On The Solutions Of Boundary Value Problem Arising In Mixed Convection^{*}

Mohamed Boulekbache[†], Khaled Boudjema Djeffal[‡], Mohammed Aiboudi[§]

Received 6 August 2021

Abstract

In this article, we are interested in studying solutions of the differential equation $f''' + ff'' + \beta f'(f' - 1) = 0$ on $[0, +\infty)$ with $\beta \ge 1$, satisfying the boundary conditions $f(0) = a \in \mathbb{R}$, f'(0) = b < 0 and $f'(t) \to \lambda$ as $t \to +\infty$, where $\lambda \in \{0, 1\}$. This problem arises in the study of mixed convection adjacent to surfaces embedded in a porous medium using the boundary layer approximation.

1 Introduction

Let $\beta \in \mathbb{R}$. We consider the third order autonomous nonlinear differential equation:

$$f''' + ff'' + \beta f'(f' - 1) = 0, \qquad t \in [0, +\infty).$$
(1)

Associated with the above equation, we have the following boundary value problem:

$$\begin{cases} f''' + ff'' + \beta f'(f'-1) = 0, \\ f(0) = a, \\ f'(0) = b, \\ f'(t) \to \lambda \text{ as } t \to +\infty, \end{cases}$$

$$(\mathcal{P}_{\beta;a,b,\lambda})$$

where $a, b, \beta \in \mathbb{R}$ and $\lambda \in \{0, 1\}$ with b < 0 and $\beta \ge 1$. The problem $(\mathcal{P}_{\beta;a,b,\lambda})$ in which the mix of three parameters β , a and b is of capital importance, where β have a law profile of power, a prescribed power law of the distance from the leading edge for the temperature and $b = \frac{R_a}{Pe} - 1$ is the mixed convection parameter, with R_a being the Rayleigh number and P_e is the Péclet number (see [2, 4]). Let us notice that, if $\lambda \notin \{0, 1\}$, then the problem $(\mathcal{P}_{\beta;a,b,\lambda})$ does not admit a solution (see [6, 8]).

The problem $(\mathcal{P}_{\beta;a,b,\lambda})$ was considered in [9] with $\beta < 0$, the reference contains also some results concerning the existence and uniqueness of the convex and concave solution of $(\mathcal{P}_{\beta;a,b,1})$ where $-2 < \beta < 0$ and b > 0. The results of [6] generalize the ones of [9] and some of [10]. In [11] and [12], some results were found for the problem $(\mathcal{P}_{\beta;0,b,1})$ with $-2 < \beta < 0$ and b < 0, the method used by the authors allows them to prove the existence of a convex solution by introducing a singular integral equation obtained from Eq (1) by a crocco-type transformation. The problem $(\mathcal{P}_{\beta;a,b,\lambda})$ with $\beta = 0$ is more commonly known as the Blasius problem (see [7]). The case $0 < \beta \leq 1$, where $a \geq 0$, $b \geq 0$, was treated in [1]. In [2], the authors studied the $(\mathcal{P}_{\beta;a,b,\lambda})$ with $0 < \beta < 1$, $a \in \mathbb{R}$ and b < 0.

We have only partial results in [1] about the case $\beta > 1$, $a \ge 0$ and $b \ge 0$. The problem in [3] and [5] come from the study of free convection boundary layer. Our goal, in this paper is to investigate the problem $(\mathcal{P}_{\beta;a,b,\lambda})$, with $\beta \ge 1$, $a \in \mathbb{R}$ and b < 0. We demonstrate some existence, non-existence and sign of concave,

^{*}Mathematics Subject Classifications: 34B15, 34C11, 76D10.

[†]Département de Mathématiques, Faculté des Sciences Exactes et Appliquées. Laboratoire d'Analyse Mathématique et Applications (L.A.M.A). Université Oran 1, Ahmed Ben Bella, Algeria

[‡]Département de Mathématiques, Faculté des Sciences Exactes et Informatique. Université de Hassiba Benbouali, Chlef, Algeria

[§]Département de Mathématiques, Faculté des Sciences Exactes et Appliquées. Laboratoire d'Analyse Mathématique et Applications (L.A.M.A). Université Oran 1, Ahmed Ben Bella, Algeria

convex and convex-concave solutions. In what follows, we denote by f_c a solution of the initial value problem below and by $[0, T_c)$ the right maximal interval of its existence.

$$\begin{cases}
f''' + ff'' + \beta f'(f'-1) = 0, \\
f(0) = a, \\
f'(0) = b, \\
f''(0) = c.
\end{cases}$$
 $(\mathcal{Q}_{\beta;a,b,c})$

To study the boundary value problem $(\mathcal{P}_{\beta;a,b,\lambda})$, we will use the shooting method, which consists of finding the values of a real parameter c for which f_c is the solution of $(\mathcal{Q}_{\beta;a,b,c})$, such that $T_c = +\infty$ and $f'_c(t) \to \lambda$ as $t \to +\infty$.

2 On Blasius Equation

In this section, we recall some results about subsolutions and supersolutions of the Blasius equation (f''' + ff'' = 0) (see [6]). Remark that the constant function and the function $h_{\tau} : t \mapsto \frac{3}{t-\tau}$ for any $\tau \in \mathbb{R}$ with $t \neq \tau$, are solutions of the Blasius equation.

Definition 1 ([6]) Let $I \subset \mathbb{R}$ be an interval, We say that a function $f : I \to \mathbb{R}$ is a subsolution (resp. a supersolution) of the Blasius equation if f is of class C^3 and if $f''' + ff'' \leq 0$ on I (resp. $f''' + ff'' \geq 0$ on I).

Definition 2 ([6]) Let $\epsilon > 0$, We say that f is a ϵ -subsolution (resp. a ϵ -supersolution) of the Blasius equation if f is of class C^3 and if $f''' + ff'' \leq -\epsilon$ on I (resp. $f''' + ff'' \geq \epsilon$ on I).

Proposition 1 Let $t_0 \in \mathbb{R}$. There does not exist nonpositive concave subsolution of the Blasius equation on the interval $[t_0, +\infty)$.

Proof. See [6], Proposition 2.11. ■

Proposition 2 Let $t_0 \in \mathbb{R}$. There does not exist nonpositive convex supersolution of the Blasius equation on the interval $[t_0, +\infty)$.

Proof. See [6], Proposition 2.5. \blacksquare

Proposition 3 Let $t_0 \in \mathbb{R}$. There does not exist ϵ -subsolution of the Blasius equation on the interval $[t_0, +\infty)$.

Proof. See [6], Proposition 2.18.

3 Preliminary Results

Proposition 4 Let f be a solution of Eq. (1) on some maximal interval $I = (T_{-}, T_{+})$.

- 1. If F is any primitive function of f on I, then $(f''e^F)' = -\beta f'(f'-1)e^F$.
- 2. Assume that $T_+ = +\infty$ and that $f'(t) \to \lambda \in \mathbb{R}$ as $t \to +\infty$. If, moreover, f is of constant sign at infinity, then $f''(t) \to 0$ as $t \to +\infty$.
- 3. If $T_+ = +\infty$ and if $f'(t) \to \lambda \in \mathbb{R}$ as $t \to +\infty$, then $\lambda = 0$ or $\lambda = 1$.
- 4. If $T_+ < +\infty$, then f'' and f' are unbounded near T_+ .
- 5. If there exists a point $t_0 \in I$ satisfying $f''(t_0) = 0$ and $f'(t_0) = \mu$, where $\mu = 0$ or 1 then for all $t \in I$, we have $f(t) = \mu(t t_0) + f(t_0)$.

Boulekbache et al.

6. If $f'(t) \to 0$ as $t \to +\infty$, then f(t) does not tend to $-\infty$ or $+\infty$ as $t \to +\infty$.

Proof. The first Statement follows immediately from Eq. (1). For the proof of Statements 2-5, see [6] and Statement 6, see [1]. \blacksquare

Proposition 5 Let us suppose that f is a solution of Eq. (1) on the maximal interval $I = (T_{-}, T_{+})$.

- 1. Let $H_1 = f'' + f(f'-1)$. Then $H'_1 = (1-\beta)f'(f'-1)$, for all $t \in I$;
- 2. Let $H_2 = 3f''^2 + \beta f'^2(2f'-3)$. Then $H'_2 = -6ff''^2$, for all $t \in I$;
- 3. Let $H_3 = 2ff'' f'^2 + (2f'^2)$. Then $H'_3 = 2(2-\beta)ff'^2$, for all $t \in I$;
- 4. Let $H_4 = f'' + ff'$. Then $H'_4 = (1 \beta)f'^2 + \beta f'$, for all $t \in I$;
- 5. Let $H_5 = f' + \frac{1}{2}f^2$. Then $H'_5 = H_4$, for all $t \in I$.

Proof. The Statements 1-4 follow immediately from Eq. (1), such that for Statements 1 and 4, by using the relation $ff'' = (ff')' - f'^2$ in Eq. (1) and we integrate it. For Statement 2, we multiply the Eq. (1) by f'' and we integrate it, the Statement 3, also we multiplying Eq. (1) by f and integrate it by parts, while the last it follows from Statement 4.

4 The Boundary Value Problem $(P_{\beta;a,b,\lambda})$

Consider the boundary value problem $(P_{\beta;a,b,\lambda})$. We are interested here in concave, convex and convexconcave solutions of this problem. Define the following sets:

$$C_{0} = \{c \leq 0 : f_{c}'' \leq 0 \text{ on } [0, T_{c})\},\$$

$$C_{1} = \{c \geq 0 : f_{c}' \leq 0 \text{ and } f_{c}'' \geq 0 \text{ on } [0, T_{c})\},\$$

$$C_{2} = \{c \geq 0 : \exists t_{c} \in [0, T_{c}), \exists \varepsilon_{c} > 0 \text{ s.t } f_{c}' < 0 \text{ on } (0, t_{c}),\$$

$$f_{c}' > 0 \text{ on } (t_{c}, t_{c} + \varepsilon_{c}) \text{ and } f_{c}'' > 0 \text{ on } (0, t_{c} + \varepsilon_{c})\},\$$

$$C_{3} = \{c \geq 0 : \exists s_{c} \in [0, T_{c}), \exists \varepsilon_{c} > 0 \text{ s.t } f_{c}'' > 0 \text{ on } [0, s_{c}),\$$

$$f_{c}'' < 0 \text{ on } (s_{c}, s_{c} + \varepsilon_{c}) \text{ and } f_{c}' < 0 \text{ on } (0, s_{c} + \varepsilon_{c})\}.$$

Lemma 1 Let $\beta > 0$. If $c \in C_0$, then $T_c < +\infty$. Moreover, f_c is concave solution, decreasing and $f'_c \to -\infty$ as $t \to T_c$.

Proof. If $c \in C_0$, we have $f'_c(t) < 0$ and $f''_c(t) < 0$ for all $t \in [0, T_c)$. Then f_c is a nonpositive concave subsolution of the Blasius equation on $[0, T_c)$ if a < 0, and on $[t_0, T_c)$ such that $f_c(t_0) = 0$ if a > 0. Therefore, $f'_c \to -\infty$ as $t \to T_c$, and we deduce from Proposition 1 that $T_c < +\infty$. Thanks to Proposition 4, Statement 1, f_c is concave solution, decreasing and $f'_c \to -\infty$ as $t \to T_c$.

Remark 1 We note that C_0 , C_1 , C_2 and C_3 are disjoint nonempty subsets of \mathbb{R} , and we have $C_1 \cup C_2 \cup C_3 = (0, +\infty)$ (see Appendix A of [6] with $g(x) = \beta x(x-1)$ and $\beta > 0$) and thanks to Lemma 1, we have $C_0 = (-\infty, 0]$.

Lemma 2 Let $\beta > 0$. Then f_c is a convex solution of the boundary value problem $(\mathcal{P}_{\beta,a,b,0})$ if and only if $c \in C_1$.

Proof. See Appendix A of [6] with $g(x) = \beta x(x-1)$ and $\beta > 0$.

Lemma 3 Let $\beta > 0$. If $c \in C_3$, then $T_c < +\infty$. Moreover, f_c is convex-concave, decreasing and $f'_c(t) \rightarrow -\infty$ as $t \rightarrow T_c$.

Proof. See [2], Lemma 9.

Remark 2 ([2]) From Proposition 4, Statements 1,3 and 5, if $c \in C_2$, there are only three possibilities for the solution of the initial value problem $(Q_{\beta;a,b,c})$. More precisely,

- 1. f_c is convex and $f'_c(t) \to +\infty$ as $t \to T_c$;
- 2. there exists a point $t_0 \in [0, T_c)$ such that $f''_c(t_0) = 0$ and $f'_c(t_0) > 1$;
- 3. f_c is a convex solution of $(\mathcal{P}_{\beta;a,b,1})$.

The next Proposition shows that Case (1) cannot hold.

Proposition 6 Let $\beta \geq 1$. There does not exist a convex solution of $(\mathcal{P}_{\beta;a,b,+\infty})$.

Proof. Assume that f_c is convex solution of $(\mathcal{P}_{\beta;a,b,+\infty})$. There exists $t_0 \in [0, T_c)$, such that $f'_c(t) > 1$ for all $t \in [t_0, T_c)$, then f_c is a ϵ -subsolution of the Blasius equation on $[t_0, T_c)$. Therefore, from Proposition 1, we have $T_c < +\infty$. Furthermore the function H_1 is decreasing for $t > t_0$. Hence for all $t \in [t_0, T_c)$, $H_1(t) < H_1(t_0)$, then we have

$$f_c(t)(f'_c(t) - 1) < f''_c(t) + f_c(t)(f'_c(t) - 1) < H_1(t_0) < f''_c(t_0) + f_c(t_0)f'_c(t_0)$$

which is a contradiction with the fact that $f'_c \to +\infty$ as $t \to T_c$.

Proposition 7 Let $\beta \ge 1$. If there exists $t_0 \in [0, T_c)$ such that $f'_c(t_0) = 0$ and $f''_c(t_0) < 0$, then for all $t > t_0$, $f''_c(t) < 0$.

Proof. Let f_c be a solution of $(\mathcal{Q}_{\beta;a,b,c})$ on its right maximal interval of existence $[0, T_c)$. Let $t_0 \in [0, T_c)$ such that $f'_c(t_0) = 0$ and $f''_c(t_0) < 0$. We suppose that there exists $t_1 > t_0$, where t_1 is the first point after t_0 such that $f'_c(t_1) \ge 0$. Thanks to Proposition 4, Statement 1, the function $t \mapsto f''_c e^F$ is strictly decreasing on $[t_0, t_1]$, it follows that $f''_c(t_0) e^{F(t_0)} > f''_c(t_1) e^{F(t_1)}$, which is a contradiction.

4.1 The Case $a \leq 0$

Lemma 4 Let $1 \leq \beta \leq 2$ and b < -1. If $c \in C_2$; and if there exists $t_0 \in [0, T_c)$ such that $f_c(t_0) = 0$, then $f'_c(t_0) > 1$.

Proof. Let $1 \leq \beta \leq 2$ and b < -1. If $c \in C_2$ and if there exists $t_0 \in [0, T_c)$ such that $f_c(t_0) = 0$, then the function H_3 is decreasing on $[0, t_0)$, so we have $H_3(0) \geq H_3(t_0)$. This implies that $-b^2 \geq -f_c'^2(t_0)$, and we obtain $f'_c(t_0) \geq -b > 1$.

The following Proposition generalizes the previous Lemma.

Proposition 8 Let $\beta \geq 1$. The boundary value problem $(P_{\beta;a,b,1})$ has no convex solution.

Proof. Let f_c be a convex solution of the boundary value problem $(P_{\beta;a,b,1})$. Then there exists $t_0 \in [0, +\infty)$, such that $f_c(t_0) = 0$ and $0 < f'_c(t) < 1$ for $t > t_0$. Thus the function H_1 is increasing for all $t > t_0$, i.e. $H_1(t) \ge H_1(t_0)$ for $t > t_0$. Hence we have $f''_c(t) - f''_c(t_0) \ge -f_c(t) (f'_c(t) - 1) > 0$, which is a contradiction for t large enough because $f''_c(t) \to 0$ and $f_c(t) > 0$.

Proposition 9 The boundary value problem $(P_{\beta;a,b,0})$ has no negative convex-concave solution.

Proof. Let f_c be a convex-concave solution of the boundary value problem $(P_{\beta;a,b,0})$. There exists $t_c \in [0, +\infty)$ such that $f'_c(t_c) = 0$, so the function H_2 is strictly increasing for all $t > t_c$. Hence $3f''_c(t_c) < H_2(t)$ for all $t > t_c$. $H_2(t) \to 0$ as $t \to +\infty$, a contradiction.

Remark 3 If the boundary value problem $(P_{\beta;a,b,0})$ has a convex-concave solution, then this solution changes its sign.

Lemma 5 If $c \in C_1$, then there exists c_* such that $c < c_*$, $T_c = +\infty$, and the solution f_c is negative on $[0, +\infty)$.

Proof. Let $c \in C_1$. From proposition 4, Statement 4, we have $T_c = +\infty$, and the function H_2 is strictly increasing on $[0, T_c)$. It follows that $3c^2 + \beta b^2(2b - 3) < 0$, we obtain $c < -b\sqrt{\frac{\beta(3-2b)}{3}}$. Therefore, the solution f_c is negative because $a \leq 0$ and $f'_c < 0$.

Lemma 6 If $c \in C_3$, then there exists c_* such that $c < c_*$, $T_c < +\infty$ and the solution f_c is negative on $[0, T_c)$.

Proof. If $c \in C_3$, then $f'_c \to -\infty$, and $T_c < +\infty$. Apply the same proof as that of Lemma 5.

Remark 4 It follows from Lemma 5 and Lemma 6, that there exists $c_* > 0$ such that $c \ge c_*$, C_2 is not empty and here the solution f_c changes convexity.

Lemma 7 Let $1 \leq \beta \leq 2$, if $c \in C_2$. There does not exist a nonpositive solution of the problem $(P_{\beta;a,b,-\infty})$.

Proof. Let $1 \leq \beta \leq 2$, $c \in C_2$ and f_c is a nonpositive solution of the problem $(P_{\beta;a,b,-\infty})$. From Remark 2 and Propositions 7, 9, there exists $t_c, t_0 \in [0, T_c)$, such that $t_c < t_0, f''_c(t_c) > 0$ and $f''_c(t_0) < 0$. Thus the function H_3 is decreasing on $[t_c, t_0]$, we get

$$-\beta f_c^2(t_c) > 2f_c(t_c)f_c''(t_c) - \beta f_c^2(t_c) > 2f_c(t_0)f_c''(t_0) - \beta f_c^2(t_0) > -\beta f_c^2(t_0),$$

it follows that $f_c(t_c) > f_c(t_0)$, which is a contradiction.

Theorem 1 Let $\beta \ge 1$, $a \le 0$ and b < 0.

- 1. The boundary value problem $(P_{\beta;a,b,-\infty})$ has infinitely many negative concave solutions on $[0,T_c)$, with $T_c < +\infty$.
- 2. The boundary value problem $(P_{\beta;a,b,0})$ has at least one negative convex solution on $[0, +\infty)$.
- 3. The boundary value problem $(P_{\beta;a,b,1})$ has no convex solution on $[0, +\infty)$.
- 4. The boundary value problem $(P_{\beta;a,b,+\infty})$ has no convex solution on $[0,T_c)$, with $T_c < +\infty$.

Proof. The first result follows from Lemma 1. The second follows from Remark 1 and Lemma 2. The third Statement follows from Proposition 8. The last result follows from Proposition 6. \blacksquare

4.2 The Case a > 0

Let us divide the sets C_2 and C_3 into the following two subsets:

$$C_{2.1} = \{c \in C_2; f'_c > 0 \text{ on } [t_c, T_c)\},\$$

$$C_{2.2} = \{c \in C_2; \exists r_c > t_c \text{ s.t } f'_c > 0 \text{ on } [t_c, r_c) \text{ and } f'_c(r_c) = 0\},\$$

$$C_{3.1} = \{c \in C_3; f_c(s_c) < 0\},\$$

$$C_{3.2} = \{c \in C_3; f_c(s_c) > 0\}.$$

Proposition 10 If $c \in C_1 \cup C_2 \cup C_{3,1}$, then c > -ab

Proof. From Proposition 4, Statement 4, if $c \in C_1$ then $T_c = +\infty$, $f'_c(t) \to 0$ as $t \to +\infty$. The function H_4 is strictly decreasing on $[0, +\infty)$, and so we have c + ab > 0. If $c \in C_2 \cup C_{3,1}$, there exists $t_c \in [0, T_c)$ such that $f'_c(t_c) = 0$ or there exists $t_0 \in [0, T_c)$ such that $f_c(t_0) = 0$. Thus $c + ab \ge f''_c(t_0) > 0$.

Remark 5 If $c \leq -ab$, then $c \in C_{3,2}$ and $T_c < +\infty$. Thus $C_{3,2}$ is not empty and the convex part of the solution f_c is positive.

Proposition 11 If $c \in C_1 \cup C_{2,1}$ and $b \ge -\frac{1}{2}a^2$, then $T_c = +\infty$ and there exists $c_* > 0$ such that $c > c_*$. Moreover, the solution f_c is positive.

Proof. Let $c \in C_1 \cup C_{2,1}$. By the definition of C_1 and $C_{2,1}$ and thanks to Proposition 4, Statement 4 and Proposition 6, we have $T_c = +\infty$. Otherwise the function H_2 is decreasing for t > 0. Thus we obtain $3c^2 + \beta b^2(2b-3) > 0$, which implies that $c > -b\sqrt{\frac{\beta(3-2b)}{3}}$. Now if we suppose that there exists $t_0 \in [0, T_c)$ such that $f_c(t_0) = 0$, the function H_4 is decreasing for all t > 0. We have $H_4(t_0) = f_c''(t_0)$. Therefore H_5 is strictly increasing on $[0, t_0)$ and so we obtain $b + \frac{1}{2}a^2 < f_c'(t_0) < 0$. This is a contradiction.

Remark 6 If $c \in C_{2,2}$ and $b \ge -\frac{1}{2}a^2$, then the solution f_c is positive on $[0, t_0)$, t_0 is the point such that $t_0 > s_c$ with $f_c(t_0) = 0$ and s_c be as in definition of $C_{2,2}$.

Lemma 8 Let f_c be a solution of the initial value problem $(Q_{\beta;a,b,c})$, on the right maximal interval of existence $[0,T_c)$ with $b \ge -\frac{1}{2}a^2$. If there exists $t_0 \in [0,T_c)$ such that $f_c(t_0) = 0$ and $f'_c(t_0) < 0$, then $f''_c(t_0) < 0$.

Proof. For the sake of contradiction, let us assume that $t_0 \in [0, T_c)$ with $f_c(t_0) = 0$ and $f'_c(t_0) < 0$. Since the function H_4 is decreasing on $[0, t_0)$ and $H_4(t_0) = f''_c(t_0) > 0$, for all $t \in [0, t_0)$, $H_4 > 0$, and H_5 is strictly increasing on $[0, t_0)$, we have $b + \frac{1}{2}a^2 < f'_c(t_0) < 0$, this is a contradiction.

Proposition 12 Let $1 \le \beta \le 2$ and $b \ge -\frac{1}{2}a^2$. Then $C_{2,2} = \emptyset$.

Proof. Let $1 \le \beta \le 2$, $b \ge -\frac{1}{2}a^2$ and $c \in C_{2,2}$. There exists $t_c \in [0, T_c)$, such that $t_c < s_c$ with $f_c(t_c) > 0$, $f'_c(t_c) = 0$ and $f''_c(t_c) > 0$, where t_c be as in definition of C_2 and s_c be as in definition of $C_{2,2}$. Therefore, since the function H_3 is increasing on $[t_c, s_c]$, we then have

$$-\beta f_c^2(t_c) < 2f_c(t_c)f_c''(t_c) - \beta f_c^2(t_c) \le 2f_c(s_c)f_c''(s_c) - \beta f_c^2(s_c) < -\beta f_c^2(s_c),$$

which implies that $f_c(t_c) > f_c(s_c)$, this is a contradiction.

If $c \in C_{2,1}$ then $T_c = +\infty$. So, let us divide the set $C_{2,1}$ into the following two subsets:

$$C_{2.1.1} = \{ c \in C_{2.1}; f'_c(t) \to 0 \text{ as } t \to +\infty \},\$$

$$C_{2.1.2} = \{ c \in C_{2.1}; f'_c(t) \to 1 \text{ as } t \to +\infty \}.$$

Proposition 13 Let $1 \leq \beta \leq 2$. If $b \geq -\frac{1}{2}a^2$, then $C_{2.1.1} = \emptyset$.

Proof. Let $1 \leq \beta \leq 2$, $b \geq -\frac{1}{2}a^2$ and $c \in C_{2.1.1}$, we deduce from Proposition 11 that the function H_3 is increasing on $[t_c, +\infty)$, where t_c be as in definition of C_2 , we then have for $t > t_c$,

$$-\beta f_c^2(t_c) < 2f_c(t_c)f_c''(t_c) - \beta f_c^2(t_c) \le 2f_c(t)f_c''(t) - f_c'^2(t) + (2f_c'(t) - \beta)f_c^2(t).$$

From Proposition 4, Statements 2, 4 and 6, it follows that $f_c(t) \to l < +\infty$ as $t \to +\infty$, which implies that $f_c(t_c) > l$ as $t \to +\infty$, this is a contradiction.

Proposition 14 Let $1 \leq \beta \leq 2$, and let $c \in C_1 \cup C_3 \cup C_{2,2} \cup C_{2,1,1}$. Then there exists $c^* > 0$ such that $c < c^*$.

Proof. Let $c \in C_1 \cup C_3 \cup C_{2,2} \cup C_{2,1,1}$. Either there exists $t_0 \in [0, T_c)$ such that $f_c(t_0) = 0$ or $f'_c(t_0) = 0$ if $T_c < +\infty$, and if $T_c = +\infty$, we have $f'_c(t) \to 0$ as $t \to +\infty$. From Proposition 4, Statement 6, it follows that the function H_3 is increasing on $[0, t_0)$ or $[0, +\infty)$. We then get $2ac - b^2 + (2b - \beta)a^2 < 0$. We implies that $c < \frac{b^2 + (\beta - 2b)a^2}{2a}$.

Boulekbache et al.

Remark 7 From the previous Proposition, there exists $c^* > 0$, such that for $c \ge c^*$, then $c \in C_{2.1,2}$. Thus $C_{2.1,2}$ is not empty. If, moreover, $b \ge -\frac{1}{2}a^2$, from Propositions 11 and 14, we have $C_1 \subset]c_*, c^*[$.

Theorem 2 Let $\beta \geq 1$, a > 0 and b < 0.

- 1. The boundary value problem $(P_{\beta;a,b,-\infty})$ has infinity convex-concave solutions on the maximal interval of existence $[0, T_c)$ with $T_c < +\infty$. If, in addition, $b \ge -\frac{1}{2}a^2$, then the convex part of these solutions will be non-negative.
- 2. The boundary value problem $(P_{\beta;a,b,0})$ has at least one convex solution on $[0, +\infty)$. If, in addition, $b \ge -\frac{1}{2}a^2$, then this solution becomes non-negative convex solution.
- 3. If $\beta \leq 2$, the boundary value problem $(P_{\beta;a,b,1})$ has infinitely many positive solutions on $[0, +\infty)$.
- 4. The boundary value problem $(P_{\beta;a,b,+\infty})$ has no convex solution on $[0,T_c)$, with $T_c < +\infty$.

Proof. The first follows from Proposition 4, Proposition 7 and Remark 5, the second result follows from Remark 1, Lemma 2 and Proposition 11, while the third follows from Proposition 14 and Remark 7. The last result follows from Proposition 6. \blacksquare

References

- M. Aiboudi, I. Bensari-Khellil, B. Brighi, Similarity solutions of mixed convection boundary-layer flows in a porous medium, Differ. Equ. Appl., 9(2017), 69–85.
- [2] M. Aiboudi, K. B. Djeffal and B. Brighi, On the convex and convex-concave solutions of opposing mixed convection boundary layer flow in a porous medium, Abstr. Appl. Anal., 2018, Art. ID 4340204, 5 pp.
- [3] M. Aiboudi and B. Brighi, On the solutions of a boundary value problem arising in free convection with prescribed heat flux, Arch. Math., 93(2009), 165–174.
- [4] E. H. Aly, L. Elliott and D. B. Ingham, Mixed convection boundary-layer flows over a vertical surface embedded in a porous medium, Eur. J. Mech. B Fluids, 22(2003), 529–543.
- [5] B. Brighi, Sur un problème aux limites associé à l'équation différentielle $f''' + ff'' + 2f'^2 = 0$, Ann. Sci. Math. Québec, 33(2009), 23–37.
- [6] B. Brighi, The equation f''' + ff'' + g(f') = 0 and the associated boundary value problems, Results Math., 61(2012), 355–391.
- [7] B. Brighi, A. Fruchard and T. Sari, On the Blasius problem, Adv. Differ. Equ., 13(2008), 509–600.
- [8] B. Brighi and J.-D. Hoernel, On general similarity boundary layer equation, Acta Math. Univ. Comenian., 77(2008), 9–22.
- [9] B. Brighi and J.-D. Hoernel, On the concave and convex solutions of mixed convection boundary layer approximation in a porous medium, Appl. Math. Lett., 19(2006), 69–74.
- [10] M. Guedda, Multiple solutions of mixed convection boundary-layer approximations in a porous medium, Appl. Math. Lett., 19(2006), 63–68.
- [11] G. C. Yang, An extension result of the opposing mixed convection problem arising in boundary layer theory, Appl. Math. Lett., 38(2014), 180–185.
- [12] G. C. Yang, L. Zhang and L. F. Dang, Existence and nonexistence of solutions on opposing mixed convection problems in boundary layer theory, Eur. J. Mech. B Fluids, 43(2014), 148–153.