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Abstract
In this paper we develop criteria ensuring the existence and uniqueness of solutions for a self-adjoint

coupled system of nonlinear second-order ordinary differential equations equipped with nonlocal integral
multi-point coupled boundary conditions on an arbitrary domain. The existence results are proved via
Leray-Schauder alternative and Schauder fixed point theorem, while the existence of a unique solution is
obtained by applying the Banach contraction mapping principle. Finally some examples are constructed
for illustration of the obtained results.

1 Introduction

The study of boundary value problems constitutes an interesting and important area of investigation in view
of occurrence of such problems in several disciplines such as fluid mechanics, mathematical physics, etc. For
examples and details, we refer the reader to [1, 2] and the references cited therein. Much of the work on
boundary value problems is concerned with classical boundary conditions. However, these conditions cannot
be used to formulate the physical and chemical processes taking place at arbitrary positions of the given
domain. This situation gives rise to the concept of nonlocal conditions, which specify the data at some interior
positions of the domain. The advent of nonlocal boundary conditions inspired many researchers to work on
nonlocal boundary value problems. One can find a variety of interesting results on such problems in the works
[3]-[17]. On the other hand, there are fewer results on nonlocal self-adjoint boundary value problems. It is
imperative to mention that self-adjoint differential equations appear in the study of Schrödinger operators
[18], stability of periodic delay systems [19], oscillation of impulsive systems [20], Hamiltonian systems [21],
etc.
Recently, in [22], the authors studied the following self-adjoint coupled system of nonlinear second-order

ordinary differential equations on an arbitrary domain:{ (
p(t)u′(t)

)′
= f(t, u(t), v(t)), t ∈ [a, b],(

q(t)v′(t)
)′

= g(t, u(t), v(t)), t ∈ [a, b],
(1)

subject to nonlocal multi-point coupled boundary conditions:{
u′(a) = 0, u(b) =

∑m
j=1 αjv(ηj),

v′(a) = 0, v(b) =
∑n
k=1 βku(ξk),

(2)
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where f, g : [a, b] × R × R → R are given continuous functions, a < η1 < · · · < ηm < ξ1 < · · · < ξn <
b, αj ∈ R+ (j = 1, 2, . . . ,m), βk ∈ R+ (k = 1, 2, . . . , n), and p, q ∈ C([a, b],R+).
Motivated by the paper [22], in the present research we consider the following self-adjoint coupled system

of nonlinear second-order ordinary differential equations on an arbitrary domain:{ (
p(t)u′(t)

)′
= µ1 f(t, u(t), v(t)), t ∈ [a, b],(

q(t)v′(t)
)′

= µ2 g(t, u(t), v(t)), t ∈ [a, b],
(3)

supplemented with nonlocal integral multi-point coupled boundary conditions of the form: u′(a) = 0,
∫ b
a
u(s)ds−

∑m
j=1 αjv(ηj) = λ1,

v′(a) = 0,
∫ b
a
v(s)ds−

∑n
k=1 βku(ξk) = λ2,

(4)

where f, g : [a, b] × R × R → R are given continuous functions, a < η1 < · · · < ηm < ξ1 < · · · < ξn <
b, αj ∈ R+ (j = 1, 2, . . . ,m), βk ∈ R+ (k = 1, 2, . . . , n), p, q ∈ C([a, b],R+), and λi, µi ∈ R+, i = 1, 2.

Here it is worthwhile to notice that the nonlocal integral multi-point coupled boundary conditions in
(4) imply that the distribution of one unknown function on the given domain differs from the sum of the
values of the other unknown function at arbitrary positions within the given domain by a constant, and
these contributions coincide for a zero value of the constant. The main objective of the present study is to
develop the existence theory for the problem (3)—(4).
The rest of the paper is organized as follows. In section 2, we prove an auxiliary lemma, which deals with

a linear variant of the problem (3)—(4) and it is useful to transform the problem (3)—(4) into an equivalent
fixed point problem. In Section 3, we establish the main existence and uniqueness results. The existence
results are proved via Leray-Schauder alternative and Schauder fixed point theorem, while the uniqueness
of solutions is established by applying the Banach contraction mapping principle. In section 4, we construct
some illustrative examples for the main results.

2 An Auxiliary Lemma

In this section, we solve a linear variant of the problem (3)—(4) which plays a key role in obtaining the desired
results.

Lemma 1 For f1, g1 ∈ C([a, b],R) and Q 6= 0, the solution of the linear system of differential equations(
p(t)u′(t)

)′
= µ1f1(t),

(
q(t)v′(t)

)′
= µ2g1(t), t ∈ [a, b], (5)

supplemented with the boundary conditions (4), can be expressed in the formulas:

u(t) =

∫ t

a

( µ1

p(z)

∫ z

a

f1(τ)dτ
)
dz +

1

Q

[
λ1(b− a) + λ2

m∑
j=1

αj

−
∫ b

a

∫ s

a

µ2

∑m
j=1 αj

q(z)

(∫ z

a

g1(τ)dτ
)
dz ds

+
( m∑
j=1

αj

)( n∑
k=1

βk

∫ ξk

a

µ1

p(z)

(∫ z

a

f1(τ)dτ
)
dz
)

−(b− a)

∫ b

a

∫ s

a

µ1

p(z)

(∫ z

a

f1(τ)dτ
)
dz ds

+(b− a)

∫ ηj

a

(µ2

∑m
j=1 αj

q(z)

∫ z

a

g1(τ)dτ
)
dz

]
, (6)
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and

v(t) =

∫ t

a

( µ2

q(z)

∫ z

a

g1(τ)dτ
)
dz +

1

Q

[
λ1

n∑
k=1

βk + λ2(b− a)

−
∫ b

a

∫ s

a

µ1

∑n
k=1 βk
p(z)

(∫ z

a

f1(τ)dτ
)
dz ds

+
( m∑
j=1

αj

)( n∑
k=1

βk

∫ ηj

a

µ2

q(z)

(∫ z

a

g1(τ)dτ
)
dz
)

−(b− a)

∫ b

a

∫ s

a

µ2

q(z)

(∫ z

a

g1(τ)dτ
)
dz ds

+(b− a)

∫ ξk

a

(µ1

∑n
k=1 βk
p(z)

∫ z

a

f1(τ)dτ
)
dz

]
, (7)

where

Q =

(b− a)2 −
( m∑
j=1

αj

)( n∑
k=1

βk

) . (8)

Proof. Integrating the linear differential equations (5) twice from a to t, and using the conditions u′(a) =
0, v′(a) = 0, we obtain

u(t) = u(a) +

∫ t

a

( µ1

p(z)

∫ z

a

f1(τ)dτ
)
dz (9)

and

v(t) = v(a) +

∫ t

a

( µ2

q(z)

∫ z

a

g1(τ)dτ
)
dz. (10)

By using the coupled boundary conditions (4) in (9) and (10), we get the following system of equations:

(b− a)u(a)−
( m∑
j=1

αj

)
v(a) = λ1 −

∫ b

a

∫ s

a

( µ1

p(z)

∫ z

a

f1(τ)dτ
)
dz ds

+

∫ ηj

a

µ2

∑m
j=1 αj

q(z)

(∫ z

a

g1(τ)dτ
)
dz, (11)

−
( n∑
k=1

βk

)
u(a) + (b− a)v(a) = λ2 −

∫ b

a

∫ s

a

( µ2

q(z)

∫ z

a

g1(τ)dτ
)
dz ds

+

∫ ξk

a

µ1

∑n
k=1 βk
p(z)

(∫ z

a

f1(τ)dτ
)
dz. (12)

Solving (11) and (12) for u(a) and v(a), and using the notation Q given by (8), we obtain

u(a) =
1

Q

[
λ1(b− a) + λ2

m∑
j=1

αj −
∫ b

a

∫ s

a

(µ2

∑m
j=1 αj

q(z)

∫ z

a

g1(τ)dτ
)
dz ds

+
( m∑
j=1

αj

)( n∑
k=1

βk

∫ ξk

a

µ1

p(z)

(∫ z

a

f1(τ)dτ
)
dz
)

−(b− a)

∫ b

a

∫ s

a

( µ1

p(z)

∫ z

a

f1(τ)dτ
)
dz ds
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+(b− a)

∫ ηj

a

µ2

∑m
j=1 αj

q(z)

(∫ z

a

g1(τ)dτ
)
dz

]
, (13)

and

v(a) =
1

Q

[
λ1

n∑
k=1

βk + λ2(b− a)−
∫ b

a

∫ s

a

(µ1

∑n
k=1 βk
p(z)

∫ z

a

f1(τ)dτ
)
dz ds

+
( m∑
j=1

αj

)( n∑
k=1

βk

∫ ηj

a

µ2

q(z)

(∫ z

a

g1(τ)dτ
)
dz
)

−(b− a)

∫ b

a

∫ s

a

( µ2

q(z)

∫ z

a

g1(τ)dτ
)
dz ds

+(b− a)

∫ ξk

a

µ1

∑n
k=1 βk
p(z)

(∫ z

a

f1(τ)dτ
)
dz

]
. (14)

Substituting the values of u(a) and v(a) in (9) and (10) respectively, we get the solution (6) and (7). By
direct computation, one can obtain the converse of the lemma. This completes the proof.

3 Main Results

Let (χ, ‖ ·‖) be a Banach space with χ = {u(t)|u(t) ∈ C([a, b],R)} equipped with norm ‖u‖ = sup{|u(t)|, t ∈
[a, b]}. Note that the product space (χ× χ, ‖(u, v)‖) is a Banach space with the norm given by

‖(u, v)‖ = ‖u‖+ ‖v‖

for (u, v) ∈ χ× χ.
In view of Lemma 1, we transform the problem (3) and (4) into an equivalent fixed point problem as:

(u, v) = T (u, v), (15)

where the operator T : χ× χ→ χ× χ is defined by

T (u, v)(t) := (T1(u, v)(t), T2(u, v)(t)), (16)

T1(u, v)(t) =

∫ t

a

( µ1

p(z)

∫ z

a

f(τ , u(τ), v(τ))dτ
)
dz

+
1

Q

[
λ1(b− a) + λ2

m∑
j=1

αj −
∫ b

a

∫ s

a

µ2

∑m
j=1 αj

q(z)

(∫ z

a

g(τ , u(τ), v(τ))dτ
)
dz ds

+
( m∑
j=1

αj

)( n∑
k=1

βk

∫ ξk

a

µ1

p(z)

(∫ z

a

f(τ , u(τ), v(τ))dτ
)
dz
)

−(b− a)

∫ b

a

∫ s

a

µ1

p(z)

(∫ z

a

f(τ , u(τ), v(τ))dτ
)
dz ds

+(b− a)

∫ ηj

a

(µ2

∑m
j=1 αj

q(z)

∫ z

a

g(τ , u(τ), v(τ))dτ
)
dz

]
, (17)

and

T2(u, v)(t) =

∫ t

a

( µ2

q(z)

∫ z

a

g(τ , u(τ), v(τ))dτ
)
dz
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+
1

Q

[
λ1

n∑
k=1

βk + λ2(b− a)−
∫ b

a

∫ s

a

µ1

∑n
k=1 βk
p(z)

(∫ z

a

f(τ , u(τ), v(τ))dτ
)
dz ds

+
( m∑
j=1

αj

)( n∑
k=1

βk

∫ ηj

a

µ2

q(z)

(∫ z

a

g(τ , u(τ), v(τ))dτ
)
dz
)

−(b− a)

∫ b

a

∫ s

a

µ2

q(z)

(∫ z

a

g(τ , u(τ), v(τ))dτ
)
dz ds

+(b− a)

∫ ξk

a

(µ1

∑n
k=1 βk
p(z)

∫ z

a

f(τ , u(τ), v(τ))dτ
)
dz

]
. (18)

Observe that the fixed points of operator T : χ× χ→ χ× χ will be solutions of the problem (3)—(4).
For the sake of computational convenience, we set:

R1 = M1 +M3, R2 = M2 +M4, C = C1 + C2, (19)

where

M1 =
∣∣∣ µ1Qp̄ ∣∣∣

[
|Q| (b−a)2

2 + (b−a)4

6 +
(∑n

k=1 βk

)(∑m
j=1 αj

(ξk−a)2

2

)]
,

M2 =
|µ2|

∑m
j=1 αj

|Qq̄|

[
(b−a)(ηj−a)2

2 + (b−a)3

6

]
,

M3 =
|µ1|

∑n
k=1 βk
|Qp̄|

[
(b−a)(ξk−a)2

2 + (b−a)3

6

]
,

M4 =
∣∣∣ µ2Qq̄ ∣∣∣

[
|Q| (b−a)2

2 + (b−a)4

6 +
(∑n

k=1 βk

)(∑m
j=1 αj

(ηj−a)2

2

)]
,

p̄ = infz∈[a,b] |p(z)|, q̄ = infz∈[a,b] |q(z)|,

C1 = 1
|Q|

[
|λ1(b− a)|+ |λ2|

∑m
j=1 αj

]
, C2 = 1

|Q|

[
|λ1|

∑n
k=1 βk + |λ2(b− a)|

]
.

(20)

3.1 Existence Results

Let us begin with our first existence result for problem (3)—(4) which is based on Leray-Schauder alternative
[23] and is stated below.

Lemma 2 (Leray-Schauder alternative) Let Ω be a Banach space, and G : Ω → Ω be a completely
continuous operator (i.e., a map restricted to any bounded set in Ω is compact). Let Θ(G) = {g ∈ Ω : g =
εG(g) for some 0 < ε < 1}. Then either the set Θ(G) is unbounded or G has at least one fixed point.

Theorem 1 Assume that:

(S1) (Growth conditions) There exist real constants κi, γi ≥ 0 (i = 1, 2), and κ0 > 0, γ0 > 0, such that
∀ u, v ∈ R, we have

|f(t, u, v)| ≤ κ0 + κ1|u|+ κ2|v|, |g(t, u, v)| ≤ γ0 + γ1|u|+ γ2|v|.
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If
R1κ1 +R2γ1 < 1 and R1κ2 +R2γ2 < 1, (21)

where Ri (i = 1, 2) are given by (19). Then there exists at least one solution for the problem (3)—(4) on [a, b].

Proof. The proof will be given in two steps:
Step 1: We show that the operator T : χ× χ→ χ× χ defined by (16) is completely continuous.
Obviously from the continuity of the functions f and g, the operators T1 and T2 are continuous and hence

the operator T is continuous. Furthermore, let K ⊂ χ× χ be bounded. Then, there exist positive constants
Lf and Lg such that |f(t, u(t), v(t))| ≤ Lf , and |g(t, u(t), v(t))| ≤ Lg, ∀(u, v) ∈ K. Then, for any (u, v) ∈ K,
we obtain

|T1(u, v)(t)| =

∣∣∣∣∣
∫ t

a

(
µ1

p(z)

∫ z

a

f(τ , u(τ), v(τ))dτ

)
dz

+
1

Q

[
λ1(b− a) + λ2

m∑
j=1

αj −
∫ b

a

∫ s

a

µ2

∑m
j=1 αj

q(z)

(∫ z

a

g(τ , u(τ), v(τ))dτ

)
dz ds

+

(
m∑
j=1

αj

)(
n∑
k=1

βk

∫ ξk

a

µ1

p(z)

(∫ z

a

f(τ , u(τ), v(τ))dτ

)
dz

)

−(b− a)

∫ b

a

∫ s

a

µ1

p(z)

(∫ z

a

f(τ , u(τ), v(τ))dτ

)
dz ds

+(b− a)

∫ ηj

a

(
µ2

∑m
j=1 αj

q(z)

∫ z

a

g(τ , u(τ), v(τ))dτ

)
dz

]∣∣∣∣∣
≤ Lf

{∣∣∣ µ1

Qp̄

∣∣∣[|Q| (b− a)2

2
+

(b− a)4

6
+
( n∑
k=1

βk

)( m∑
j=1

αj
(ξk − a)2

2

)}

+Lg

{
|µ2|

∑m
j=1 αj

|Qq̄|

[
(b− a)(ηj − a)2

2
+

(b− a)3

6

]}

+

{
1

|Q|

[
|λ1(b− a)|+ |λ2|

m∑
j=1

αj

]}
,

which, on taking the norm for t ∈ [a, b], yields ‖T1(u, v)‖ ≤ LfM1 +LgM2 +C1. In the same manner, it can
be shown that ‖T2(u, v)‖ ≤ LfM3 +LgM4 +C2, where Mi (i = 1, . . . , 4) and Ci (i = 1, 2) are given by (20).
In consequence, we obtain that

‖T (u, v)‖ ≤ LfR1 + LgR2 + C,

where Ri (i = 1, 2) and C are given by (19). Therefore, it follows from the foregoing inequality that T is
uniformly bounded.
Next we will prove that T is an equicontinuous operator. For t1, t2 ∈ [a, b] with t1 < t2, we have

|T1(u, v)(t2)− T1(u, v)(t1)|

=
∣∣∣ ∫ t2

a

( µ1

p(s)

∫ s

a

f(τ , u(τ), v(τ))dτ
)
ds−

∫ t1

a

( µ1

p(s)

∫ s

a

f(τ , u(τ), v(τ))dτ
)
ds
∣∣∣

=
∣∣∣ ∫ t1

a

( µ1

p(s)

∫ s

a

f(τ , u(τ), v(τ))dτ
)
ds+

∫ t2

t1

(
µ1

p(s)

∫ s

a

f(τ , u(τ), v(τ))dτ
)
ds

−
∫ t1

a

( µ1

p(s)

∫ s

a

f(τ , u(τ), v(τ))dτ
)
ds
∣∣∣
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≤ Lf
|µ1|
2̄p
|(t2 − a)2 − (t1 − a)2| → 0 as t2 − t1 → 0 independent of (u, v).

In a similar manner, one can find that

|T2(u, v)(t2)− T2(u, v)(t1)| → 0 as t2 − t1 → 0 independent of (u, v).

Thus we deduce that the operator T is equicontinuous by Arzelá-Ascoli theorem.
Step 2: We verify that the set Θ = {(u, v) ∈ χ × χ|(u, v) = εT (u, v), 0 < ε < 1} is bounded. Let

(u, v) ∈ Θ. Then (u, v) = εT (u, v), and for any t ∈ [a, b], we have

u(t) = εT1(u, v)(t), v(t) = εT2(u, v)(t).

Then, by the growth conditions (S1), we obtain

|u(t)| ≤M1

(
κ0 + κ1|u|+ κ2|v|

)
+M2

(
γ0 + γ1|u|+ γ2|v|

)
+ C1

≤M1κ0 +M2γ0 + (M1κ1 +M2γ1)‖u‖+ (M1κ2 +M2γ2)‖v‖+ C1

and

|v(t)| ≤M3

(
κ0 + κ1|u|+ κ2|v|

)
+M4

(
γ0 + γ1|u|+ γ2|v|

)
+ C2

≤M3κ0 +M4γ0 + (M3κ1 +M4γ1)‖u‖+ (M3κ2 +M4γ2)‖v‖+ C2.

From the last two inequalities, we get

‖u‖+ ‖v‖ ≤ (M1 +M3)κ0 + (M2 +M4)γ0 +
[
(M1 +M3)κ1 + (M2 +M4)γ1

]
‖u‖

+
[
(M1 +M3)κ2 + (M2 +M4)γ2

]
‖v‖+ (C1 + C2),

which, in view of (22) and (21), implies that

‖(u, v)‖ ≤ R1κ0 +R2γ0 + C
R ,

where
R = min{1− (R1κ1 +R2γ1), 1− (R1κ2 +R2 γ2)}, κi, γi are given in (S1). (22)

This shows that the set Θ is bounded.
Thus the hypotheses of Lemma 2 are satisfied and hence its conclusion implies that the operator T has

at least one fixed point. Consequently, the problem (3)—(4) has at least one solution on [a, b]. This completes
the proof.

In our second existence result we apply the Schauder fixed point theorem [23] to prove the existence of
solutions for the problem (3)—(4).

Theorem 2 Assume that:

(S2) (Sub-growth conditions) There exist nonnegative functions ω(t), λ(t) ∈ L(a, b) such that

|f(t, u, v)| ≤ ω(t) + ρ1|u|z1 + ρ2|v|z2 , u, v ∈ R, ρ1, ρ2 > 0, 0 < z1, z2 < 1,

|g(t, u, v)| ≤ λ(t) + ν1|u|k1 + ν2|v|k2 , u, v ∈ R, ν1, ν2 > 0, 0 < k1, k2 < 1.

Then there exists at least one solution for the problem (3)—(4) on [a, b].
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Proof. Fixing

δ > max

{
6R1‖ω‖, 6R2‖λ‖, (6ρ1R1)

1
1−z1 , (6ρ2R1)

1
1−z2 , (6ν1R2)

1
1−k1 , (6ν2R2)

1
1−k2

}
,

we introduce a ball defined by
Λ = {(u, v) ∈ χ× χ : ‖(u, v)‖ ≤ δ},

and consider the operator T : Λ→ Λ. For any (u, v) ∈ Λ, we have

|T1(u, v)(t)| =

∣∣∣∣∣
∫ t

a

( µ1

p(z)

∫ z

a

f(τ , u(τ), v(τ))dτ
)
dz

+
1

Q

[
λ1(b− a) + λ2

m∑
j=1

αj −
∫ b

a

∫ s

a

µ2

∑m
j=1 αj

q(z)

(∫ z

a

g(τ , u(τ), v(τ))dτ
)
dz ds

+
( m∑
j=1

αj

)( n∑
k=1

βk

∫ ξk

a

µ1

p(z)

(∫ z

a

f(τ , u(τ), v(τ))dτ
)
dz
)

−(b− a)

∫ b

a

∫ s

a

µ1

p(z)

(∫ z

a

f(τ , u(τ), v(τ))dτ
)
dz ds

+(b− a)

∫ ηj

a

(µ2

∑m
j=1 αj

q(z)

∫ z

a

g(τ , u(τ), v(τ))dτ
)
dz

]∣∣∣∣∣
≤

(
ω(t) + ρ1|u|z1 + ρ2|v|z2

){∣∣∣ µ1

Qp̄

∣∣∣[|Q| (b− a)2

2
+

(b− a)4

6

+
( n∑
k=1

βk

)( m∑
j=1

αj
(ξk − a)2

2

)]}

+
(
λ(t) + ν1|u|k1 + ν2|v|k2

){ |µ2|
∑m
j=1 αj

|Qq̄|

[
(b− a)(ηj − a)2

2
+

(b− a)3

6

]}

+

{
1

|Q|

[
|λ1(b− a)|+ |λ2|

m∑
j=1

αj

]}
,

which, on taking the norm for t ∈ [a, b], yields

‖T1(u, v)‖ ≤
(
‖ω‖+ ρ1‖u‖z1 + ρ2‖v‖z2

)
M1 +

(
‖λ‖+ ν1‖u‖k1 + ν2‖v‖k2

)
M2 + C1.

In the same way, we can find that

‖T2(u, v)‖ ≤
(
‖ω‖+ ρ1‖u‖z1 + ρ2‖v‖z2

)
M3 +

(
‖λ‖+ ν1‖u‖k1 + ν2‖v‖k2

)
M4 + C2,

where Mi (i = 1, . . . , 4) and Ci (i = 1, 2) are given by (20). Therefore, we obtain

‖T (u, v)‖ ≤
(
‖ω‖+ ρ1‖u‖z1 + ρ2‖v‖z2

)
R1 +

(
‖λ‖+ ν1‖u‖k1 + ν2‖v‖k2

)
R2 + C ≤ δ,

where R1 and R2 are given by (19). Thus we deduce that T : Λ→ Λ.
As in the proof of Theorem 1, one can show that the operator T is completely continuous. Hence, by the

Schauder fixed point theorem, there exists at least one solution for the problem (3) and (4) on [a, b]. The
proof is now complete.
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3.2 Uniqueness Result

In this subsection, we apply Banach’s contraction mapping principle to show the uniqueness of solutions for
the problem (3) and (4).

Theorem 3 Assume that:

(S3) (Lipschitz conditions) For all t ∈ [a, b] and ui, vi ∈ R (i = 1, 2), there exist `i > 0 (i = 1, 2) such that

|f(t, u1, v1)− f(t, u2, v2)| ≤ `1(|u1 − u2|+ |v1 − v2|)

and
|g(t, u1, v1)− g(t, u2, v2)| ≤ `2(|u1 − u2|+ |v1 − v2|).

Then the problem (3)—(4) has a unique solution on [a, b], provided that

R1`1 +R2`2 < 1, (23)

where Ri (i = 1, 2) are given by (19).

Proof. Firstly, let us set H1 = supt∈[a,b] |f(t, 0, 0)|, H2 = supt∈[a,b] |g(t, 0, 0)|, and consider a set Br =
{(u, v) ∈ χ× χ : ‖(u, v)‖ ≤ r} with

r ≥ H1R1 +H2R2 + C
1− (`1R1 + `2R2)

,

and show that T Br ⊂ Br. For any (u, v) ∈ Br, t ∈ [a, b], by the condition (S3), we have

|f(t, u(t), v(t))| = |f(t, u(t), v(t))− f(t, 0, 0) + f(t, 0, 0)|
≤ |f(t, u(t), v(t))− f(t, 0, 0)|+ |f(t, 0, 0)|
≤ `1(‖u‖+ ‖v‖) +H1 ≤ `1‖(u, v)‖+H1 ≤ `1r +H1.

Similarly, |g(t, u(t), v(t))| ≤ `2‖(u, v)‖+H2 ≤ `2r +H2. Then, for (u, v) ∈ Br, we obtain

|T1(u, v)(t)| =

∣∣∣∣∣
∫ t

a

( µ1

p(z)

∫ z

a

f(τ , u(τ), v(τ))dτ
)
dz

+
1

Q

[
λ1(b− a) + λ2

m∑
j=1

αj −
∫ b

a

∫ s

a

µ2

∑m
j=1 αj

q(z)

(∫ z

a

g(τ , u(τ), v(τ))dτ
)
dz ds

+
( m∑
j=1

αj

)( n∑
k=1

βk

∫ ξk

a

µ1

p(z)

(∫ z

a

f(τ , u(τ), v(τ))dτ
)
dz
)

−(b− a)

∫ b

a

∫ s

a

µ1

p(z)

(∫ z

a

f(τ , u(τ), v(τ))dτ
)
dz ds

+(b− a)

∫ ηj

a

(µ2

∑m
j=1 αj

q(z)

∫ z

a

g(τ , u(τ), v(τ))dτ
)
dz

]∣∣∣∣∣
≤ (`1r +H1)

{∣∣∣ µ1

Qp̄

∣∣∣[|Q| (b− a)2

2
+

(b− a)4

6
+
( n∑
k=1

βk

)( m∑
j=1

αj
(ξk − a)2

2

)]}

+(`2r +H2)

{
|µ2|

∑m
j=1 αj

|Qq̄|

[
(b− a)(ηj − a)2

2
+

(b− a)3

6

]}

+

{
1

|Q|

[
|λ1(b− a)|+ |λ2|

m∑
j=1

αj

]}
,
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which implies that
‖T1(u, v)‖ ≤ (`1r +H1)M1 + (`2r +H2)M2 + C1.

Analogously, we can get ‖T2(u, v)‖ ≤ (`1r + H1)M3 + (`2r + H2)M4 + C2, where Mi (i = 1, . . . , 4) and
Ci (i = 1, 2) are defined in (20). Consequently, we have,

‖T (u, v)‖ ≤ (`1r +H1)R1 + (`2r +H2)R2 + C ≤ r.

Therefore, T Br ⊂ Br.
Next, we show that the operator T is a contraction. Let (u1, v1), (u2, v2) ∈ χ× χ. Then we have

|T1(u1, v1)(t)− T1(u2, v2)(t)|

≤
{∫ t

a

(∣∣∣ µ1

p(z)

∣∣∣ ∫ z

a

|f(τ , u1(τ), v1(τ))− f(τ , u2(τ), v2(τ))dτ |
)
dz

+
1

|Q|

[∫ b

a

∫ s

a

|µ2|
∑m
j=1 αj

|q(z)|

(∫ z

a

|g(τ , u1(τ), v1(τ))− g(τ , u2(τ), v2(τ))|dτ
)
dz ds

+
( m∑
j=1

αj

)( n∑
k=1

βk

∫ ξk

a

µ1

p(z)

(∫ z

a

|f(τ , u1(τ), v1(τ))− f(τ , u2(τ), v2(τ))dτ |
)
dz

)

+(b− a)

∫ b

a

∫ s

a

∣∣∣ µ1

p(z)

∣∣∣( ∫ z

a

|f(τ , u1(τ), v1(τ))− f(τ , u2(τ), v2(τ))dτ |
)
dz ds

+(b− a)

∫ ηj

a

( |µ2|
∑m
j=1 αj

|q(z)|

∫ z

a

|g(τ , u1(τ), v1(τ))− g(τ , u2(τ), v2(τ))dτ |
)
dz

}

≤ `1
(
|u1 − u2|+ |v1 − v2|

){∣∣∣ µ1

Qp̄

∣∣∣[|Q| (b− a)2

2
+

(b− a)4

6
+
( n∑
k=1

βk

)( m∑
j=1

αj
(ξk − a)2

2

)]}

+`2
(
|u1 − u2|+ |v1 − v2|

){ |µ2|
∑m
j=1 αj

|Qq̄|

[
(b− a)(ηj − a)2

2
+

(b− a)3

6

]}
,

which implies that

‖T1(u1, v1)− T1(u2, v2)‖ ≤ (`1M1 + `2M2)
(
|u1 − u2|+ |v1 − v2|

)
. (24)

In the same fashion, we can find that

‖T2(u1, v1)− T2(u2, v2)‖ ≤ (`1M3 + `2M4)
(
|u1 − u2|+ |v1 − v2|

)
. (25)

In consequence, from (24) and (25), it follows that

‖T (u1, v1)− T (u2, v2)‖ ≤ (R1`1 +R2`2)
(
|u1 − u2|+ |v1 − v2|

)
. (26)

According to the assumption (23), it follows from (26) that the operator T is a contraction. Thus the Banach
contraction mapping principle applies and the operator T has a unique fixed point, which corresponds to a
unique solution of the problem (3)—(4) on [a, b]. The proof is finished.

4 Illustrative Examples

Example 1 Consider the following coupled system of second-order ordinary differential equations

((
4t+7
t2+15

)
u′(t)

)′
= 9

257

[
t

270 + 29
240
√
t+1

u(t) + v(t)
65(t2+1)

]
, t ∈ [0, 2],

(
(
√

8t2 + 25) v′(t)
)′

= 56
34

[
32
7et + 1

180(t+1)u(t) +
√
t3

250+t2 v(t)
]
, t ∈ [0, 2],

(27)
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supplemented with the following boundary conditions:

u′(0) = 0,
∫ 2

0
u(s) ds−

∑3
j=1 αjv(ηj) = 10,

v′(0) = 0,
∫ 2

0
v(s) ds−

∑3
k=1 βku(ζk) = 25.

(28)

Here p(t) = (4t + 7)/(t2 + 15), q(t) =
√

8t2 + 25, a = 0, b = 2, λ1 = 10, λ2 = 25, µ1 = 9
257 , µ2 = 56

34 ,
η1 = 1/3, η2 = 2/3, η3 = 1, ξ1 = 6/5, ξ2 = 7/5, ξ3 = 8/5, α1 = 3/8, α2 = 1/2, α3 = 5/8, β1 = 2/7,
β2 = 4/7, β3 = 6/7. Using the given values, we found that |Q| ≈ 1.428571429 6= 0, where Q is given by (8),
p̄ ≈ 0.4666667, q̄ = 5, M1 ≈ 0.1694622581, M2 ≈ 1.350413943, M3 ≈ 1.983975761, M4 ≈ 32.20915033,
(p̄, q̄ and Mi (i = 1, . . . , 4) are defined in (20)), R1 ≈ 2.153438019 and R2 ≈ 33.55956427 (R1 and R2 are
given by (19)). Obviously,

|f(t, u, v)| ≤ 1

3855
+

87

20560
‖u‖+

9

16705
‖v‖, |g(t, u, v)| ≤ 128

17
+

7

765
‖u‖+

14

2125
‖v‖,

with κ0 = 1/3855, κ1 = 87/20560, κ2 = 9/16705, γ0 = 128/17, γ1 = 7/765, γ2 = 28/425. Moreover,
R1κ1 +R2γ1 ≈ 0.3161932909 < 1, R1κ2 +R2γ2 ≈ 0.2222584939 < 1, which implies that (21) is satisfied.
Clearly the hypotheses of Theorem 1 are satisfied. In consequence, by the conclusion of Theorem 1, the
problem (27)—(28) has at least one solution on [0, 2].

Example 2 Consider the following system:
((

4t+7
t2+15

)
u′(t)

)′2
=
(
3t2 + 2

)
+ arctan(t)

4π (u(t))
1
4 + 2 sin t

9 (v(t))
3
4 , t ∈ [0, 2],

(√
8t2 + 25 v′(t)

)′
= 3(t+2)

10 + 8
3(t2+3) (u(t))

2
7 + 10

3(5+t) (v(t))
5
9 , t ∈ [0, 2],

(29)

subject to the coupled boundary conditions of Example 4.1.

Clearly, the condition (S2) is satisfied with ω(t) = (3t2 + 2), λ(t) = 3(t + 2)/10, z1 = 1/4, z2 = 3/4,
k1 = 2/7, k2 = 5/9, ρ1 = 1/8, ρ2 = 2/9, ν1 = 8/9, ν2 = 2/3. Consequently, Theorem 2 applies to the
system (29) with boundary conditions (28). So, there exists at least one solution of the problem (29) with
the coupled boundary conditions (28) on [0, 2].

Example 3 Consider the following system:
((

4t+7
t2+15

)
u′(t)

)′
= 1

21

(
|u(t)|

1+|u(t)| + v(t) + 81
8

√
3t+ 7

)
, t ∈ [0, 2],(√

8t2 + 25 v′(t)
)′

= 1
5
√
t3+81

(
sin u(t) + cos t

t+1 arctan v(t) + 1
5e
t
)
, t ∈ [0, 2],

(30)

with the coupled boundary conditions (28).

Obviously, we have

|f(t, u1, v1)− f(t, u2, v2)| ≤ 1

21
(|u1 − u2|+ |v1 − v2|)

and
|g(t, u1, v1)− g(t, u2, v2)| ≤ 1

45
(|u1 − u2|+ |v1 − v2|),

with `1 = 1/21, `2 = 1/45. By the data found in Example 27, we have

R1 ≈ 19.84279771, R2 ≈ 1.058148148 and R1`1 +R2`2 ≈ 0.4913390674 < 1.

Thus, by Theorem 3, the problem (30) supplemented with the boundary conditions (28) has a unique solution
on [0, 2].
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5 Conclusions

We have presented suffi cient criteria for the existence and uniqueness of solutions for a coupled system
of self-adjoint nonlinear second-order ordinary differential equations supplemented with integral nonlocal
multi-point coupled boundary conditions on an arbitrary domain. The given problem is transformed into an
equivalent fixed point operator problem. Then the tools of the fixed point theory are applied to establish
the fixed points of the involved operator, which correspond to the solutions of the original problem. The
obtained results are well illustrated with the aid of numerical examples.
As a special case, we obtain the new results for a coupled system of self-adjoint nonlinear second-order

ordinary differential equations (3) complemented with the integral boundary conditions of the form:

u′(a) = 0,

∫ b

a

u(s)ds = λ1, v
′(a) = 0,

∫ b

a

v(s)ds = λ2,

when αj = 0, βk = 0 for all j = 1, . . . ,m and k = 1, . . . , n.
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