
Applied Mathematics E-Notes, 22(2022), 585-591 c© ISSN 1607-2510
Available free at mirror sites of http://www.math.nthu.edu.tw/∼amen/

On The Solutions Of Boundary Value Problem Arising In Mixed
Convection∗

Mohamed Boulekbache†, Khaled Boudjema Djeffal‡, Mohammed Aiboudi§

Received 6 August 2021

Abstract

In this article, we are interested in studying solutions of the differential equation f ′′′+ff ′′+βf ′(f ′−
1) = 0 on [0,+∞) with β ≥ 1, satisfying the boundary conditions f(0) = a ∈ R, f ′(0) = b < 0 and
f ′(t)→ λ as t→ +∞, where λ ∈ {0, 1}. This problem arises in the study of mixed convection adjacent
to surfaces embedded in a porous medium using the boundary layer approximation.

1 Introduction

Let β ∈ R. We consider the third order autonomous nonlinear differential equation:

f ′′′ + ff ′′ + βf ′(f ′ − 1) = 0, t ∈ [0,+∞). (1)

Associated with the above equation, we have the following boundary value problem:
f ′′′ + ff ′′ + βf ′(f ′ − 1) = 0,
f(0) = a,
f ′(0) = b,
f ′(t)→ λ as t→ +∞,

(Pβ;a,b,λ)

where a, b, β ∈ R and λ ∈ {0, 1} with b < 0 and β ≥ 1. The problem (Pβ;a,b,λ) in which the mix of three
parameters β, a and b is of capital importance, where β have a law profile of power, a prescribed power law
of the distance from the leading edge for the temperature and b = Ra

Pe −1 is the mixed convection parameter,
with Ra being the Rayleigh number and Pe is the Péclet number (see [2, 4]). Let us notice that, if λ /∈ {0, 1},
then the problem (Pβ;a,b,λ) does not admit a solution (see [6, 8]).
The problem (Pβ;a,b,λ) was considered in [9] with β < 0, the reference contains also some results con-

cerning the existence and uniqueness of the convex and concave solution of (Pβ;a,b,1) where −2 < β < 0
and b > 0. The results of [6] generalize the ones of [9] and some of [10]. In [11] and [12], some results were
found for the problem (Pβ;0,b,1) with −2 < β < 0 and b < 0, the method used by the authors allows them to
prove the existence of a convex solution by introducing a singular integral equation obtained from Eq (1) by
a crocco-type transformation. The problem (Pβ;a,b,λ) with β = 0 is more commonly known as the Blasius
problem (see [7]). The case 0 < β ≤ 1, where a ≥ 0, b ≥ 0, was treated in [1]. In [2], the authors studied the
(Pβ;a,b,λ) with 0 < β < 1, a ∈ R and b < 0.

We have only partial results in [1] about the case β > 1, a ≥ 0 and b ≥ 0. The problem in [3] and [5]
come from the study of free convection boundary layer. Our goal, in this paper is to investigate the problem
(Pβ;a,b,λ), with β ≥ 1, a ∈ R and b < 0. We demonstrate some existence, non-existence and sign of concave,
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convex and convex-concave solutions. In what follows, we denote by fc a solution of the initial value problem
below and by [0, Tc) the right maximal interval of its existence.

f ′′′ + ff ′′ + βf ′(f ′ − 1) = 0,
f(0) = a,
f ′(0) = b,
f ′′(0) = c.

(Qβ;a,b,c)

To study the boundary value problem (Pβ;a,b,λ), we will use the shooting method, which consists of finding
the values of a real parameter c for which fc is the solution of (Qβ;a,b,c), such that Tc = +∞ and f ′c(t)→ λ
as t→ +∞.

2 On Blasius Equation

In this section, we recall some results about subsolutions and supersolutions of the Blasius equation (
f ′′′ + ff ′′ = 0) (see [6]). Remark that the constant function and the function hτ : t 7→ 3

t−τ for any τ ∈ R
with t 6= τ , are solutions of the Blasius equation.

Definition 1 ([6]) Let I ⊂ R be an interval, We say that a function f : I → R is a subsolution (resp. a
supersolution) of the Blasius equation if f is of class C3 and if f ′′′ + ff ′′ ≤ 0 on I (resp. f ′′′ + ff ′′ ≥ 0 on
I).

Definition 2 ([6]) Let ε > 0, We say that f is a ε-subsolution (resp. a ε-supersolution) of the Blasius
equation if f is of class C3 and if f ′′′ + ff ′′ ≤ −ε on I (resp. f ′′′ + ff ′′ ≥ ε on I).

Proposition 1 Let t0 ∈ R. There does not exist nonpositive concave subsolution of the Blasius equation on
the interval [t0,+∞).

Proof. See [6], Proposition 2.11.

Proposition 2 Let t0 ∈ R. There does not exist nonpositive convex supersolution of the Blasius equation
on the interval [t0,+∞).

Proof. See [6], Proposition 2.5.

Proposition 3 Let t0 ∈ R. There does not exist ε-subsolution of the Blasius equation on the interval
[t0,+∞).

Proof. See [6], Proposition 2.18.

3 Preliminary Results

Proposition 4 Let f be a solution of Eq. (1) on some maximal interval I = (T−, T+).

1. If F is any primitive function of f on I, then (f ′′eF )′ = −βf ′(f ′ − 1)eF .

2. Assume that T+ = +∞ and that f ′(t) → λ ∈ R as t → +∞. If, moreover, f is of constant sign at
infinity, then f ′′(t)→ 0 as t→ +∞.

3. If T+ = +∞ and if f ′(t)→ λ ∈ R as t→ +∞, then λ = 0 or λ = 1.

4. If T+ < +∞, then f ′′ and f ′ are unbounded near T+.

5. If there exists a point t0 ∈ I satisfying f ′′(t0) = 0 and f ′(t0) = µ, where µ = 0 or 1 then for all t ∈ I,
we have f(t) = µ(t− t0) + f(t0).
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6. If f ′(t)→ 0 as t→ +∞, then f(t) does not tend to −∞ or +∞ as t→ +∞.

Proof. The first Statement follows immediately from Eq. (1). For the proof of Statements 2-5, see [6] and
Statement 6, see [1].

Proposition 5 Let us suppose that f is a solution of Eq. (1) on the maximal interval I = (T−, T+).

1. Let H1 = f ′′ + f(f ′ − 1). Then H ′1 = (1− β)f ′(f ′ − 1), for all t ∈ I;

2. Let H2 = 3f
′′2 + βf ′2(2f ′ − 3). Then H ′2 = −6ff ′′2, for all t ∈ I ;

3. Let H3 = 2ff
′′ − f ′2 + (2f ′2. Then H ′3 = 2(2− β)ff ′2, for all t ∈ I;

4. Let H4 = f ′′ + ff ′. Then H ′4 = (1− β)f ′2 + βf ′, for all t ∈ I;

5. Let H5 = f ′ + 1
2f

2. Then H ′5 = H4, for all t ∈ I.

Proof. The Statements 1-4 follow immediately from Eq. (1), such that for Statements 1 and 4, by using
the relation ff ′′ = (ff ′)′ − f ′2 in Eq. (1) and we integrate it. For Statement 2, we multiply the Eq. (1) by
f ′′ and we integrate it, the Statement 3, also we multiplying Eq. (1) by f and integrate it by parts, while
the last it follows from Statement 4.

4 The Boundary Value Problem (Pβ;a,b,λ)

Consider the boundary value problem (Pβ;a,b,λ). We are interested here in concave, convex and convex-
concave solutions of this problem. Define the following sets:

C0 = {c ≤ 0 : f ′′c ≤ 0 on [0, Tc)},
C1 = {c ≥ 0 : f ′c ≤ 0 and f ′′c ≥ 0 on [0, Tc)},
C2 = {c ≥ 0 : ∃tc ∈ [0, Tc),∃εc > 0 s.t f ′c < 0 on (0, tc),
f ′c > 0 on (tc, tc + εc) and f

′′
c > 0 on (0, tc + εc)},

C3 = {c ≥ 0 : ∃sc ∈ [0, Tc),∃εc > 0 s.t f ′′c > 0 on [0, sc),
f ′′c < 0 on (sc, sc + εc) and f

′
c < 0 on (0, sc + εc)}.

Lemma 1 Let β > 0. If c ∈ C0, then Tc < +∞. Moreover, fc is concave solution, decreasing and f ′c → −∞
as t→ Tc.

Proof. If c ∈ C0, we have f ′c(t) < 0 and f ′′c (t) < 0 for all t ∈ [0, Tc). Then fc is a nonpositive concave
subsolution of the Blasius equation on [0, Tc) if a < 0, and on [t0, Tc) such that fc(t0) = 0 if a > 0. Therefore,
f ′c → −∞ as t→ Tc, and we deduce from Proposition 1 that Tc < +∞. Thanks to Proposition 4, Statement
1, fc is concave solution, decreasing and f ′c → −∞ as t→ Tc.

Remark 1 We note that C0, C1, C2 and C3 are disjoint nonempty subsets of R, and we have C1∪C2∪C3 =
(0,+∞) (see Appendix A of [6] with g(x) = βx(x − 1) and β > 0) and thanks to Lemma 1, we have
C0 = (−∞, 0].

Lemma 2 Let β > 0. Then fc is a convex solution of the boundary value problem (Pβ,a,b,0) if and only if
c ∈ C1.

Proof. See Appendix A of [6] with g(x) = βx(x− 1) and β > 0.

Lemma 3 Let β > 0. If c ∈ C3, then Tc < +∞. Moreover, fc is convex-concave, decreasing and f ′c(t) →
−∞ as t→ Tc.
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Proof. See [2], Lemma 9.

Remark 2 ([2]) From Proposition 4, Statements 1,3 and 5, if c ∈ C2, there are only three possibilities for
the solution of the initial value problem (Qβ;a,b,c). More precisely,

1. fc is convex and f ′c(t)→ +∞ as t→ Tc;

2. there exists a point t0 ∈ [0, Tc) such that f ′′c (t0) = 0 and f ′c(t0) > 1;

3. fc is a convex solution of (Pβ;a,b,1).

The next Proposition shows that Case (1) cannot hold.

Proposition 6 Let β ≥ 1. There does not exist a convex solution of (Pβ;a,b,+∞).

Proof. Assume that fc is convex solution of (Pβ;a,b,+∞). There exists t0 ∈ [0, Tc), such that f ′c(t) > 1 for
all t ∈ [t0, Tc), then fc is a ε-subsolution of the Blasius equation on [t0, Tc). Therefore, from Proposition
1, we have Tc < +∞. Furthermore the function H1 is decreasing for t > t0. Hence for all t ∈ [t0, Tc),
H1(t) < H1(t0), then we have

fc(t)(f
′
c(t)− 1) < f ′′c (t) + fc(t)(f

′
c(t)− 1) < H1(t0) < f ′′c (t0) + fc(t0)f

′
c(t0)

which is a contradiction with the fact that f ′c → +∞ as t→ Tc.

Proposition 7 Let β ≥ 1. If there exists t0 ∈ [0, Tc) such that f ′c(t0) = 0 and f ′′c (t0) < 0, then for all t > t0,
f ′′c (t)) < 0.

Proof. Let fc be a solution of (Qβ;a,b,c) on its right maximal interval of existence [0, Tc). Let t0 ∈ [0, Tc)
such that f ′c(t0) = 0 and f

′′
c (t0) < 0. We suppose that there exists t1 > t0, where t1 is the first point after

t0 such that f ′′c (t1) ≥ 0. Thanks to Proposition 4, Statement 1, the function t 7→ f ′′c e
F is strictly decreasing

on [t0, t1], it follows that f ′′c (t0)e
F (t0) > f ′′c (t1)e

F (t1), which is a contradiction.

4.1 The Case a ≤ 0
Lemma 4 Let 1 ≤ β ≤ 2 and b < −1. If c ∈ C2; and if there exists t0 ∈ [0, Tc) such that fc(t0) = 0, then
f ′c(t0) > 1.

Proof. Let 1 ≤ β ≤ 2 and b < −1. If c ∈ C2 and if there exists t0 ∈ [0, Tc) such that fc(t0) = 0, then the
function H3 is decreasing on [0, t0), so we have H3(0) ≥ H3(t0). This implies that −b2 ≥ −f ′2c (t0), and we
obtain f ′c(t0) ≥ −b > 1.

The following Proposition generalizes the previous Lemma.

Proposition 8 Let β ≥ 1. The boundary value problem (Pβ;a,b,1) has no convex solution.

Proof. Let fc be a convex solution of the boundary value problem (Pβ;a,b,1). Then there exists t0 ∈ [0,+∞),
such that fc(t0) = 0 and 0 < f ′c(t) < 1 for t > t0. Thus the function H1 is increasing for all t > t0, i.e.
H1(t) ≥ H1(t0) for t > t0. Hence we have f ′′c (t) − f ′′c (t0) ≥ −fc(t) (f ′c(t)− 1) > 0, which is a contradiction
for t large enough because f ′′c (t)→ 0 and fc(t) > 0.

Proposition 9 The boundary value problem (Pβ;a,b,0) has no negative convex-concave solution.

Proof. Let fc be a convex-concave solution of the boundary value problem (Pβ;a,b,0). There exists tc ∈
[0,+∞) such that f ′c(tc) = 0, so the function H2 is strictly increasing for all t > tc. Hence 3f ′′2c (tc) < H2(t)
for all t > tc. H2(t)→ 0 as t→ +∞, a contradiction.
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Remark 3 If the boundary value problem (Pβ;a,b,0) has a convex-concave solution, then this solution changes
its sign.

Lemma 5 If c ∈ C1, then there exists c∗ such that c < c∗, Tc = +∞, and the solution fc is negative on
[0,+∞).

Proof. Let c ∈ C1. From proposition 4, Statement 4, we have Tc = +∞, and the function H2 is strictly

increasing on [0, Tc). It follows that 3c2 + βb2(2b − 3) < 0, we obtain c < −b
√

β(3−2b)
3 . Therefore, the

solution fc is negative because a ≤ 0 and f ′c < 0.

Lemma 6 If c ∈ C3, then there exists c∗ such that c < c∗, Tc < +∞ and the solution fc is negative on
[0, Tc).

Proof. If c ∈ C3, then f ′c → −∞, and Tc < +∞. Apply the same proof as that of Lemma 5.

Remark 4 It follows from Lemma 5 and Lemma 6, that there exists c∗ > 0 such that c ≥ c∗, C2 is not
empty and here the solution fc changes convexity.

Lemma 7 Let 1 ≤ β ≤ 2, if c ∈ C2. There does not exist a nonpositive solution of the problem (Pβ;a,b,−∞).

Proof. Let 1 ≤ β ≤ 2, c ∈ C2 and fc is a nonpositive solution of the problem (Pβ;a,b,−∞). From Remark
2 and Propositions 7, 9, there exists tc, t0 ∈ [0, Tc), such that tc < t0, f ′′c (tc) > 0 and f

′′
c (t0) < 0. Thus the

funtion H3 is decreasing on [tc, t0], we get

−βf2c (tc) > 2fc(tc)f ′′c (tc)− βf2c (tc) > 2fc(t0)f ′′c (t0)− βf2c (t0) > −βf2c (t0),

it follows that fc(tc) > fc(t0), which is a contradiction.

Theorem 1 Let β ≥ 1, a ≤ 0 and b < 0.

1. The boundary value problem (Pβ;a,b,−∞) has infinitely many negative concave solutions on [0, Tc), with
Tc < +∞.

2. The boundary value problem (Pβ;a,b,0) has at least one negative convex solution on [0,+∞).

3. The boundary value problem (Pβ;a,b,1) has no convex solution on [0,+∞).

4. The boundary value problem (Pβ;a,b,+∞) has no convex solution on [0, Tc), with Tc < +∞.

Proof. The first result follows from Lemma 1. The second follows from Remark 1 and Lemma 2. The third
Statement follows from Proposition 8. The last result follows from Proposition 6.

4.2 The Case a > 0

Let us divide the sets C2 and C3 into the following two subsets:

C2.1 = {c ∈ C2; f ′c > 0 on [tc, Tc)},
C2.2 = {c ∈ C2;∃rc > tc s.t f ′c > 0 on [tc, rc) and f

′
c(rc) = 0},

C3.1 = {c ∈ C3; fc(sc) < 0},
C3.2 = {c ∈ C3; fc(sc) > 0}.

Proposition 10 If c ∈ C1 ∪ C2 ∪ C3.1, then c > −ab

Proof. From Proposition 4, Statement 4, if c ∈ C1 then Tc = +∞, f ′c(t)→ 0 as t→ +∞. The function H4

is strictly decreasing on [0,+∞), and so we have c + ab > 0. If c ∈ C2 ∪ C3.1, there exists tc ∈ [0, Tc) such
that f ′c(tc) = 0 or there exists t0 ∈ [0, Tc) such that fc(t0) = 0. Thus c+ ab ≥ f ′′c (t0) > 0.



590 On the Solutions of BVP Arising in Mixed Convection

Remark 5 If c ≤ −ab, then c ∈ C3.2 and Tc < +∞. Thus C3.2 is not empty and the convex part of the
solution fc is positive.

Proposition 11 If c ∈ C1 ∪ C2.1 and b ≥ − 12a
2, then Tc = +∞ and there exists c∗ > 0 such that c > c∗.

Moreover, the solution fc is positive.

Proof. Let c ∈ C1 ∪ C2.1. By the definition of C1 and C2.1 and thanks to Proposition 4, Statement 4
and Proposition 6, we have Tc = +∞. Otherwise the function H2 is decreasing for t > 0. Thus we obtain

3c2 + βb2(2b− 3) > 0, which implies that c > −b
√

β(3−2b)
3 . Now if we suppose that there exists t0 ∈ [0, Tc)

such that fc(t0) = 0, the function H4 is decreasing for all t > 0. We have H4(t0) = f ′′c (t0). Therefore H5 is
strictly increasing on [0, t0) and so we obtain b+ 1

2a
2 < f ′c(t0) < 0. This is a contradiction.

Remark 6 If c ∈ C2.2 and b ≥ − 12a
2, then the solution fc is positive on [0, t0), t0 is the point such that

t0 > sc with fc(t0) = 0 and sc be as in definition of C2.2.

Lemma 8 Let fc be a solution of the initial value problem (Qβ;a,b,c), on the right maximal interval of
existence [0, Tc) with b ≥ − 12a

2. If there exists t0 ∈ [0, Tc) such that fc(t0) = 0 and f ′c(t0) < 0, then
f ′′c (t0) < 0.

Proof. For the sake of contradiction, let us assume that t0 ∈ [0, Tc) with fc(t0) = 0 and f ′c(t0) < 0. Since
the function H4 is decreasing on [0, t0) and H4(t0) = f ′′c (t0) > 0, for all t ∈ [0, t0), H4 > 0, and H5 is strictly
increasing on [0, t0), we have b+ 1

2a
2 < f ′c(t0) < 0, this is a contradiction.

Proposition 12 Let 1 ≤ β ≤ 2 and b ≥ − 12a
2. Then C2.2 = ∅.

Proof. Let 1 ≤ β ≤ 2, b ≥ − 12a
2 and c ∈ C2.2. There exists tc ∈ [0, Tc), such that tc < sc with fc(tc) > 0,

f ′c(tc) = 0 and f
′′
c (tc) > 0, where tc be as in definition of C2 and sc be as in definition of C2.2. Therefore,

since the function H3 is increasing on [tc, sc], we then have

−βf2c (tc) < 2fc(tc)f ′′c (tc)− βf2c (tc) ≤ 2fc(sc)f ′′c (sc)− βf2c (sc) < −βf2c (sc),

which implies that fc(tc) > fc(sc), this is a contradiction.

If c ∈ C2.1 then Tc = +∞. So, let us divide the set C2.1 into the following two subsets:

C2.1.1 = {c ∈ C2.1; f ′c(t)→ 0 as t→ +∞},
C2.1.2 = {c ∈ C2.1; f ′c(t)→ 1 as t→ +∞}.

Proposition 13 Let 1 ≤ β ≤ 2. If b ≥ − 12a
2, then C2.1.1 = ∅.

Proof. Let 1 ≤ β ≤ 2, b ≥ − 12a
2 and c ∈ C2.1.1, we deduce from Proposition 11 that the function H3 is

increasing on [tc,+∞), where tc be as in definition of C2, we then have for t > tc,

−βf2c (tc) < 2fc(tc)f ′′c (tc)− βf2c (tc) ≤ 2fc(t)f ′′c (t)− f ′2c (t) + (2f ′c(t)− β)f2c (t).

From Proposition 4, Statements 2, 4 and 6, it follows that fc(t)→ l < +∞ as t→ +∞, which implies that
fc(tc) > l as t→ +∞, this is a contradiction.

Proposition 14 Let 1 ≤ β ≤ 2, and let c ∈ C1 ∪ C3 ∪ C2.2 ∪ C2.1.1. Then there exists c∗ > 0 such that
c < c∗.

Proof. Let c ∈ C1 ∪ C3 ∪ C2.2 ∪ C2.1.1. Either there exists t0 ∈ [0, Tc) such that fc(t0) = 0 or f ′c(t0) = 0 if
Tc < +∞, and if Tc = +∞, we have f ′c(t)→ 0 as t→ +∞. From Proposition 4, Statement 6, it follows that
the function H3 is increasing on [0, t0) or [0,+∞). We then get 2ac− b2 + (2b− β)a2 < 0. We implies that
c < b2+(β−2b)a2

2a .
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Remark 7 From the previous Proposition, there exists c∗ > 0, such that for c ≥ c∗, then c ∈ C2.1.2. Thus
C2.1.2 is not empty. If, moreover, b ≥ − 12a

2, from Propositions 11 and 14, we have C1 ⊂]c∗, c∗[.

Theorem 2 Let β ≥ 1, a > 0 and b < 0.

1. The boundary value problem (Pβ;a,b,−∞) has infinity convex-concave solutions on the maximal interval
of existence [0, Tc) with Tc < +∞. If, in addition, b ≥ − 12a

2, then the convex part of these solutions
will be non-negative.

2. The boundary value problem (Pβ;a,b,0) has at least one convex solution on [0,+∞). If, in addition,
b ≥ − 12a

2, then this solution becomes non-negative convex solution.

3. If β ≤ 2, the boundary value problem (Pβ;a,b,1) has infinitely many positive solutions on [0,+∞).

4. The boundary value problem (Pβ;a,b,+∞) has no convex solution on [0, Tc), with Tc < +∞.

Proof. The first follows from Proposition 4, Proposition 7 and Remark 5, the second result follows from
Remark 1, Lemma 2 and Proposition 11, while the third follows from Proposition 14 and Remark 7 . The
last result follows from Proposition 6.
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