order differential equation with constant
delay.

Theorem 4 Consider the second order differential equation

x′′(t) + α(t)x′(g(t)) + β(t)x(t) + γ(t)x′(t) + ρ(t)x(g(t)) = 0,

studied in Section 3. Assume that this differential equation admits the additional symmetry given by equation
(32). Then this differential equation can be transformed to

x′′(t) + ax′(t− r) + bx(t) + cx(t− r) = 0, (33)

where a, b, c and r are constants with r > 0, and a2 + c2 6= 0. The Lie group is three dimensional and
generated by

aζ∗∗1 =
∂

∂t
, aζ∗∗2 = D(t)

∂

∂x
, aζ∗∗3 = x

∂

∂x
,

where D(t) solves equation (5).

Proof. We find a change of variables (t, x)→ (t̃, x̃) that will “straighten out”the vector field aζ∗∗ into aζ̃
∗∗

and also preserve the linearity of the delay differential equation. In order to preserve the linearity of the
transformations, we choose

t̃ = P (t), x̃ = U(t)x+ V (t), U(t) 6= 0.

In terms of the new variables, equation (32) takes the form

aζ∗∗ = A(t)

[
P ′(t)

∂

∂t̃
+ U ′(t)x

∂

∂x̃
+ V ′(t)

∂

∂x̃

]
+

1

2
(A′(t)− γ(t)A(t))

(
xU(t)

∂

∂x̃

)
= A(t)P ′(t)

∂

∂t̃
+

((
A(t)U ′(t) +

1

2
(A′(t)− γ(t)A(t))U(t)

)
x+A(t)V ′(t)

)
∂

∂x̃
. (34)

Imposing,

A(t)P ′(t) = 1, A(t)U ′(t) +
1

2
(A′(t)− γ(t)A(t))U(t) = 0, V ′(t) = 0,

we get

P (t) =

∫
1

A(t)
dt+ P0, U(t) =

U0√
A(t)

exp

(
1

2

∫
γ(t)dt

)
, V (t) = V0,

where P0, U0, V0 are constants.
Choose P0 = 0, U0 = 1, V0 = 0, we obtain the new variables

t̃ =

∫
1

A(t)
dt, x̃ =

x√
A(t)

exp

(
1

2

∫
γ(t)dt

)
.

The obtained delay differential equation is linear and invariant under the above transformations. We can
rewrite this delay differential equation (by dropping the the tilde on t and x) as

x′′(t) + ax′(t− r) + bx(t) + cx(t− r) + dx′(t) = 0, r > 0, (35)

where d is a constant. The translational invariance coressponding to ζ∗∗ =
∂

∂t
together with the delay

condition would impose that a, b, c are constants. A final transformation x̃ = exp

(
−1

2
d̃t

)
x to equation

(35) transforms it into equation (33) with the symmetry algebra given by

aζ∗∗1 =
∂

∂t
, aζ∗∗2 = D(t)

∂

∂x
, aζ∗∗3 = x

∂

∂x
.
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6 An Illustrative Example

We know turn to see the symmetries and the Lie group admitted by

x′′(t) = x(t− π). (36)

In this example g(t) = t− r, where r = π > 0 is a constant delay. It can be readily seen that x(t) = cos t is a
solution of this delay differential equation. Acting the operator given by equation (3) to the delay condition
g(t) = t − r, we get Φr = Φ, where Φr = Φ(t − r, x(t − r)). Acting the operator given by equation (3) to
equation (36), we get

Ψtt + (2Ψtx − Φtt)x
′ + (Ψxx − 2Φtx)x′

2 − Φxxx
′3 + (Ψx − 2Φt)xr − 3Φxx

′xr = Ψr,

where xr = x(t−r) and Ψr = Ψ(t−r, x(t−r)). Splitting this equation with respect to the arbitrary elements
and solving the resulting system of partial differential equations, we get Φ(t, x) = c, Ψ(t, x) = cos t, where c
is an arbitrary constant. The Lie group is generated by

ζ∗1 =
∂

∂t
, ζ∗2 = cos t

∂

∂x
.

Solving the system,
dt̄

dε
= Φ(t̄, x̄) = c,

dx̄

dε
= Ψ(t̄, x̄) = cos t̄,

subject to the conditions, t̄ = t, x̄ = x, when ε = 0, we see that the delay differential equation given by
equation (33) is invariant under the Lie group

t̄ = t+ cε, x̄ = x+ ε cos(t+ cε).

7 Conclusion

We have obtained a Lie type invariance condition for differential equations of the second order and with the
most general variable delay by using Taylor’s theorem for a function of more than one variable. Using this
condition, we have computed the symmetry algebra admitted by the delay differential equation. Further, we
have obtained certain compatibility conditions under which the delay differential equation possess additional
symmetries and we have found these symmetries. Finally, we obtain a suitable change of variables reducing
the differential equation with variable delay to a differential equation with constant delay. We have also
found the symmetry algebra in this case.
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