On The Solutions Of Boundary Value Problem Arising In Mixed Convection*

Mohamed Boulekbache ${ }^{\dagger}$, Khaled Boudjema Djeffal ${ }^{\ddagger}$, Mohammed Aiboudi ${ }^{\S}$

Received 6 August 2021

Abstract

In this article, we are interested in studying solutions of the differential equation $f^{\prime \prime \prime}+f f^{\prime \prime}+\beta f^{\prime}\left(f^{\prime}-\right.$ 1) $=0$ on $[0,+\infty)$ with $\beta \geq 1$, satisfying the boundary conditions $f(0)=a \in \mathbb{R}, f^{\prime}(0)=b<0$ and $f^{\prime}(t) \rightarrow \lambda$ as $t \rightarrow+\infty$, where $\lambda \in\{0,1\}$. This problem arises in the study of mixed convection adjacent to surfaces embedded in a porous medium using the boundary layer approximation.

1 Introduction

Let $\beta \in \mathbb{R}$. We consider the third order autonomous nonlinear differential equation:

$$
\begin{equation*}
f^{\prime \prime \prime}+f f^{\prime \prime}+\beta f^{\prime}\left(f^{\prime}-1\right)=0, \quad t \in[0,+\infty) . \tag{1}
\end{equation*}
$$

Associated with the above equation, we have the following boundary value problem:

$$
\left\{\begin{array}{l}
f^{\prime \prime \prime}+f f^{\prime \prime}+\beta f^{\prime}\left(f^{\prime}-1\right)=0, \\
f(0)=a, \\
f^{\prime}(0)=b, \\
f^{\prime}(t) \rightarrow \lambda \text { as } t \rightarrow+\infty,
\end{array}\right.
$$

where $a, b, \beta \in \mathbb{R}$ and $\lambda \in\{0,1\}$ with $b<0$ and $\beta \geq 1$. The problem $\left(\mathcal{P}_{\beta ; a, b, \lambda}\right)$ in which the mix of three parameters β, a and b is of capital importance, where β have a law profile of power, a prescribed power law of the distance from the leading edge for the temperature and $b=\frac{R_{a}}{P e}-1$ is the mixed convection parameter, with R_{a} being the Rayleigh number and P_{e} is the Péclet number (see $[2,4]$). Let us notice that, if $\lambda \notin\{0,1\}$, then the problem ($\mathcal{P}_{\beta ; a, b, \lambda}$) does not admit a solution (see $[6,8]$).

The problem ($\mathcal{P}_{\beta ; a, b, \lambda}$) was considered in [9] with $\beta<0$, the reference contains also some results concerning the existence and uniqueness of the convex and concave solution of ($\mathcal{P}_{\beta ; a, b, 1}$) where $-2<\beta<0$ and $b>0$. The results of [6] generalize the ones of [9] and some of [10]. In [11] and [12], some results were found for the problem $\left(\mathcal{P}_{\beta ; 0, b, 1}\right)$ with $-2<\beta<0$ and $b<0$, the method used by the authors allows them to prove the existence of a convex solution by introducing a singular integral equation obtained from Eq (1) by a crocco-type transformation. The problem ($\mathcal{P}_{\beta ; a, b, \lambda}$) with $\beta=0$ is more commonly known as the Blasius problem (see [7]). The case $0<\beta \leq 1$, where $a \geq 0, b \geq 0$, was treated in [1]. In [2], the authors studied the $\left(\mathcal{P}_{\beta ; a, b, \lambda}\right)$ with $0<\beta<1, a \in \mathbb{R}$ and $b<0$.

We have only partial results in [1] about the case $\beta>1, a \geq 0$ and $b \geq 0$. The problem in [3] and [5] come from the study of free convection boundary layer. Our goal, in this paper is to investigate the problem ($\mathcal{P}_{\beta ; a, b, \lambda}$), with $\beta \geq 1, a \in \mathbb{R}$ and $b<0$. We demonstrate some existence, non-existence and sign of concave,

[^0]convex and convex-concave solutions. In what follows, we denote by f_{c} a solution of the initial value problem below and by $\left[0, T_{c}\right)$ the right maximal interval of its existence.
\[

\left\{$$
\begin{array}{l}
f^{\prime \prime \prime}+f f^{\prime \prime}+\beta f^{\prime}\left(f^{\prime}-1\right)=0 \\
f(0)=a \\
f^{\prime}(0)=b \\
f^{\prime \prime}(0)=c
\end{array}
$$\right.
\]

To study the boundary value problem $\left(\mathcal{P}_{\beta ; a, b, \lambda}\right)$, we will use the shooting method, which consists of finding the values of a real parameter c for which f_{c} is the solution of $\left(\mathcal{Q}_{\beta ; a, b, c}\right)$, such that $T_{c}=+\infty$ and $f_{c}^{\prime}(t) \rightarrow \lambda$ as $t \rightarrow+\infty$.

2 On Blasius Equation

In this section, we recall some results about subsolutions and supersolutions of the Blasius equation ($f^{\prime \prime \prime}+f f^{\prime \prime}=0$) (see [6]). Remark that the constant function and the function $h_{\tau}: t \mapsto \frac{3}{t-\tau}$ for any $\tau \in \mathbb{R}$ with $t \neq \tau$, are solutions of the Blasius equation.

Definition 1 ([6]) Let $I \subset \mathbb{R}$ be an interval, We say that a function $f: I \rightarrow \mathbb{R}$ is a subsolution (resp. a supersolution) of the Blasius equation if f is of class C^{3} and if $f^{\prime \prime \prime}+f f^{\prime \prime} \leq 0$ on I (resp. $f^{\prime \prime \prime}+f f^{\prime \prime} \geq 0$ on I).

Definition 2 ([6]) Let $\epsilon>0$, We say that f is a ϵ-subsolution (resp. a ϵ-supersolution) of the Blasius equation if f is of class C^{3} and if $f^{\prime \prime \prime}+f f^{\prime \prime} \leq-\epsilon$ on I (resp. $f^{\prime \prime \prime}+f f^{\prime \prime} \geq \epsilon$ on I).

Proposition 1 Let $t_{0} \in \mathbb{R}$. There does not exist nonpositive concave subsolution of the Blasius equation on the interval $\left[t_{0},+\infty\right)$.

Proof. See [6], Proposition 2.11.
Proposition 2 Let $t_{0} \in \mathbb{R}$. There does not exist nonpositive convex supersolution of the Blasius equation on the interval $\left[t_{0},+\infty\right)$.

Proof. See [6], Proposition 2.5.
Proposition 3 Let $t_{0} \in \mathbb{R}$. There does not exist ϵ-subsolution of the Blasius equation on the interval $\left[t_{0},+\infty\right)$.

Proof. See [6], Proposition 2.18.

3 Preliminary Results

Proposition 4 Let f be a solution of Eq. (1) on some maximal interval $I=\left(T_{-}, T_{+}\right)$.

1. If F is any primitive function of f on I, then $\left(f^{\prime \prime} e^{F}\right)^{\prime}=-\beta f^{\prime}\left(f^{\prime}-1\right) e^{F}$.
2. Assume that $T_{+}=+\infty$ and that $f^{\prime}(t) \rightarrow \lambda \in \mathbb{R}$ as $t \rightarrow+\infty$. If, moreover, f is of constant sign at infinity, then $f^{\prime \prime}(t) \rightarrow 0$ as $t \rightarrow+\infty$.
3. If $T_{+}=+\infty$ and if $f^{\prime}(t) \rightarrow \lambda \in \mathbb{R}$ as $t \rightarrow+\infty$, then $\lambda=0$ or $\lambda=1$.
4. If $T_{+}<+\infty$, then $f^{\prime \prime}$ and f^{\prime} are unbounded near T_{+}.
5. If there exists a point $t_{0} \in I$ satisfying $f^{\prime \prime}\left(t_{0}\right)=0$ and $f^{\prime}\left(t_{0}\right)=\mu$, where $\mu=0$ or 1 then for all $t \in I$, we have $f(t)=\mu\left(t-t_{0}\right)+f\left(t_{0}\right)$.
6. If $f^{\prime}(t) \rightarrow 0$ as $t \rightarrow+\infty$, then $f(t)$ does not tend to $-\infty$ or $+\infty$ as $t \rightarrow+\infty$.

Proof. The first Statement follows immediately from Eq. (1). For the proof of Statements 2-5, see [6] and Statement 6, see [1].

Proposition 5 Let us suppose that f is a solution of Eq. (1) on the maximal interval $I=\left(T_{-}, T_{+}\right)$.

1. Let $H_{1}=f^{\prime \prime}+f\left(f^{\prime}-1\right)$. Then $H_{1}^{\prime}=(1-\beta) f^{\prime}\left(f^{\prime}-1\right)$, for all $t \in I$;
2. Let $H_{2}=3 f^{\prime \prime 2}+\beta f^{\prime 2}\left(2 f^{\prime}-3\right)$. Then $H_{2}^{\prime}=-6 f f^{\prime \prime 2}$, for all $t \in I$;
3. Let $H_{3}=2 f f^{\prime \prime}-f^{\prime 2}+\left(2 f^{\prime 2}\right.$. Then $H_{3}^{\prime}=2(2-\beta) f f^{\prime 2}$, for all $t \in I$;
4. Let $H_{4}=f^{\prime \prime}+f f^{\prime}$. Then $H_{4}^{\prime}=(1-\beta) f^{\prime 2}+\beta f^{\prime}$, for all $t \in I$;
5. Let $H_{5}=f^{\prime}+\frac{1}{2} f^{2}$. Then $H_{5}^{\prime}=H_{4}$, for all $t \in I$.

Proof. The Statements 1-4 follow immediately from Eq. (1), such that for Statements 1 and 4, by using the relation $f f^{\prime \prime}=\left(f f^{\prime}\right)^{\prime}-f^{\prime 2}$ in Eq. (1) and we integrate it. For Statement 2, we multiply the Eq. (1) by $f^{\prime \prime}$ and we integrate it, the Statement 3, also we multiplying Eq. (1) by f and integrate it by parts, while the last it follows from Statement 4.

4 The Boundary Value Problem ($P_{\beta ; a, b, \lambda}$)

Consider the boundary value problem $\left(P_{\beta ; a, b, \lambda}\right)$. We are interested here in concave, convex and convexconcave solutions of this problem. Define the following sets:

$$
\begin{aligned}
C_{0} & =\left\{c \leq 0: f_{c}^{\prime \prime} \leq 0 \text { on }\left[0, T_{c}\right)\right\}, \\
C_{1} & =\left\{c \geq 0: f_{c}^{\prime} \leq 0 \text { and } f_{c}^{\prime \prime} \geq 0 \text { on }\left[0, T_{c}\right)\right\}, \\
C_{2} & =\left\{c \geq 0: \exists t_{c} \in\left[0, T_{c}\right), \exists \varepsilon_{c}>0 \text { s.t } f_{c}^{\prime}<0 \text { on }\left(0, t_{c}\right),\right. \\
f_{c}^{\prime} & \left.>0 \text { on }\left(t_{c}, t_{c}+\varepsilon_{c}\right) \text { and } f_{c}^{\prime \prime}>0 \text { on }\left(0, t_{c}+\varepsilon_{c}\right)\right\}, \\
C_{3} & =\left\{c \geq 0: \exists s_{c} \in\left[0, T_{c}\right), \exists \varepsilon_{c}>0 \text { s.t } f_{c}^{\prime \prime}>0 \text { on }\left[0, s_{c}\right),\right. \\
f_{c}^{\prime \prime} & \left.<0 \text { on }\left(s_{c}, s_{c}+\varepsilon_{c}\right) \text { and } f_{c}^{\prime}<0 \text { on }\left(0, s_{c}+\varepsilon_{c}\right)\right\} .
\end{aligned}
$$

Lemma 1 Let $\beta>0$. If $c \in C_{0}$, then $T_{c}<+\infty$. Moreover, f_{c} is concave solution, decreasing and $f_{c}^{\prime} \rightarrow-\infty$ as $t \rightarrow T_{c}$.

Proof. If $c \in C_{0}$, we have $f_{c}^{\prime}(t)<0$ and $f_{c}^{\prime \prime}(t)<0$ for all $t \in\left[0, T_{c}\right)$. Then f_{c} is a nonpositive concave subsolution of the Blasius equation on $\left[0, T_{c}\right)$ if $a<0$, and on $\left[t_{0}, T_{c}\right)$ such that $f_{c}\left(t_{0}\right)=0$ if $a>0$. Therefore, $f_{c}^{\prime} \rightarrow-\infty$ as $t \rightarrow T_{c}$, and we deduce from Proposition 1 that $T_{c}<+\infty$. Thanks to Proposition 4, Statement $1, f_{c}$ is concave solution, decreasing and $f_{c}^{\prime} \rightarrow-\infty$ as $t \rightarrow T_{c}$.

Remark 1 We note that C_{0}, C_{1}, C_{2} and C_{3} are disjoint nonempty subsets of \mathbb{R}, and we have $C_{1} \cup C_{2} \cup C_{3}=$ $(0,+\infty)$ (see Appendix A of $[6]$ with $g(x)=\beta x(x-1)$ and $\beta>0$) and thanks to Lemma 1, we have $C_{0}=(-\infty, 0]$.

Lemma 2 Let $\beta>0$. Then f_{c} is a convex solution of the boundary value problem $\left(\mathcal{P}_{\beta, a, b, 0}\right)$ if and only if $c \in C_{1}$.

Proof. See Appendix A of [6] with $g(x)=\beta x(x-1)$ and $\beta>0$.
Lemma 3 Let $\beta>0$. If $c \in C_{3}$, then $T_{c}<+\infty$. Moreover, f_{c} is convex-concave, decreasing and $f_{c}^{\prime}(t) \rightarrow$ $-\infty$ as $t \rightarrow T_{c}$.

Proof. See [2], Lemma 9.
Remark 2 ([2]) From Proposition 4, Statements 1,3 and 5, if $c \in C_{2}$, there are only three possibilities for the solution of the initial value problem $\left(\mathcal{Q}_{\beta ; a, b, c}\right)$. More precisely,

1. f_{c} is convex and $f_{c}^{\prime}(t) \rightarrow+\infty$ as $t \rightarrow T_{c}$;
2. there exists a point $t_{0} \in\left[0, T_{c}\right)$ such that $f_{c}^{\prime \prime}\left(t_{0}\right)=0$ and $f_{c}^{\prime}\left(t_{0}\right)>1$;
3. f_{c} is a convex solution of $\left(\mathcal{P}_{\beta ; a, b, 1}\right)$.

The next Proposition shows that Case (1) cannot hold.
Proposition 6 Let $\beta \geq 1$. There does not exist a convex solution of $\left(\mathcal{P}_{\beta ; a, b,+\infty}\right)$.
Proof. Assume that f_{c} is convex solution of $\left(\mathcal{P}_{\beta ; a, b,+\infty}\right)$. There exists $t_{0} \in\left[0, T_{c}\right)$, such that $f_{c}^{\prime}(t)>1$ for all $t \in\left[t_{0}, T_{c}\right.$), then f_{c} is a ϵ-subsolution of the Blasius equation on $\left[t_{0}, T_{c}\right.$). Therefore, from Proposition 1, we have $T_{c}<+\infty$. Furthermore the function H_{1} is decreasing for $t>t_{0}$. Hence for all $t \in\left[t_{0}, T_{c}\right)$, $H_{1}(t)<H_{1}\left(t_{0}\right)$, then we have

$$
f_{c}(t)\left(f_{c}^{\prime}(t)-1\right)<f_{c}^{\prime \prime}(t)+f_{c}(t)\left(f_{c}^{\prime}(t)-1\right)<H_{1}\left(t_{0}\right)<f_{c}^{\prime \prime}\left(t_{0}\right)+f_{c}\left(t_{0}\right) f_{c}^{\prime}\left(t_{0}\right)
$$

which is a contradiction with the fact that $f_{c}^{\prime} \rightarrow+\infty$ as $t \rightarrow T_{c}$.
Proposition 7 Let $\beta \geq 1$. If there exists $t_{0} \in\left[0, T_{c}\right)$ such that $f_{c}^{\prime}\left(t_{0}\right)=0$ and $f_{c}^{\prime \prime}\left(t_{0}\right)<0$, then for all $t>t_{0}$, $\left.f_{c}^{\prime \prime}(t)\right)<0$.

Proof. Let f_{c} be a solution of $\left(\mathcal{Q}_{\beta ; a, b, c}\right)$ on its right maximal interval of existence $\left[0, T_{c}\right)$. Let $t_{0} \in\left[0, T_{c}\right)$ such that $f_{c}^{\prime}\left(t_{0}\right)=0$ and $f_{c}^{\prime \prime}\left(t_{0}\right)<0$. We suppose that there exists $t_{1}>t_{0}$, where t_{1} is the first point after t_{0} such that $f_{c}^{\prime \prime}\left(t_{1}\right) \geq 0$. Thanks to Proposition 4, Statement 1 , the function $t \mapsto f_{c}^{\prime \prime} e^{F}$ is strictly decreasing on $\left[t_{0}, t_{1}\right]$, it follows that $f_{c}^{\prime \prime}\left(t_{0}\right) e^{F\left(t_{0}\right)}>f_{c}^{\prime \prime}\left(t_{1}\right) e^{F\left(t_{1}\right)}$, which is a contradiction.

4.1 The Case $a \leq 0$

Lemma 4 Let $1 \leq \beta \leq 2$ and $b<-1$. If $c \in C_{2}$; and if there exists $t_{0} \in\left[0, T_{c}\right)$ such that $f_{c}\left(t_{0}\right)=0$, then $f_{c}^{\prime}\left(t_{0}\right)>1$.

Proof. Let $1 \leq \beta \leq 2$ and $b<-1$. If $c \in C_{2}$ and if there exists $t_{0} \in\left[0, T_{c}\right)$ such that $f_{c}\left(t_{0}\right)=0$, then the function H_{3} is decreasing on $\left[0, t_{0}\right)$, so we have $H_{3}(0) \geq H_{3}\left(t_{0}\right)$. This implies that $-b^{2} \geq-f_{c}^{\prime 2}\left(t_{0}\right)$, and we obtain $f_{c}^{\prime}\left(t_{0}\right) \geq-b>1$.

The following Proposition generalizes the previous Lemma.
Proposition 8 Let $\beta \geq 1$. The boundary value problem $\left(P_{\beta ; a, b, 1}\right)$ has no convex solution.
Proof. Let f_{c} be a convex solution of the boundary value problem $\left(P_{\beta ; a, b, 1}\right)$. Then there exists $t_{0} \in[0,+\infty)$, such that $f_{c}\left(t_{0}\right)=0$ and $0<f_{c}^{\prime}(t)<1$ for $t>t_{0}$. Thus the function H_{1} is increasing for all $t>t_{0}$, i.e. $H_{1}(t) \geq H_{1}\left(t_{0}\right)$ for $t>t_{0}$. Hence we have $f_{c}^{\prime \prime}(t)-f_{c}^{\prime \prime}\left(t_{0}\right) \geq-f_{c}(t)\left(f_{c}^{\prime}(t)-1\right)>0$, which is a contradiction for t large enough because $f_{c}^{\prime \prime}(t) \rightarrow 0$ and $f_{c}(t)>0$.

Proposition 9 The boundary value problem $\left(P_{\beta ; a, b, 0}\right)$ has no negative convex-concave solution.
Proof. Let f_{c} be a convex-concave solution of the boundary value problem $\left(P_{\beta ; a, b, 0}\right)$. There exists $t_{c} \in$ $[0,+\infty)$ such that $f_{c}^{\prime}\left(t_{c}\right)=0$, so the function H_{2} is strictly increasing for all $t>t_{c}$. Hence $3 f_{c}^{\prime \prime 2}\left(t_{c}\right)<H_{2}(t)$ for all $t>t_{c} . H_{2}(t) \rightarrow 0$ as $t \rightarrow+\infty$, a contradiction.

Remark 3 If the boundary value problem $\left(P_{\beta ; a, b, 0}\right)$ has a convex-concave solution, then this solution changes its sign.

Lemma 5 If $c \in C_{1}$, then there exists c_{*} such that $c<c_{*}, T_{c}=+\infty$, and the solution f_{c} is negative on $[0,+\infty)$.

Proof. Let $c \in C_{1}$. From proposition 4, Statement 4, we have $T_{c}=+\infty$, and the function H_{2} is strictly increasing on $\left[0, T_{c}\right)$. It follows that $3 c^{2}+\beta b^{2}(2 b-3)<0$, we obtain $c<-b \sqrt{\frac{\beta(3-2 b)}{3}}$. Therefore, the solution f_{c} is negative because $a \leq 0$ and $f_{c}^{\prime}<0$.

Lemma 6 If $c \in C_{3}$, then there exists c_{*} such that $c<c_{*}, T_{c}<+\infty$ and the solution f_{c} is negative on $\left[0, T_{c}\right)$.

Proof. If $c \in C_{3}$, then $f_{c}^{\prime} \rightarrow-\infty$, and $T_{c}<+\infty$. Apply the same proof as that of Lemma 5 .
Remark 4 It follows from Lemma 5 and Lemma 6, that there exists $c_{*}>0$ such that $c \geq c_{*}, C_{2}$ is not empty and here the solution f_{c} changes convexity.

Lemma 7 Let $1 \leq \beta \leq 2$, if $c \in C_{2}$. There does not exist a nonpositive solution of the problem $\left(P_{\beta ; a, b,-\infty}\right)$.
Proof. Let $1 \leq \beta \leq 2, c \in C_{2}$ and f_{c} is a nonpositive solution of the problem ($P_{\beta ; a, b,-\infty}$). From Remark 2 and Propositions 7, 9, there exists $t_{c}, t_{0} \in\left[0, T_{c}\right)$, such that $t_{c}<t_{0}, f_{c}^{\prime \prime}\left(t_{c}\right)>0$ and $f_{c}^{\prime \prime}\left(t_{0}\right)<0$. Thus the funtion H_{3} is decreasing on $\left[t_{c}, t_{0}\right]$, we get

$$
-\beta f_{c}^{2}\left(t_{c}\right)>2 f_{c}\left(t_{c}\right) f_{c}^{\prime \prime}\left(t_{c}\right)-\beta f_{c}^{2}\left(t_{c}\right)>2 f_{c}\left(t_{0}\right) f_{c}^{\prime \prime}\left(t_{0}\right)-\beta f_{c}^{2}\left(t_{0}\right)>-\beta f_{c}^{2}\left(t_{0}\right)
$$

it follows that $f_{c}\left(t_{c}\right)>f_{c}\left(t_{0}\right)$, which is a contradiction.
Theorem 1 Let $\beta \geq 1, a \leq 0$ and $b<0$.

1. The boundary value problem $\left(P_{\beta ; a, b,-\infty}\right)$ has infinitely many negative concave solutions on $\left[0, T_{c}\right)$, with $T_{c}<+\infty$.
2. The boundary value problem $\left(P_{\beta ; a, b, 0}\right)$ has at least one negative convex solution on $[0,+\infty)$.
3. The boundary value problem $\left(P_{\beta ; a, b, 1}\right)$ has no convex solution on $[0,+\infty)$.
4. The boundary value problem $\left(P_{\beta ; a, b,+\infty}\right)$ has no convex solution on $\left[0, T_{c}\right)$, with $T_{c}<+\infty$.

Proof. The first result follows from Lemma 1. The second follows from Remark 1 and Lemma 2. The third Statement follows from Proposition 8. The last result follows from Proposition 6.

4.2 The Case $a>0$

Let us divide the sets C_{2} and C_{3} into the following two subsets:

$$
\begin{aligned}
& C_{2.1}=\left\{c \in C_{2} ; f_{c}^{\prime}>0 \text { on }\left[t_{c}, T_{c}\right)\right\} \\
& C_{2.2}=\left\{c \in C_{2} ; \exists r_{c}>t_{c} \text { s.t } f_{c}^{\prime}>0 \text { on }\left[t_{c}, r_{c}\right) \text { and } f_{c}^{\prime}\left(r_{c}\right)=0\right\} \\
& C_{3.1}=\left\{c \in C_{3} ; f_{c}\left(s_{c}\right)<0\right\} \\
& C_{3.2}=\left\{c \in C_{3} ; f_{c}\left(s_{c}\right)>0\right\}
\end{aligned}
$$

Proposition 10 If $c \in C_{1} \cup C_{2} \cup C_{3.1}$, then $c>-a b$
Proof. From Proposition 4, Statement 4, if $c \in C_{1}$ then $T_{c}=+\infty, f_{c}^{\prime}(t) \rightarrow 0$ as $t \rightarrow+\infty$. The function H_{4} is strictly decreasing on $[0,+\infty)$, and so we have $c+a b>0$. If $c \in C_{2} \cup C_{3.1}$, there exists $t_{c} \in\left[0, T_{c}\right)$ such that $f_{c}^{\prime}\left(t_{c}\right)=0$ or there exists $t_{0} \in\left[0, T_{c}\right)$ such that $f_{c}\left(t_{0}\right)=0$. Thus $c+a b \geq f_{c}^{\prime \prime}\left(t_{0}\right)>0$.

Remark 5 If $c \leq-a b$, then $c \in C_{3.2}$ and $T_{c}<+\infty$. Thus $C_{3.2}$ is not empty and the convex part of the solution f_{c} is positive.

Proposition 11 If $c \in C_{1} \cup C_{2.1}$ and $b \geq-\frac{1}{2} a^{2}$, then $T_{c}=+\infty$ and there exists $c_{*}>0$ such that $c>c_{*}$. Moreover, the solution f_{c} is positive.

Proof. Let $c \in C_{1} \cup C_{2.1}$. By the definition of C_{1} and $C_{2.1}$ and thanks to Proposition 4, Statement 4 and Proposition 6, we have $T_{c}=+\infty$. Otherwise the function H_{2} is decreasing for $t>0$. Thus we obtain $3 c^{2}+\beta b^{2}(2 b-3)>0$, which implies that $c>-b \sqrt{\frac{\beta(3-2 b)}{3}}$. Now if we suppose that there exists $t_{0} \in\left[0, T_{c}\right)$ such that $f_{c}\left(t_{0}\right)=0$, the function H_{4} is decreasing for all $t>0$. We have $H_{4}\left(t_{0}\right)=f_{c}^{\prime \prime}\left(t_{0}\right)$. Therefore H_{5} is strictly increasing on $\left[0, t_{0}\right)$ and so we obtain $b+\frac{1}{2} a^{2}<f_{c}^{\prime}\left(t_{0}\right)<0$. This is a contradiction.
Remark 6 If $c \in C_{2.2}$ and $b \geq-\frac{1}{2} a^{2}$, then the solution f_{c} is positive on $\left[0, t_{0}\right)$, t_{0} is the point such that $t_{0}>s_{c}$ with $f_{c}\left(t_{0}\right)=0$ and s_{c} be as in definition of $C_{2.2}$.

Lemma 8 Let f_{c} be a solution of the initial value problem $\left(Q_{\beta ; a, b, c}\right)$, on the right maximal interval of existence $\left[0, T_{c}\right)$ with $b \geq-\frac{1}{2} a^{2}$. If there exists $t_{0} \in\left[0, T_{c}\right)$ such that $f_{c}\left(t_{0}\right)=0$ and $f_{c}^{\prime}\left(t_{0}\right)<0$, then $f_{c}^{\prime \prime}\left(t_{0}\right)<0$.

Proof. For the sake of contradiction, let us assume that $t_{0} \in\left[0, T_{c}\right)$ with $f_{c}\left(t_{0}\right)=0$ and $f_{c}^{\prime}\left(t_{0}\right)<0$. Since the function H_{4} is decreasing on $\left[0, t_{0}\right)$ and $H_{4}\left(t_{0}\right)=f_{c}^{\prime \prime}\left(t_{0}\right)>0$, for all $t \in\left[0, t_{0}\right), H_{4}>0$, and H_{5} is strictly increasing on $\left[0, t_{0}\right)$, we have $b+\frac{1}{2} a^{2}<f_{c}^{\prime}\left(t_{0}\right)<0$, this is a contradiction.

Proposition 12 Let $1 \leq \beta \leq 2$ and $b \geq-\frac{1}{2} a^{2}$. Then $C_{2.2}=\emptyset$.
Proof. Let $1 \leq \beta \leq 2, b \geq-\frac{1}{2} a^{2}$ and $c \in C_{2.2}$. There exists $t_{c} \in\left[0, T_{c}\right)$, such that $t_{c}<s_{c}$ with $f_{c}\left(t_{c}\right)>0$, $f_{c}^{\prime}\left(t_{c}\right)=0$ and $f_{c}^{\prime \prime}\left(t_{c}\right)>0$, where t_{c} be as in definition of C_{2} and s_{c} be as in definition of $C_{2.2}$. Therefore, since the function H_{3} is increasing on $\left[t_{c}, s_{c}\right]$, we then have

$$
-\beta f_{c}^{2}\left(t_{c}\right)<2 f_{c}\left(t_{c}\right) f_{c}^{\prime \prime}\left(t_{c}\right)-\beta f_{c}^{2}\left(t_{c}\right) \leq 2 f_{c}\left(s_{c}\right) f_{c}^{\prime \prime}\left(s_{c}\right)-\beta f_{c}^{2}\left(s_{c}\right)<-\beta f_{c}^{2}\left(s_{c}\right),
$$

which implies that $f_{c}\left(t_{c}\right)>f_{c}\left(s_{c}\right)$, this is a contradiction.
If $c \in C_{2.1}$ then $T_{c}=+\infty$. So, let us divide the set $C_{2.1}$ into the following two subsets:

$$
\begin{aligned}
& C_{2.1 .1}=\left\{c \in C_{2.1} ; f_{c}^{\prime}(t) \rightarrow 0 \text { as } t \rightarrow+\infty\right\} \\
& C_{2.1 .2}=\left\{c \in C_{2.1} ; f_{c}^{\prime}(t) \rightarrow 1 \text { as } t \rightarrow+\infty\right\}
\end{aligned}
$$

Proposition 13 Let $1 \leq \beta \leq 2$. If $b \geq-\frac{1}{2} a^{2}$, then $C_{2.1 .1}=\emptyset$.
Proof. Let $1 \leq \beta \leq 2, b \geq-\frac{1}{2} a^{2}$ and $c \in C_{2.1 .1}$, we deduce from Proposition 11 that the function H_{3} is increasing on $\left[t_{c},+\infty\right)$, where t_{c} be as in definition of C_{2}, we then have for $t>t_{c}$,

$$
-\beta f_{c}^{2}\left(t_{c}\right)<2 f_{c}\left(t_{c}\right) f_{c}^{\prime \prime}\left(t_{c}\right)-\beta f_{c}^{2}\left(t_{c}\right) \leq 2 f_{c}(t) f_{c}^{\prime \prime}(t)-f_{c}^{\prime 2}(t)+\left(2 f_{c}^{\prime}(t)-\beta\right) f_{c}^{2}(t)
$$

From Proposition 4, Statements 2, 4 and 6 , it follows that $f_{c}(t) \rightarrow l<+\infty$ as $t \rightarrow+\infty$, which implies that $f_{c}\left(t_{c}\right)>l$ as $t \rightarrow+\infty$, this is a contradiction.

Proposition 14 Let $1 \leq \beta \leq 2$, and let $c \in C_{1} \cup C_{3} \cup C_{2.2} \cup C_{2.1 .1}$. Then there exists $c^{*}>0$ such that $c<c^{*}$.

Proof. Let $c \in C_{1} \cup C_{3} \cup C_{2.2} \cup C_{2.1 .1}$. Either there exists $t_{0} \in\left[0, T_{c}\right)$ such that $f_{c}\left(t_{0}\right)=0$ or $f_{c}^{\prime}\left(t_{0}\right)=0$ if $T_{c}<+\infty$, and if $T_{c}=+\infty$, we have $f_{c}^{\prime}(t) \rightarrow 0$ as $t \rightarrow+\infty$. From Proposition 4 , Statement 6 , it follows that the function H_{3} is increasing on $\left[0, t_{0}\right)$ or $[0,+\infty)$. We then get $2 a c-b^{2}+(2 b-\beta) a^{2}<0$. We implies that $c<\frac{b^{2}+(\beta-2 b) a^{2}}{2 a}$.

Remark 7 From the previous Proposition, there exists $c^{*}>0$, such that for $c \geq c^{*}$, then $c \in C_{2.1 .2}$. Thus $C_{2.1 .2}$ is not empty. If, moreover, $b \geq-\frac{1}{2} a^{2}$, from Propositions 11 and 14 , we have $\left.C_{1} \subset\right] c_{*}, c^{*}[$.

Theorem 2 Let $\beta \geq 1, a>0$ and $b<0$.

1. The boundary value problem $\left(P_{\beta ; a, b,-\infty}\right)$ has infinity convex-concave solutions on the maximal interval of existence $\left[0, T_{c}\right)$ with $T_{c}<+\infty$. If, in addition, $b \geq-\frac{1}{2} a^{2}$, then the convex part of these solutions will be non-negative.
2. The boundary value problem $\left(P_{\beta ; a, b, 0}\right)$ has at least one convex solution on $[0,+\infty)$. If, in addition, $b \geq-\frac{1}{2} a^{2}$, then this solution becomes non-negative convex solution.
3. If $\beta \leq 2$, the boundary value problem $\left(P_{\beta ; a, b, 1}\right)$ has infinitely many positive solutions on $[0,+\infty)$.
4. The boundary value problem $\left(P_{\beta ; a, b,+\infty}\right)$ has no convex solution on $\left[0, T_{c}\right)$, with $T_{c}<+\infty$.

Proof. The first follows from Proposition 4, Proposition 7 and Remark 5, the second result follows from Remark 1, Lemma 2 and Proposition 11, while the third follows from Proposition 14 and Remark 7 . The last result follows from Proposition 6.

References

[1] M. Aiboudi, I. Bensari-Khellil, B. Brighi, Similarity solutions of mixed convection boundary-layer flows in a porous medium, Differ. Equ. Appl., 9(2017), 69-85.
[2] M. Aiboudi, K. B. Djeffal and B. Brighi, On the convex and convex-concave solutions of opposing mixed convection boundary layer flow in a porous medium, Abstr. Appl. Anal., 2018, Art. ID 4340204, 5 pp.
[3] M. Aiboudi and B. Brighi, On the solutions of a boundary value problem arising in free convection with prescribed heat flux, Arch. Math., 93(2009), 165-174.
[4] E. H. Aly, L. Elliott and D. B. Ingham, Mixed convection boundary-layer flows over a vertical surface embedded in a porous medium, Eur. J. Mech. B Fluids, 22(2003), 529-543.
[5] B. Brighi, Sur un problème aux limites associé à l'équation différentielle $f^{\prime \prime \prime}+f f^{\prime \prime}+2 f^{\prime 2}=0$, Ann. Sci. Math. Québec, 33(2009), 23-37.
[6] B. Brighi, The equation $f^{\prime \prime \prime}+f f^{\prime \prime}+g\left(f^{\prime}\right)=0$ and the associated boundary value problems, Results Math., 61(2012), 355-391.
[7] B. Brighi, A. Fruchard and T. Sari, On the Blasius problem, Adv. Differ. Equ., 13(2008), 509-600.
[8] B. Brighi and J.-D. Hoernel, On general similarity boundary layer equation, Acta Math. Univ. Comenian., 77(2008), 9-22.
[9] B. Brighi and J.-D. Hoernel, On the concave and convex solutions of mixed convection boundary layer approximation in a porous medium, Appl. Math. Lett., 19(2006), 69-74.
[10] M. Guedda, Multiple solutions of mixed convection boundary-layer approximations in a porous medium, Appl. Math. Lett., 19(2006), 63-68.
[11] G. C. Yang, An extension result of the opposing mixed convection problem arising in boundary layer theory, Appl. Math. Lett., 38(2014), 180-185.
[12] G. C. Yang, L. Zhang and L .F. Dang, Existence and nonexistence of solutions on opposing mixed convection problems in boundary layer theory, Eur. J. Mech. B Fluids, 43(2014), 148-153.

[^0]: *Mathematics Subject Classifications: 34B15, 34C11, 76D10.
 ${ }^{\dagger}$ Département de Mathématiques, Faculté des Sciences Exactes et Appliquées. Laboratoire d'Analyse Mathématique et Applications (L.A.M.A). Université Oran 1, Ahmed Ben Bella, Algeria
 ${ }^{\ddagger}$ Département de Mathématiques, Faculté des Sciences Exactes et Informatique. Université de Hassiba Benbouali, Chlef, Algeria
 ${ }^{\S}$ Département de Mathématiques, Faculté des Sciences Exactes et Appliquées. Laboratoire d'Analyse Mathématique et Applications (L.A.M.A). Université Oran 1, Ahmed Ben Bella, Algeria

